#ifndef STIM_CUDA_VOTE_ATOMIC_SHARED_H #define STIM_CUDA_VOTE_ATOMIC_SHARED_H # include # include #include #include #include "cpyToshare.cuh" //#include "writebackshared.cuh" namespace stim{ namespace cuda{ // this kernel calculates the vote value by adding up the gradient magnitudes of every voter that this pixel is located in their voting area template __global__ void cuda_vote(T* gpuVote, T* gpuGrad, T* gpuTable, T phi, int rmax, int x, int y){ //generate a pointer to the shared memory extern __shared__ float s_vote[]; // calculate the 2D coordinates for this current thread. int bxi = blockIdx.x * blockDim.x; int byi = blockIdx.y * blockDim.y; int xi = bxi + threadIdx.x; int yi = byi + threadIdx.y; // convert 2D coordinates to 1D int i = yi * x + xi; // calculate the voting direction based on the gradient direction float theta = gpuGrad[2*i]; //calculate the amount of vote for the voter float mag = gpuGrad[2*i + 1]; //find the starting points and size of window, wich will be copied to the shared memory int bxs = bxi - rmax; int bys = byi - rmax; int xwidth = 2*rmax + blockDim.x; int ywidth = 2*rmax + blockDim.y; //compute the coordinations of this pixel in the 2D-shared memory. int sx_rx = threadIdx.x + rmax; int sy_ry = threadIdx.y + rmax; // compute the size of window which will be checked for finding the counters for this voter int x_table = 2*rmax +1; int rmax_sq = rmax * rmax; //calculate some parameters for indexing shared memory //calculate the total number of threads available unsigned int tThreads = blockDim.x * blockDim.y; //calculate the current 1D thread ID unsigned int ti = threadIdx.y * (blockDim.x) + threadIdx.x; //calculate the number of iteration required unsigned int In = xwidth*ywidth/tThreads + 1; if(xi < x && yi < y){ __syncthreads(); //initialize the shared memory to zero for (unsigned int i = 0; i < In; i++){ unsigned int sIdx0 = i * tThreads + ti; if (sIdx0< xwidth*ywidth) { s_vote[sIdx0] = 0; } } __syncthreads(); //for every line (along y) for(int yr = -rmax; yr <= rmax; yr++){ //compute the position of the current voter in the shared memory along the y axis. unsigned int sIdx_y1d = (sy_ry + yr)* xwidth; for(int xr = -rmax; xr <= rmax; xr++){ //find the location of the current pixel in the atan2 table unsigned int ind_t = (rmax - yr) * x_table + rmax - xr; // calculate the angle between the voter and the current pixel in x and y directions float atan_angle = gpuTable[ind_t]; // check if the current pixel is located in the voting area of this voter. if (((xr * xr + yr *yr)< rmax_sq) && (abs(atan_angle - theta) = xwidth*ywidth) return; unsigned int sy = sIdx/xwidth; unsigned int sx = sIdx - (sy * xwidth); unsigned int gx = bxs + sx; unsigned int gy = bys + sy; if (gx void gpu_vote(T* gpuVote, T* gpuGrad, T* gpuTable, T phi, unsigned int rmax, unsigned int x, unsigned int y){ unsigned int max_threads = stim::maxThreadsPerBlock(); dim3 threads(sqrt(max_threads), sqrt(max_threads)); dim3 blocks(x/threads.x + 1 , y/threads.y+1); // specify share memory unsigned int share_bytes = (2*rmax + threads.x)*(2*rmax + threads.y)*sizeof(T); //call the kernel to do the voting cuda_vote <<< blocks, threads, share_bytes>>>(gpuVote, gpuGrad, gpuTable, phi, rmax, x , y); } template void cpu_vote(T* cpuVote, T* cpuGrad,T* cpuTable, T phi, unsigned int rmax, unsigned int x, unsigned int y){ //calculate the number of bytes in the array unsigned int bytes = x * y * sizeof(T); //calculate the number of bytes in the atan2 table unsigned int bytes_table = (2*rmax+1) * (2*rmax+1) * sizeof(T); //allocate space on the GPU for the Vote Image T* gpuVote; cudaMalloc(&gpuVote, bytes); //allocate space on the GPU for the input Gradient image T* gpuGrad; HANDLE_ERROR(cudaMalloc(&gpuGrad, bytes*2)); //copy the Gradient Magnitude data to the GPU HANDLE_ERROR(cudaMemcpy(gpuGrad, cpuGrad, bytes*2, cudaMemcpyHostToDevice)); //allocate space on the GPU for the atan2 table T* gpuTable; HANDLE_ERROR(cudaMalloc(&gpuTable, bytes_table)); //copy the atan2 values to the GPU HANDLE_ERROR(cudaMemcpy(gpuTable, cpuTable, bytes_table, cudaMemcpyHostToDevice)); //call the GPU version of the vote calculation function gpu_vote(gpuVote, gpuGrad, gpuTable, phi, rmax, x , y); //copy the Vote Data back to the CPU cudaMemcpy(cpuVote, gpuVote, bytes, cudaMemcpyDeviceToHost) ; //free allocated memory cudaFree(gpuTable); cudaFree(gpuVote); cudaFree(gpuGrad); } } } #endif