#ifndef STIM_CUDA_GRADIENT_H #define STIM_CUDA_GRADIENT_H #include #include #include namespace stim{ namespace cuda{ template __global__ void gradient_2d(T* out, T* in, unsigned int x, unsigned int y){ //calculate the 1D image index for this thread int i = blockIdx.x * blockDim.x + threadIdx.x; //convert this to 2D pixel coordinates int yi = i / x; int xi = i - (yi * x); //return if the pixel is outside of the image if(xi >= x || yi >= y) return; //calculate indices for the forward difference int i_xp = yi * x + (xi + 1); int i_yp = (yi + 1) * x + xi; //use forward differences if a coordinate is zero if(xi == 0) out[i * 2 + 0] = in[i_xp] - in[i]; if(yi == 0) out[i * 2 + 1] = in[i_yp] - in[i]; //calculate indices for the backward difference int i_xn = yi * x + (xi - 1); int i_yn = (yi - 1) * x + xi; //use backward differences if the coordinate is at the maximum edge if(xi == x-1) out[i * 2 + 0] = in[i] - in[i_xn]; if(yi == y-1) out[i * 2 + 1] = in[i] - in[i_yn]; //otherwise use central differences if(xi > 0 && xi < x-1) out[i * 2 + 0] = (in[i_xp] - in[i_xn]) / 2; if(yi > 0 && yi < y-1) out[i * 2 + 1] = (in[i_yp] - in[i_yn]) / 2; } template //void gpu_gradient_2d(T* gpuOut, T* gpuIn, unsigned int x, unsigned int y){ void gpu_gradient_2d(T* gpuGrad, T* gpuI, unsigned int x, unsigned int y){ //get the number of pixels in the image unsigned int pixels = x * y; //allocate space on the GPU for the input image //T* gpuI; //HANDLE_ERROR(cudaMalloc(&gpuI, bytes)); //cudaMemcpy(gpuI, gpuI0, bytes, cudaMemcpyDeviceToDevice); //allocate space on the GPU for the output gradient image //T* gpuGrad; //cudaMalloc(&gpuGrad, bytes * 2); //the output image will have two channels (x, y) //get the maximum number of threads per block for the CUDA device int threads = stim::maxThreadsPerBlock(); //calculate the number of blocks int blocks = pixels / threads + (pixels%threads == 0 ? 0:1); //call the GPU kernel to determine the gradient gradient_2d <<< blocks, threads >>>(gpuGrad, gpuI, x, y); } template void cpu_gradient_2d(T* out, T* in, unsigned int x, unsigned int y){ //get the number of pixels in the image unsigned int pixels = x * y; unsigned int bytes = pixels * sizeof(T); //allocate space on the GPU for the input image T* gpuIn; HANDLE_ERROR(cudaMalloc(&gpuIn, bytes)); //copy the image data to the GPU HANDLE_ERROR(cudaMemcpy(gpuIn, in, bytes, cudaMemcpyHostToDevice)); //allocate space on the GPU for the output gradient image T* gpuOut; cudaMalloc(&gpuOut, bytes * 2); //the output image will have two channels (x, y) //call the GPU version of this function gpu_gradient_2d(gpuOut, gpuIn, x, y); //copy the results to the CPU cudaMemcpy(out, gpuOut, bytes * 2, cudaMemcpyDeviceToHost); //free allocated memory cudaFree(gpuOut); } } } #endif