#ifndef STIM_CUDA_VOTE_H #define STIM_CUDA_VOTE_H # include # include #include #include namespace stim{ namespace cuda{ // this kernel calculates the vote value by adding up the gradient magnitudes of every voter that this pixel is located in their voting area template __global__ void cuda_vote(T* gpuVote, cudaTextureObject_t in, T* gpuTable, T phi, int rmax, int x, int y){ //generate a pointer to shared memory (size will be specified as a kernel parameter) extern __shared__ float2 s_grad[]; //calculate the start point for this block int bxi = blockIdx.x * blockDim.x; // calculate the 2D coordinates for this current thread. int xi = bxi + threadIdx.x; int yi = blockIdx.y * blockDim.y + threadIdx.y; // convert 2D coordinates to 1D int i = yi * x + xi; // define a local variable to sum the votes from the voters float sum = 0; //calculate the width of the shared memory block int swidth = 2 * rmax + blockDim.x; // compute the size of window which will be checked for finding the proper voters for this pixel int x_table = 2*rmax +1; int rmax_sq = rmax * rmax; int tx_rmax = threadIdx.x + rmax; int bxs = bxi - rmax; //for every line (along y) for(int yr = -rmax; yr <= rmax; yr++){ //copy the portion of the image necessary for this block to shared memory __syncthreads(); stim::cuda::sharedMemcpy_tex2D(s_grad, in, bxs, yi + yr , swidth, 1, threadIdx, blockDim); __syncthreads(); if(xi < x && yi < y){ for(int xr = -rmax; xr <= rmax; xr++){ //find the location of this voter in the atan2 table int id_t = (yr + rmax) * x_table + xr + rmax; // calculate the angle between the pixel and the current voter in x and y directions float atan_angle = gpuTable[id_t]; // calculate the voting direction based on the grtadient direction int idx_share = xr + tx_rmax ; float2 g = s_grad[idx_share]; float theta = g.x; // check if the current voter is located in the voting area of this pixel. if (((xr * xr + yr *yr)< rmax_sq) && (abs(atan_angle - theta) void gpu_vote(T* gpuVote, T* gpuGrad, T* gpuTable, T phi, unsigned int rmax, unsigned int x, unsigned int y){ //get the number of pixels in the image unsigned int pixels = x * y; unsigned int bytes = sizeof(T) * pixels; unsigned int max_threads = stim::maxThreadsPerBlock(); dim3 threads(max_threads, 1); dim3 blocks(x/threads.x + (x %threads.x == 0 ? 0:1) , y); // Allocate CUDA array in device memory //define a channel descriptor for a single 32-bit channel cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc(32, 32, 0, 0, cudaChannelFormatKindFloat); cudaArray* cuArray; //declare the cuda array cudaMallocArray(&cuArray, &channelDesc, x, y); //allocate the cuda array // Copy the image data from global memory to the array cudaMemcpyToArray(cuArray, 0, 0, gpuGrad, bytes*2, cudaMemcpyDeviceToDevice); // Specify texture struct cudaResourceDesc resDesc; //create a resource descriptor memset(&resDesc, 0, sizeof(resDesc)); //set all values to zero resDesc.resType = cudaResourceTypeArray; //specify the resource descriptor type resDesc.res.array.array = cuArray; //add a pointer to the cuda array // Specify texture object parameters struct cudaTextureDesc texDesc; //create a texture descriptor memset(&texDesc, 0, sizeof(texDesc)); //set all values in the texture descriptor to zero texDesc.addressMode[0] = cudaAddressModeWrap; //use wrapping (around the edges) texDesc.addressMode[1] = cudaAddressModeWrap; texDesc.filterMode = cudaFilterModePoint; //use linear filtering texDesc.readMode = cudaReadModeElementType; //reads data based on the element type (32-bit floats) texDesc.normalizedCoords = 0; //not using normalized coordinates // Create texture object cudaTextureObject_t texObj = 0; cudaCreateTextureObject(&texObj, &resDesc, &texDesc, NULL); // specify share memory unsigned int share_bytes = (2*rmax + threads.x)*(1)*2*4; //call the kernel to do the voting cuda_vote <<< blocks, threads,share_bytes >>>(gpuVote, texObj, gpuTable, phi, rmax, x , y); cudaDestroyTextureObject(texObj); cudaFreeArray(cuArray); } template void cpu_vote(T* cpuVote, T* cpuGrad,T* cpuTable, T phi, unsigned int rmax, unsigned int x, unsigned int y){ //calculate the number of bytes in the array unsigned int bytes = x * y * sizeof(T); //calculate the number of bytes in the atan2 table unsigned int bytes_table = (2*rmax+1) * (2*rmax+1) * sizeof(T); //allocate space on the GPU for the Vote Image T* gpuVote; cudaMalloc(&gpuVote, bytes); //allocate space on the GPU for the input Gradient image T* gpuGrad; HANDLE_ERROR(cudaMalloc(&gpuGrad, bytes*2)); //copy the Gradient Magnitude data to the GPU HANDLE_ERROR(cudaMemcpy(gpuGrad, cpuGrad, bytes*2, cudaMemcpyHostToDevice)); //allocate space on the GPU for the atan2 table T* gpuTable; HANDLE_ERROR(cudaMalloc(&gpuTable, bytes_table)); //copy the atan2 values to the GPU HANDLE_ERROR(cudaMemcpy(gpuTable, cpuTable, bytes_table, cudaMemcpyHostToDevice)); //call the GPU version of the vote calculation function gpu_vote(gpuVote, gpuGrad, gpuTable, phi, rmax, x , y); //copy the Vote Data back to the CPU cudaMemcpy(cpuVote, gpuVote, bytes, cudaMemcpyDeviceToHost) ; //free allocated memory cudaFree(gpuTable); cudaFree(gpuVote); cudaFree(gpuGrad); } } } #endif