#ifndef STIM_CUDA_UPDATE_DIR_SHARED_H #define STIM_CUDA_UPDATE_DIR_SHARED_H # include # include #include #include #include "cpyToshare.cuh" namespace stim{ namespace cuda{ // this kernel calculates the voting direction for the next iteration based on the angle between the location of this voter and the maximum vote value in its voting area. template __global__ void cuda_update_dir(T* gpuDir, T* gpuVote, T* gpuGrad, T* gpuTable, T phi, int rmax, int x, int y){ //generate a pointer to shared memory (size will be specified as a kernel parameter) extern __shared__ float s_vote[]; //calculate the start point for this block int bxi = blockIdx.x * blockDim.x; // calculate the 2D coordinates for this current thread. int xi = bxi + threadIdx.x; int yi = blockIdx.y * blockDim.y + threadIdx.y; // convert 2D coordinates to 1D int i = yi * x + xi; // calculate the voting direction based on the grtadient direction float theta = gpuGrad[2*i]; //initialize the vote direction to zero gpuDir[i] = 0; // define a local variable to maximum value of the vote image in the voting area for this voter float max = 0; // define two local variables for the x and y coordinations where the maximum happened int id_x = 0; int id_y = 0; //calculate the width of the shared memory block int swidth = 2 * rmax + blockDim.x; // compute the size of window which will be checked for finding the voting area for this voter int x_table = 2*rmax +1; int rmax_sq = rmax * rmax; int tx_rmax = threadIdx.x + rmax; int bxs = bxi - rmax; for(int yr = -rmax; yr <= rmax; yr++){ //if (yi+yr >= 0 && yi + yr < y){ //copy the portion of the image necessary for this block to shared memory __syncthreads(); cpyG2S1D(s_vote, gpuVote, bxs, yi + yr , swidth, 1, threadIdx, blockDim, x, y); __syncthreads(); //if the current thread is outside of the image, it doesn't have to be computed if(xi < x && yi < y){ for(int xr = -rmax; xr <= rmax; xr++){ unsigned int ind_t = (rmax - yr) * x_table + rmax - xr; // calculate the angle between the voter and the current pixel in x and y directions float atan_angle = gpuTable[ind_t]; // calculate the voting direction based on the grtadient direction int idx_share_update = xr + tx_rmax ; float share_vote = s_vote[idx_share_update]; // check if the current pixel is located in the voting area of this voter. if (((xr * xr + yr *yr)< rmax_sq) && (abs(atan_angle - theta) max) { max = share_vote; id_x = xr; id_y = yr; } } } } //} } unsigned int ind_m = (rmax - id_y) * x_table + (rmax - id_x); float new_angle = gpuTable[ind_m]; if(xi < x && yi < y) gpuDir[i] = new_angle; } // this kernel updates the gradient direction by the calculated voting direction. template __global__ void cuda_update_grad(T* gpuGrad, T* gpuDir, int x, int y){ // calculate the 2D coordinates for this current thread. int xi = blockIdx.x * blockDim.x + threadIdx.x; int yi = blockIdx.y * blockDim.y + threadIdx.y; // convert 2D coordinates to 1D int i = yi * x + xi; //update the gradient image with the vote direction gpuGrad[2*i] = gpuDir[i]; } template void gpu_update_dir(T* gpuVote, T* gpuGrad, T* gpuTable, T phi, unsigned int rmax, unsigned int x, unsigned int y){ //calculate the number of bytes in the array unsigned int bytes = x * y * sizeof(T); unsigned int max_threads = stim::maxThreadsPerBlock(); dim3 threads(max_threads, 1); dim3 blocks(x/threads.x + (x %threads.x == 0 ? 0:1) , y); // specify share memory unsigned int share_bytes = (2*rmax + threads.x)*(1)*4; // allocate space on the GPU for the updated vote direction T* gpuDir; cudaMalloc(&gpuDir, bytes); //call the kernel to calculate the new voting direction cuda_update_dir <<< blocks, threads, share_bytes >>>(gpuDir, gpuVote, gpuGrad, gpuTable, phi, rmax, x , y); //call the kernel to update the gradient direction cuda_update_grad <<< blocks, threads >>>(gpuGrad, gpuDir, x , y); //free allocated memory cudaFree(gpuDir); } template void cpu_update_dir(T* cpuVote, T* cpuGrad,T* cpuTable, T phi, unsigned int rmax, unsigned int x, unsigned int y){ //calculate the number of bytes in the array unsigned int bytes = x * y * sizeof(T); //calculate the number of bytes in the atan2 table unsigned int bytes_table = (2*rmax+1) * (2*rmax+1) * sizeof(T); //allocate space on the GPU for the Vote Image T* gpuVote; cudaMalloc(&gpuVote, bytes); //copy the input vote image to the GPU HANDLE_ERROR(cudaMemcpy(gpuVote, cpuVote, bytes, cudaMemcpyHostToDevice)); //allocate space on the GPU for the input Gradient image T* gpuGrad; HANDLE_ERROR(cudaMalloc(&gpuGrad, bytes*2)); //copy the Gradient data to the GPU HANDLE_ERROR(cudaMemcpy(gpuGrad, cpuGrad, bytes*2, cudaMemcpyHostToDevice)); //allocate space on the GPU for the atan2 table T* gpuTable; HANDLE_ERROR(cudaMalloc(&gpuTable, bytes_table)); //copy the atan2 values to the GPU HANDLE_ERROR(cudaMemcpy(gpuTable, cpuTable, bytes_table, cudaMemcpyHostToDevice)); //call the GPU version of the update direction function gpu_update_dir(gpuVote, gpuGrad, gpuTable, phi, rmax, x , y); //copy the new gradient image back to the CPU cudaMemcpy(cpuGrad, gpuGrad, bytes*2, cudaMemcpyDeviceToHost) ; //free allocated memory cudaFree(gpuTable); cudaFree(gpuVote); cudaFree(gpuGrad); } } } #endif