#ifndef STIM_BIP_H #define STIM_BIP_H #include "../envi/envi_header.h" #include "../envi/bil.h" #include "../envi/hsi.h" #include #include //CUDA #ifdef CUDA_FOUND #include #include "cublas_v2.h" #endif namespace stim{ /** The BIP class represents a 3-dimensional binary file stored using band interleaved by pixel (BIP) image encoding. The binary file is stored such that Z-X "frames" are stored sequentially to form an image stack along the y-axis. When accessing the data sequentially on disk, the dimensions read, from fastest to slowest, are Z, X, Y. This class is optimized for data streaming, and therefore supports extremely large (terabyte-scale) files. Data is loaded from disk on request. Functions used to access data are written to support efficient reading. */ template class bip: public hsi { protected: //std::vector w; //band wavelength unsigned long long offset; //header offset using hsi::w; //use the wavelength array in stim::hsi using hsi::nnz; using binary::progress; using hsi::X; using hsi::Y; using hsi::Z; public: using binary::open; using binary::file; using binary::R; using binary::read_line_0; bip(){ hsi::init_bip(); } /// Open a data file for reading using the class interface. /// @param filename is the name of the binary file on disk /// @param X is the number of samples along dimension 1 /// @param Y is the number of samples (lines) along dimension 2 /// @param B is the number of samples (bands) along dimension 3 /// @param header_offset is the number of bytes (if any) in the binary header /// @param wavelengths is an optional STL vector of size B specifying a numerical label for each band bool open(std::string filename, unsigned long long X, unsigned long long Y, unsigned long long B, unsigned long long header_offset, std::vector wavelengths){ //copy the wavelengths to the BSQ file structure w = wavelengths; //copy the offset to the structure offset = header_offset; return open(filename, vec(B, X, Y), header_offset); } /// Retrieve a single band (based on index) and stores it in pre-allocated memory. /// @param p is a pointer to an allocated region of memory at least X * Y * sizeof(T) in size. /// @param page <= B is the integer number of the band to be copied. bool band_index( T * p, unsigned long long page, bool PROGRESS = false){ return binary::read_plane_0(p, page, PROGRESS); } /// Retrieve a single band (by numerical label) and stores it in pre-allocated memory. /// @param p is a pointer to an allocated region of memory at least X * Y * sizeof(T) in size. /// @param wavelength is a floating point value (usually a wavelength in spectral data) used as a label for the band to be copied. bool band( T * p, double wavelength, bool PROGRESS = false){ //if there are no wavelengths in the BSQ file if(w.size() == 0) return band_index(p, (unsigned long long)wavelength, PROGRESS); unsigned long long XY = X() * Y(); //calculate the number of pixels in a band unsigned page=0; //bands around the wavelength //get the bands numbers around the wavelength //if wavelength is smaller than the first one in header file if ( w[page] > wavelength ){ band_index(p, page, PROGRESS); return true; } while( w[page] < wavelength ) { page++; //if wavelength is larger than the last wavelength in header file if (page == Z()) { band_index(p, Z()-1, PROGRESS); return true; } } if ( wavelength < w[page] ) { T * p1; T * p2; p1=(T*)malloc( XY * sizeof(T)); //memory allocation p2=(T*)malloc( XY * sizeof(T)); band_index(p1, page - 1); band_index(p2, page, PROGRESS); for(unsigned long long i=0; i < XY; i++){ double r = (double) (wavelength - w[page-1]) / (double) (w[page] - w[page-1]); p[i] = (T)(((double)p2[i] - (double)p1[i]) * r + (double)p1[i]); } free(p1); free(p2); } else //if the wavelength is equal to a wavelength in header file { band_index(p, page, PROGRESS); } return true; } /// Retrieve a single spectrum (Z-axis line) at a given (x, y) location and stores it in pre-allocated memory. /// @param p is a pointer to pre-allocated memory at least B * sizeof(T) in size. /// @param x is the x-coordinate (dimension 1) of the spectrum. /// @param y is the y-coordinate (dimension 2) of the spectrum. bool spectrum(T * p, unsigned long long x, unsigned long long y, bool PROGRESS = false){ return read_line_0(p, x, y, PROGRESS); //read a line in the binary YZ plane (dimension order for BIP is ZXY) } bool spectrum(T* p, size_t n, bool PROGRESS = false){ size_t y = n / X(); size_t x = n - y * X(); return read_line_0(p, x, y, PROGRESS); //read a line in the binary YZ plane (dimension order for BIP is ZXY) } /// Retrieves a band of x values from a given xz plane. /// @param p is a pointer to pre-allocated memory at least X * sizeof(T) in size /// @param c is a pointer to an existing XZ plane (size X*Z*sizeof(T)) /// @param wavelength is the wavelength of X values to retrieve bool read_x_from_xz(T* p, T* c, double wavelength) { unsigned long long B = Z(); unsigned long long page=0; //samples around the wavelength //get the bands numbers around the wavelength //if wavelength is smaller than the first one in header file if ( w[page] > wavelength ){ for(unsigned long long j = 0; j < X(); j++) { p[j] = c[j * B]; } return true; } while( w[page] < wavelength ) { page++; //if wavelength is larger than the last wavelength in header file if (page == B) { for(unsigned long long j = 0; j < X(); j++) { p[j] = c[(j + 1) * B - 1]; } return true; } } if ( wavelength < w[page] ) { T * p1; T * p2; p1=(T*)malloc( X() * sizeof(T)); //memory allocation p2=(T*)malloc( X() * sizeof(T)); //band_index(p1, page - 1); for(unsigned long long j = 0; j < X(); j++) { p1[j] = c[j * B + page - 1]; } //band_index(p2, page ); for(unsigned long long j = 0; j < X(); j++) { p2[j] = c[j * B + page]; } for(unsigned long long i=0; i < X(); i++){ double r = (double) (wavelength - w[page-1]) / (double) (w[page] - w[page-1]); p[i] = (p2[i] - p1[i]) * r + p1[i]; } free(p1); free(p2); } else //if the wavelength is equal to a wavelength in header file { //band_index(p, page); for(unsigned long long j = 0; j < X(); j++) { p[j] = c[j * B + page]; } } return true; } /// Retrieve a single pixel and store it in a pre-allocated double array. bool pixeld(double* p, unsigned long long n){ unsigned long long bandnum = X() * Y(); //calculate numbers in one band if ( n >= bandnum){ //make sure the pixel number is right std::cout<<"ERROR: sample or line out of range"<= N){ //make sure the pixel number is right std::cout<<"ERROR: sample or line out of range"<::read_plane_2(p, y); } /// Perform baseline correction given a list of baseline points and stores the result in a new BSQ file. /// @param outname is the name of the output file used to store the resulting baseline-corrected data. /// @param wls is the list of baseline points based on band labels. bool baseline(std::string outname, std::vector base_pts, unsigned char* mask = NULL, bool PROGRESS = false){ std::ofstream target(outname.c_str(), std::ios::binary); //open the target binary file unsigned long long N = X() * Y(); //calculate the total number of pixels to be processed unsigned long long B = Z(); //get the number of bands T* s = (T*)malloc(sizeof(T) * B); //allocate memory to store a pixel T* sbc = (T*)malloc(sizeof(T) * B); //allocate memory to store the baseline corrected spectrum std::vector base_vals; //allocate space for the values at each baseline point double aw, bw; //surrounding baseline point wavelengths T av, bv; //surrounding baseline point values unsigned long long ai, bi; //surrounding baseline point band indices for(unsigned long long n = 0; n < N; n++){ //for each pixel in the image if(mask != NULL && !mask[n]){ //if the pixel isn't masked memset(sbc, 0, sizeof(T) * B); //set the baseline corrected spectrum to zero } else{ pixel(s, n); //retrieve the spectrum s base_vals = hsi::interp_spectrum(s, base_pts); //get the values at each baseline point ai = bi = 0; aw = w[0]; //initialize the current baseline points (assume the spectrum starts at 0) av = s[0]; bw = base_pts[0]; for(unsigned long long b = 0; b < B; b++){ //for each band in the spectrum while(bi < base_pts.size() && base_pts[bi] < w[b]) //while the current wavelength is higher than the second baseline point bi++; //move to the next baseline point if(bi < base_pts.size()){ bw = base_pts[bi]; //set the wavelength for the upper bound baseline point bv = base_vals[bi]; //set the value for the upper bound baseline point } if(bi == base_pts.size()){ //if we have passed the last baseline point bw = w[B-1]; //set the outer bound to the last spectral band bv = s[B-1]; } if(bi != 0){ ai = bi - 1; //set the lower bound baseline point index aw = base_pts[ai]; //set the wavelength for the lower bound baseline point av = base_vals[ai]; //set the value for the lower bound baseline point } sbc[b] = s[b] - hsi::lerp(w[b], av, aw, bv, bw); //perform the baseline correction and save the new value } } if(PROGRESS) progress = (double)(n+1) / N * 100; //set the current progress target.write((char*)sbc, sizeof(T) * B); //write the corrected data into destination } //end for each pixel free(s); free(sbc); target.close(); return true; } /// Normalize all spectra based on the value of a single band, storing the result in a new BSQ file. /// @param outname is the name of the output file used to store the resulting baseline-corrected data. /// @param w is the label specifying the band that the hyperspectral image will be normalized to. /// @param t is a threshold specified such that a spectrum with a value at w less than t is set to zero. Setting this threshold allows the user to limit division by extremely small numbers. bool ratio(std::string outname, double w, unsigned char* mask = NULL, bool PROGRESS = false) { std::ofstream target(outname.c_str(), std::ios::binary); //open the target binary file std::string headername = outname + ".hdr"; //the header file name unsigned long long N = X() * Y(); //calculate the total number of pixels to be processed unsigned long long B = Z(); //get the number of bands T* s = (T*)malloc(sizeof(T) * B); //allocate memory to store a pixel T nv; //stores the value of the normalized band for(unsigned long long n = 0; n < N; n++){ //for each pixel in the image if(mask != NULL && !mask[n]) //if the normalization band is below threshold memset(s, 0, sizeof(T) * B); //set the output to zero else{ pixel(s, n); //retrieve the spectrum s nv = hsi::interp_spectrum(s, w); //find the value of the normalization band for(unsigned long long b = 0; b < B; b++) //for each band in the spectrum s[b] /= nv; //divide by the normalization value } if(PROGRESS) progress = (double)(n+1) / N * 100; //set the current progress target.write((char*)s, sizeof(T) * B); //write the corrected data into destination } //end for each pixel free(s); target.close(); return true; } void normalize(std::string outfile, unsigned char* mask = NULL, bool PROGRESS = false){ std::ofstream target(outfile.c_str(), std::ios::binary); //open the target binary file file.seekg(0, std::ios::beg); //move the pointer to the current file to the beginning size_t B = Z(); //number of spectral components size_t XY = X() * Y(); //calculate the number of pixels size_t Bb = B * sizeof(T); //number of bytes in a spectrum T* spec = (T*) malloc(Bb); //allocate space for the spectrum T len; for(size_t xy = 0; xy < XY; xy++){ //for each pixel memset(spec, 0, Bb); //set the spectrum to zero if(mask == NULL || mask[xy]){ //if the pixel is masked len = 0; //initialize the file.read((char*)spec, Bb); //read a spectrum for(size_t b = 0; b < B; b++) //for each band len += spec[b]*spec[b]; //add the square of the spectral band len = sqrt(len); //calculate the square of the sum of squared components for(size_t b = 0; b < B; b++) //for each band spec[b] /= len; //divide by the length } else file.seekg(Bb, std::ios::cur); //otherwise skip a spectrum target.write((char*)spec, Bb); //output the normalized spectrum if(PROGRESS) progress = (double)(xy + 1) / (double)XY * 100; //update the progress } } /// Convert the current BIP file to a BIL file with the specified file name. /// @param outname is the name of the output BIL file to be saved to disk. bool bil(std::string outname, bool PROGRESS = false) { unsigned long long S = X() * Z() * sizeof(T); //calculate the number of bytes in a ZX slice std::ofstream target(outname.c_str(), std::ios::binary); //std::string headername = outname + ".hdr"; T * p; //pointer to the current ZX slice for bip file p = (T*)malloc(S); T * q; //pointer to the current XZ slice for bil file q = (T*)malloc(S); for ( unsigned long long i = 0; i < Y(); i++) { read_plane_y(p, i); for ( unsigned long long k = 0; k < Z(); k++) { unsigned long long ks = k * X(); for ( unsigned long long j = 0; j < X(); j++) q[ks + j] = p[k + j * Z()]; if(PROGRESS) progress = (double)(i * Z() + k+1) / (Y() * Z()) * 100; } target.write(reinterpret_cast(q), S); //write a band data into target file } free(p); free(q); target.close(); return true; } /// Return a baseline corrected band given two adjacent baseline points and their bands. The result is stored in a pre-allocated array. /// @param lb is the label value for the left baseline point /// @param rb is the label value for the right baseline point /// @param lp is a pointer to an array holding the band image for the left baseline point /// @param rp is a pointer to an array holding the band image for the right baseline point /// @param wavelength is the label value for the requested baseline-corrected band /// @param result is a pointer to a pre-allocated array at least X * Y * sizeof(T) in size. bool baseline_band(double lb, double rb, T* lp, T* rp, double wavelength, T* result){ unsigned long long XY = X() * Y(); band(result, wavelength); //get band //perform the baseline correction double r = (double) (wavelength - lb) / (double) (rb - lb); for(unsigned long long i=0; i < XY; i++){ result[i] =(T) (result[i] - (rp[i] - lp[i]) * r - lp[i] ); } return true; } /// Return a baseline corrected band given two adjacent baseline points. The result is stored in a pre-allocated array. /// @param lb is the label value for the left baseline point /// @param rb is the label value for the right baseline point /// @param bandwavelength is the label value for the desired baseline-corrected band /// @param result is a pointer to a pre-allocated array at least X * Y * sizeof(T) in size. bool height(double lb, double rb, double bandwavelength, T* result){ T* lp; T* rp; unsigned long long XY = X() * Y(); unsigned long long S = XY * sizeof(T); lp = (T*) malloc(S); //memory allocation rp = (T*) malloc(S); band(lp, lb); band(rp, rb); baseline_band(lb, rb, lp, rp, bandwavelength, result); free(lp); free(rp); return true; } /// Calculate the area under the spectrum between two specified points and stores the result in a pre-allocated array. /// @param lb is the label value for the left baseline point /// @param rb is the label value for the right baseline point /// @param lab is the label value for the left bound (start of the integration) /// @param rab is the label value for the right bound (end of the integration) /// @param result is a pointer to a pre-allocated array at least X * Y * sizeof(T) in size bool area(double lb, double rb, double lab, double rab, T* result){ T* lp; //left band pointer T* rp; //right band pointer T* cur; //current band 1 T* cur2; //current band 2 unsigned long long XY = X() * Y(); unsigned long long S = XY * sizeof(T); lp = (T*) malloc(S); //memory allocation rp = (T*) malloc(S); cur = (T*) malloc(S); cur2 = (T*) malloc(S); memset(result, (char)0, S); //find the wavelenght position in the whole band unsigned long long n = w.size(); unsigned long long ai = 0; //left bound position unsigned long long bi = n - 1; //right bound position //to make sure the left and the right bound are in the bandwidth if (lb < w[0] || rb < w[0] || lb > w[n-1] || rb >w[n-1]){ std::cout<<"ERROR: left bound or right bound out of bandwidth"< rb){ std::cout<<"ERROR: right bound should be bigger than left bound"<= w[ai]){ ai++; } while (rab <= w[bi]){ bi--; } band(lp, lb); band(rp, rb); //calculate the beginning and the ending part baseline_band(lb, rb, lp, rp, rab, cur2); //ending part baseline_band(lb, rb, lp, rp, w[bi], cur); for(unsigned long long j = 0; j < XY; j++){ result[j] += (T)((rab - w[bi]) * ((double)cur[j] + (double)cur2[j]) / 2.0); } baseline_band(lb, rb, lp, rp, lab, cur2); //beginnning part baseline_band(lb, rb, lp, rp, w[ai], cur); for(unsigned long long j = 0; j < XY; j++){ result[j] += (T)((w[ai] - lab) * ((double)cur[j] + (double)cur2[j]) / 2.0); } //calculate the area ai++; for(unsigned long long i = ai; i <= bi ;i++) { baseline_band(lb, rb, lp, rp, w[ai], cur2); for(unsigned long long j = 0; j < XY; j++) { result[j] += (T)((w[ai] - w[ai-1]) * ((double)cur[j] + (double)cur2[j]) / 2.0); } std::swap(cur,cur2); //swap the band pointers } free(lp); free(rp); free(cur); free(cur2); return true; } /// Compute the ratio of two baseline-corrected peaks. The result is stored in a pre-allocated array. /// @param lb1 is the label value for the left baseline point for the first peak (numerator) /// @param rb1 is the label value for the right baseline point for the first peak (numerator) /// @param pos1 is the label value for the first peak (numerator) position /// @param lb2 is the label value for the left baseline point for the second peak (denominator) /// @param rb2 is the label value for the right baseline point for the second peak (denominator) /// @param pos2 is the label value for the second peak (denominator) position /// @param result is a pointer to a pre-allocated array at least X * Y * sizeof(T) in size bool ph_to_ph(T* result, double lb1, double rb1, double pos1, double lb2, double rb2, double pos2, unsigned char* mask = NULL){ T* p1 = (T*)malloc(X() * Y() * sizeof(T)); T* p2 = (T*)malloc(X() * Y() * sizeof(T)); //get the two peak band height(lb1, rb1, pos1, p1); height(lb2, rb2, pos2, p2); //calculate the ratio in result for(unsigned long long i = 0; i < X() * Y(); i++){ if(p1[i] == 0 && p2[i] ==0) result[i] = 1; else result[i] = p1[i] / p2[i]; } free(p1); free(p2); return true; } /// Compute the ratio between a peak area and peak height. /// @param lb1 is the label value for the left baseline point for the first peak (numerator) /// @param rb1 is the label value for the right baseline point for the first peak (numerator) /// @param pos1 is the label value for the first peak (numerator) position /// @param lb2 is the label value for the left baseline point for the second peak (denominator) /// @param rb2 is the label value for the right baseline point for the second peak (denominator) /// @param pos2 is the label value for the second peak (denominator) position /// @param result is a pointer to a pre-allocated array at least X * Y * sizeof(T) in size bool pa_to_ph(T* result, double lb1, double rb1, double lab1, double rab1, double lb2, double rb2, double pos, unsigned char* mask = NULL){ T* p1 = (T*)malloc(X() * Y() * sizeof(T)); T* p2 = (T*)malloc(X() * Y() * sizeof(T)); //get the area and the peak band area(lb1, rb1, lab1, rab1, p1); height(lb2, rb2, pos, p2); //calculate the ratio in result for(unsigned long long i = 0; i < X() * Y(); i++){ if(p1[i] == 0 && p2[i] ==0) result[i] = 1; else result[i] = p1[i] / p2[i]; } free(p1); free(p2); return true; } /// Compute the ratio between two peak areas. /// @param lb1 is the label value for the left baseline point for the first peak (numerator) /// @param rb1 is the label value for the right baseline point for the first peak (numerator) /// @param lab1 is the label value for the left bound (start of the integration) of the first peak (numerator) /// @param rab1 is the label value for the right bound (end of the integration) of the first peak (numerator) /// @param lb2 is the label value for the left baseline point for the second peak (denominator) /// @param rb2 is the label value for the right baseline point for the second peak (denominator) /// @param lab2 is the label value for the left bound (start of the integration) of the second peak (denominator) /// @param rab2 is the label value for the right bound (end of the integration) of the second peak (denominator) /// @param result is a pointer to a pre-allocated array at least X * Y * sizeof(T) in size bool pa_to_pa(T* result, double lb1, double rb1, double lab1, double rab1, double lb2, double rb2, double lab2, double rab2, unsigned char* mask = NULL){ T* p1 = (T*)malloc(X() * Y() * sizeof(T)); T* p2 = (T*)malloc(X() * Y() * sizeof(T)); //get the area and the peak band area(lb1, rb1, lab1, rab1, p1); area(lb2, rb2, lab2, rab2, p2); //calculate the ratio in result for(unsigned long long i = 0; i < X() * Y(); i++){ if(p1[i] == 0 && p2[i] ==0) result[i] = 1; else result[i] = p1[i] / p2[i]; } free(p1); free(p2); return true; } /// Compute the definite integral of a baseline corrected peak. /// @param lb is the label value for the left baseline point /// @param rb is the label value for the right baseline point /// @param lab is the label for the start of the definite integral /// @param rab is the label for the end of the definite integral /// @param result is a pointer to a pre-allocated array at least X * Y * sizeof(T) in size bool x_area(double lb, double rb, double lab, double rab, T* result){ T* lp; //left band pointer T* rp; //right band pointer T* cur; //current band 1 T* cur2; //current band 2 unsigned long long XY = X() * Y(); unsigned long long S = XY * sizeof(T); lp = (T*) malloc(S); //memory allocation rp = (T*) malloc(S); cur = (T*) malloc(S); cur2 = (T*) malloc(S); memset(result, (char)0, S); //find the wavelenght position in the whole band unsigned long long n = w.size(); unsigned long long ai = 0; //left bound position unsigned long long bi = n - 1; //right bound position //to make sure the left and the right bound are in the bandwidth if (lb < w[0] || rb < w[0] || lb > w[n-1] || rb >w[n-1]){ std::cout<<"ERROR: left bound or right bound out of bandwidth"< rb){ std::cout<<"ERROR: right bound should be bigger than left bound"<= w[ai]){ ai++; } while (rab <= w[bi]){ bi--; } band(lp, lb); band(rp, rb); //calculate the beginning and the ending part baseline_band(lb, rb, lp, rp, rab, cur2); //ending part baseline_band(lb, rb, lp, rp, w[bi], cur); for(unsigned long long j = 0; j < XY; j++){ result[j] += (T)((rab - w[bi]) * (rab + w[bi]) * ((double)cur[j] + (double)cur2[j]) / 4.0); } baseline_band(lb, rb, lp, rp, lab, cur2); //beginnning part baseline_band(lb, rb, lp, rp, w[ai], cur); for(unsigned long long j = 0; j < XY; j++){ result[j] += (T)((w[ai] - lab) * (w[ai] + lab) * ((double)cur[j] + (double)cur2[j]) / 4.0); } //calculate f(x) times x ai++; for(unsigned long long i = ai; i <= bi ;i++) { baseline_band(lb, rb, lp, rp, w[ai], cur2); for(unsigned long long j = 0; j < XY; j++) { result[j] += (T)((w[ai] - w[ai-1]) * (w[ai] + w[ai-1]) * ((double)cur[j] + (double)cur2[j]) / 4.0); } std::swap(cur,cur2); //swap the band pointers } free(lp); free(rp); free(cur); free(cur2); return true; } /// Compute the centroid of a baseline corrected peak. /// @param lb is the label value for the left baseline point /// @param rb is the label value for the right baseline point /// @param lab is the label for the start of the peak /// @param rab is the label for the end of the peak /// @param result is a pointer to a pre-allocated array at least X * Y * sizeof(T) in size bool centroid(T* result, double lb, double rb, double lab, double rab, unsigned char* mask = NULL){ T* p1 = (T*)malloc(X() * Y() * sizeof(T)); T* p2 = (T*)malloc(X() * Y() * sizeof(T)); //get the area and the peak band x_area(lb, rb, lab, rab, p1); area(lb, rb, lab, rab, p2); //calculate the ratio in result for(unsigned long long i = 0; i < X() * Y(); i++){ if(mask == NULL || mask[i]) result[i] = p1[i] / p2[i]; } free(p1); free(p2); return true; } /// Create a mask based on a given band and threshold value. /// All pixels in the /// specified band greater than the threshold are true and all pixels less than the threshold are false. /// @param mask_band is the band used to specify the mask /// @param threshold is the threshold used to determine if the mask value is true or false /// @param p is a pointer to a pre-allocated array at least X * Y in size bool build_mask(unsigned char* mask, double mask_band, double threshold, bool PROGRESS = false){ T* temp = (T*)malloc(X() * Y() * sizeof(T)); //allocate memory for the certain band band(temp, mask_band, PROGRESS); for (unsigned long long i = 0; i < X() * Y();i++) { if (temp[i] < threshold) mask[i] = 0; else mask[i] = 255; } free(temp); return true; } /// Apply a mask file to the BSQ image, setting all values outside the mask to zero. /// @param outfile is the name of the masked output file /// @param p is a pointer to memory of size X * Y, where p(i) = 0 for pixels that will be set to zero. bool apply_mask(std::string outfile, unsigned char* p, bool PROGRESS = false){ std::ofstream target(outfile.c_str(), std::ios::binary); unsigned long long ZX = Z() * X(); //calculate the number of values in a page (XZ in BIP) unsigned long long L = ZX * sizeof(T); //calculate the number of bytes in a page T * temp = (T*)malloc(L); //allocate space for that page for (unsigned long long i = 0; i < Y(); i++) //for each page (Y in BIP) { read_plane_y(temp, i); //load that page (it's pointed to by temp) for ( unsigned long long j = 0; j < X(); j++) //for each X value { for (unsigned long long k = 0; k < Z(); k++) //for each B value (band) { if (p[i * X() + j] == 0) //if the mask value is zero temp[j * Z() + k] = 0; //set the pixel value to zero else //otherwise just continue continue; } } target.write(reinterpret_cast(temp), L); //write the edited band data into target file if(PROGRESS) progress = (double)(i+1) / (double)Y() * 100; } target.close(); //close the target file free(temp); //free allocated memory return true; //return true } /// Copies all spectra corresponding to nonzero values of a mask into a pre-allocated matrix of size (B x P) /// where P is the number of masked pixels and B is the number of bands. The allocated memory can be accessed /// using the following indexing: i = p*B + b /// @param matrix is the destination for the pixel data /// @param mask is the mask bool sift(T* matrix, unsigned char* mask = NULL, bool PROGRESS = false){ size_t Bbytes = sizeof(T) * Z(); size_t XY = X() * Y(); T* band = (T*) malloc( Bbytes ); //allocate space for a line file.seekg(0, std::ios::beg); //seek to the beginning of the file size_t p = 0; //create counter variables for(size_t xy = 0; xy < XY; xy++){ //for each pixel if(mask == NULL || mask[xy]){ //if the current pixel is masked file.read( (char*)band, Bbytes ); //read the current line for(size_t b = 0; b < Z(); b++){ //copy each band value to the sifted matrix size_t i = p * Z() + b; //calculate the index in the sifted matrix matrix[i] = band[b]; //store the current value in the line at the correct matrix location } p++; //increment the pixel pointer } else file.seekg(Bbytes, std::ios::cur); //otherwise skip this band if(PROGRESS) progress = (double)(xy+1) / (double)XY * 100; } return true; } /// Saves to disk only those spectra corresponding to mask values != 0 bool sift(std::string outfile, unsigned char* mask, bool PROGRESS = false){ //reset the file pointer to the beginning of the file file.seekg(0, std::ios::beg); // open an output stream std::ofstream target(outfile.c_str(), std::ios::binary); //allocate space for a single spectrum unsigned long long B = Z(); T* spectrum = (T*) malloc(B * sizeof(T)); //calculate the number of pixels in a band unsigned long long XY = X() * Y(); //for each pixel unsigned long long skip = 0; //number of spectra to skip for(unsigned long long x = 0; x < XY; x++){ //if the current pixel isn't masked if( mask[x] == 0){ //increment the number of skipped pixels skip++; } //if the current pixel is masked else{ //skip the intermediate pixels file.seekg(skip * B * sizeof(T), std::ios::cur); //set the skip value to zero skip = 0; //read this pixel into memory file.read((char *)spectrum, B * sizeof(T)); //write this pixel out target.write((char *)spectrum, B * sizeof(T)); } if(PROGRESS) progress = (double) (x+1) / XY * 100; } //close the output file target.close(); free(spectrum); return true; } bool unsift(std::string outfile, unsigned char* mask, unsigned long long samples, unsigned long long lines, bool PROGRESS = false){ // open an output stream std::ofstream target(outfile.c_str(), std::ios::binary); //reset the file pointer to the beginning of the file file.seekg(0, std::ios::beg); //allocate space for a single spectrum unsigned long long B = Z(); T* spectrum = (T*) malloc(B * sizeof(T)); //allocate space for a spectrum of zeros T* zeros = (T*) malloc(B * sizeof(T)); memset(zeros, 0, B * sizeof(T)); //calculate the number of pixels in a band unsigned long long XY = samples * lines; //for each pixel unsigned long long skip = 0; //number of spectra to skip for(unsigned long long x = 0; x < XY; x++){ //if the current pixel isn't masked if( mask[x] == 0){ //write a bunch of zeros target.write((char *)zeros, B * sizeof(T)); } //if the current pixel is masked else{ //read a pixel into memory file.read((char *)spectrum, B * sizeof(T)); //write this pixel out target.write((char *)spectrum, B * sizeof(T)); } if(PROGRESS) progress = (double)(x + 1) / XY * 100; } //close the output file target.close(); free(spectrum); //progress = 100; return true; } /// Calculate the mean value for all masked (or valid) pixels in a band and returns the average spectrum /// @param p is a pointer to pre-allocated memory of size [B * sizeof(T)] that stores the mean spectrum /// @param mask is a pointer to memory of size [X * Y] that stores the mask value at each pixel location bool avg_band(double* p, unsigned char* mask = NULL, bool PROGRESS = false){ unsigned long long XY = X() * Y(); //calculate the total number of pixels in the HSI T* temp = (T*)malloc(sizeof(T) * Z()); //allocate space for the current spectrum to be read memset(p, 0, sizeof(double) * Z()); //initialize the average spectrum to zero (0) //for (unsigned j = 0; j < Z(); j++){ // p[j] = 0; //} unsigned long long count = nnz(mask); //calculate the number of masked pixels for (unsigned long long i = 0; i < XY; i++){ //for each pixel in the HSI if (mask == NULL || mask[i] != 0){ //if the pixel is masked pixel(temp, i); //get the spectrum for (unsigned long long j = 0; j < Z(); j++){ //for each spectral component p[j] += (double)temp[j] / (double)count; //add the weighted value to the average } } if(PROGRESS) progress = (double)(i+1) / XY * 100; //increment the progress } free(temp); return true; } #ifdef CUDA_FOUND /// Calculate the covariance matrix for masked pixels using cuBLAS /// Note that cuBLAS only supports integer-sized arrays, so there may be issues with large spectra bool co_matrix_cublas(double* co, double* avg, unsigned char *mask, bool PROGRESS = false){ cudaError_t cudaStat; cublasStatus_t stat; cublasHandle_t handle; progress = 0; //initialize the progress to zero (0) unsigned long long XY = X() * Y(); //calculate the number of elements in a band image unsigned long long B = Z(); //calculate the number of spectral elements double* s = (double*)malloc(sizeof(double) * B); //allocate space for the spectrum that will be pulled from the file double* s_dev; //declare a device pointer that will store the spectrum on the GPU double* A_dev; //declare a device pointer that will store the covariance matrix on the GPU double* avg_dev; //declare a device pointer that will store the average spectrum cudaStat = cudaMalloc(&s_dev, B * sizeof(double)); //allocate space on the CUDA device for the spectrum cudaStat = cudaMalloc(&A_dev, B * B * sizeof(double)); //allocate space on the CUDA device for the covariance matrix cudaStat = cudaMemset(A_dev, 0, B * B * sizeof(double)); //initialize the covariance matrix to zero (0) cudaStat = cudaMalloc(&avg_dev, B * sizeof(double)); //allocate space on the CUDA device for the average spectrum stat = cublasSetVector((int)B, sizeof(double), avg, 1, avg_dev, 1); //copy the average spectrum to the CUDA device double ger_alpha = 1.0/(double)XY; //scale the outer product by the inverse of the number of samples (mean outer product) double axpy_alpha = -1; //multiplication factor for the average spectrum (in order to perform a subtraction) stat = cublasCreate(&handle); //create a cuBLAS instance if (stat != CUBLAS_STATUS_SUCCESS) { //test the cuBLAS instance to make sure it is valid printf ("CUBLAS initialization failed\n"); return EXIT_FAILURE; } for (unsigned long long xy = 0; xy < XY; xy++){ //for each pixel if (mask == NULL || mask[xy] != 0){ pixeld(s, xy); //retreive the spectrum at the current xy pixel location stat = cublasSetVector((int)B, sizeof(double), s, 1, s_dev, 1); //copy the spectrum from the host to the device stat = cublasDaxpy(handle, (int)B, &axpy_alpha, avg_dev, 1, s_dev, 1); //subtract the average spectrum stat = cublasDsyr(handle, CUBLAS_FILL_MODE_UPPER, (int)B, &ger_alpha, s_dev, 1, A_dev, (int)B); //calculate the covariance matrix (symmetric outer product) } if(PROGRESS) progress = (double)(xy+1) / XY * 100; //record the current progress } cublasGetMatrix((int)B, (int)B, sizeof(double), A_dev, (int)B, co, (int)B); //copy the result from the GPU to the CPU cudaFree(A_dev); //clean up allocated device memory cudaFree(s_dev); cudaFree(avg_dev); for(unsigned long long i = 0; i < B; i++){ //copy the upper triangular portion to the lower triangular portion for(unsigned long long j = i+1; j < B; j++){ co[B * i + j] = co[B * j + i]; } } return true; } #endif /// Calculate the covariance matrix for all masked pixels in the image with 64-bit floating point precision. /// @param co is a pointer to pre-allocated memory of size [B * B] that stores the resulting covariance matrix /// @param avg is a pointer to memory of size B that stores the average spectrum /// @param mask is a pointer to memory of size [X * Y] that stores the mask value at each pixel location bool co_matrix(double* co, double* avg, unsigned char *mask, bool PROGRESS = false){ #ifdef CUDA_FOUND int dev_count; cudaGetDeviceCount(&dev_count); //get the number of CUDA devices cudaDeviceProp prop; cudaGetDeviceProperties(&prop, 0); //get the property of the first device if(dev_count > 0 && prop.major != 9999) //if the first device is not an emulator return co_matrix_cublas(co, avg, mask, PROGRESS); //use cuBLAS to calculate the covariance matrix #endif progress = 0; //memory allocation unsigned long long XY = X() * Y(); unsigned long long B = Z(); T* temp = (T*)malloc(sizeof(T) * B); unsigned long long count = nnz(mask); //count the number of masked pixels //initialize covariance matrix memset(co, 0, B * B * sizeof(double)); //calculate covariance matrix double* co_half = (double*) malloc(B * B * sizeof(double)); //allocate space for a higher-precision intermediate matrix double* temp_precise = (double*) malloc(B * sizeof(double)); memset(co_half, 0, B * B * sizeof(double)); //initialize the high-precision matrix with zeros unsigned long long idx; //stores i*B to speed indexing for (unsigned long long xy = 0; xy < XY; xy++){ if (mask == NULL || mask[xy] != 0){ pixel(temp, xy); //retreive the spectrum at the current xy pixel location for(unsigned long long b = 0; b < B; b++) //subtract the mean from this spectrum and increase the precision temp_precise[b] = (double)temp[b] - (double)avg[b]; idx = 0; for (unsigned long long b0 = 0; b0 < B; b0++){ //for each band for (unsigned long long b1 = b0; b1 < B; b1++) co_half[idx++] += temp_precise[b0] * temp_precise[b1]; } } if(PROGRESS) progress = (double)(xy+1) / XY * 100; } idx = 0; for (unsigned long long i = 0; i < B; i++){ //copy the precision matrix to both halves of the output matrix for (unsigned long long j = i; j < B; j++){ co[j * B + i] = co[i * B + j] = co_half[idx++] / (double) count; } } free(temp); free(temp_precise); return true; } #ifdef CUDA_FOUND /// Calculate the covariance matrix of Noise for masked pixels using cuBLAS /// Note that cuBLAS only supports integer-sized arrays, so there may be issues with large spectra bool coNoise_matrix_cublas(double* coN, double* avg, unsigned char *mask, bool PROGRESS = false){ cudaError_t cudaStat; cublasStatus_t stat; cublasHandle_t handle; progress = 0; //initialize the progress to zero (0) unsigned long long XY = X() * Y(); //calculate the number of elements in a band image unsigned long long B = Z(); //calculate the number of spectral elements double* s = (double*)malloc(sizeof(double) * B); //allocate space for the spectrum that will be pulled from the file double* s_dev; //declare a device pointer that will store the spectrum on the GPU double* s2_dev; // device pointer on the GPU cudaStat = cudaMalloc(&s2_dev, B * sizeof(double)); // allocate space on the CUDA device cudaStat = cudaMemset(s2_dev, 0, B * sizeof(double)); // initialize s2_dev to zero (0) double* A_dev; //declare a device pointer that will store the covariance matrix on the GPU double* avg_dev; //declare a device pointer that will store the average spectrum cudaStat = cudaMalloc(&s_dev, B * sizeof(double)); //allocate space on the CUDA device for the spectrum cudaStat = cudaMalloc(&A_dev, B * B * sizeof(double)); //allocate space on the CUDA device for the covariance matrix cudaStat = cudaMemset(A_dev, 0, B * B * sizeof(double)); //initialize the covariance matrix to zero (0) cudaStat = cudaMalloc(&avg_dev, B * sizeof(double)); //allocate space on the CUDA device for the average spectrum stat = cublasSetVector((int)B, sizeof(double), avg, 1, avg_dev, 1); //copy the average spectrum to the CUDA device double ger_alpha = 1.0/(double)XY; //scale the outer product by the inverse of the number of samples (mean outer product) double axpy_alpha = -1; //multiplication factor for the average spectrum (in order to perform a subtraction) stat = cublasCreate(&handle); //create a cuBLAS instance if (stat != CUBLAS_STATUS_SUCCESS) { //test the cuBLAS instance to make sure it is valid printf ("CUBLAS initialization failed\n"); return EXIT_FAILURE; } for (unsigned long long xy = 0; xy < XY; xy++){ //for each pixel if (mask == NULL || mask[xy] != 0){ pixeld(s, xy); //retreive the spectrum at the current xy pixel location stat = cublasSetVector((int)B, sizeof(double), s, 1, s_dev, 1); //copy the spectrum from the host to the device stat = cublasDaxpy(handle, (int)B, &axpy_alpha, avg_dev, 1, s_dev, 1); //subtract the average spectrum cudaMemcpy(s2_dev, s_dev + 1 , (B-1) * sizeof(double), cudaMemcpyDeviceToDevice); //copy B-1 elements from shifted source data (s_dev) to device pointer (s2_dev ) stat = cublasDaxpy(handle, (int)B, &axpy_alpha, s2_dev, 1, s_dev, 1); //Minimum/Maximum Autocorrelation Factors (MAF) method : subtranct each pixel from adjacent pixel (z direction is choosed to do so , which is almost the same as x or y direction or even average of them ) stat = cublasDsyr(handle, CUBLAS_FILL_MODE_UPPER, (int)B, &ger_alpha, s_dev, 1, A_dev, (int)B); //calculate the covariance matrix (symmetric outer product) } if(PROGRESS) progress = (double)(xy+1) / XY * 100; //record the current progress } cublasGetMatrix((int)B, (int)B, sizeof(double), A_dev, (int)B, coN, (int)B); //copy the result from the GPU to the CPU cudaFree(A_dev); //clean up allocated device memory cudaFree(s_dev); cudaFree(s2_dev); cudaFree(avg_dev); for(unsigned long long i = 0; i < B; i++){ //copy the upper triangular portion to the lower triangular portion for(unsigned long long j = i+1; j < B; j++){ coN[B * i + j] = coN[B * j + i]; } } return true; } #endif /// Calculate the covariance of noise matrix for all masked pixels in the image with 64-bit floating point precision. /// @param coN is a pointer to pre-allocated memory of size [B * B] that stores the resulting covariance matrix /// @param avg is a pointer to memory of size B that stores the average spectrum /// @param mask is a pointer to memory of size [X * Y] that stores the mask value at each pixel location bool coNoise_matrix(double* coN, double* avg, unsigned char *mask, bool PROGRESS = false){ #ifdef CUDA_FOUND int dev_count; cudaGetDeviceCount(&dev_count); //get the number of CUDA devices cudaDeviceProp prop; cudaGetDeviceProperties(&prop, 0); //get the property of the first device if(dev_count > 0 && prop.major != 9999) //if the first device is not an emulator return coNoise_matrix_cublas(coN, avg, mask, PROGRESS); //use cuBLAS to calculate the covariance matrix #endif progress = 0; //memory allocation unsigned long long XY = X() * Y(); unsigned long long B = Z(); T* temp = (T*)malloc(sizeof(T) * B); unsigned long long count = nnz(mask); //count the number of masked pixels //initialize covariance matrix of noise memset(coN, 0, B * B * sizeof(double)); //calculate covariance matrix double* coN_half = (double*) malloc(B * B * sizeof(double)); //allocate space for a higher-precision intermediate matrix double* temp_precise = (double*) malloc(B * sizeof(double)); memset(coN_half, 0, B * B * sizeof(double)); //initialize the high-precision matrix with zeros unsigned long long idx; //stores i*B to speed indexing for (unsigned long long xy = 0; xy < XY; xy++){ if (mask == NULL || mask[xy] != 0){ pixel(temp, xy); //retreive the spectrum at the current xy pixel location for(unsigned long long b = 0; b < B; b++) //subtract the mean from this spectrum and increase the precision temp_precise[b] = (double)temp[b] - (double)avg[b]; for(unsigned long long b2 = 0; b2 < B-1; b2++) //Minimum/Maximum Autocorrelation Factors (MAF) method : subtranct each pixel from adjacent pixel (z direction is choosed to do so , which is almost the same as x or y direction or even average of them ) temp_precise[b2] -= temp_precise[b2+1]; idx = 0; for (unsigned long long b0 = 0; b0 < B; b0++){ //for each band for (unsigned long long b1 = b0; b1 < B; b1++) coN_half[idx++] += temp_precise[b0] * temp_precise[b1]; } } if(PROGRESS) progress = (double)(xy+1) / XY * 100; } idx = 0; for (unsigned long long i = 0; i < B; i++){ //copy the precision matrix to both halves of the output matrix for (unsigned long long j = i; j < B; j++){ coN[j * B + i] = coN[i * B + j] = coN_half[idx++] / (double) count; } } free(temp); free(temp_precise); return true; } #ifdef CUDA_FOUND /// Project the spectra onto a set of basis functions /// @param outfile is the name of the new binary output file that will be created /// @param center is a spectrum about which the data set will be rotated (ex. when performing mean centering) /// @param basis a set of basis vectors that the data set will be projected onto (after centering) /// @param M is the number of basis vectors /// @param mask is a character mask used to limit processing to valid pixels bool project_cublas(std::string outfile, double* center, double* basis, unsigned long long M, unsigned char* mask = NULL, bool PROGRESS = false){ cudaError_t cudaStat; cublasStatus_t stat; cublasHandle_t handle; std::ofstream target(outfile.c_str(), std::ios::binary); //open the target binary file //std::string headername = outfile + ".hdr"; //the header file name progress = 0; //initialize the progress to zero (0) unsigned long long XY = X() * Y(); //calculate the number of elements in a band image unsigned long long B = Z(); //calculate the number of spectral elements double* s = (double*)malloc(sizeof(double) * B); //allocate space for the spectrum that will be pulled from the file double* s_dev; //declare a device pointer that will store the spectrum on the GPU cudaStat = cudaMalloc(&s_dev, B * sizeof(double)); //allocate space on the CUDA device for the spectrum double* basis_dev; // device pointer on the GPU cudaStat = cudaMalloc(&basis_dev, M * B * sizeof(double)); // allocate space on the CUDA device cudaStat = cudaMemset(basis_dev, 0, M * B * sizeof(double)); // initialize basis_dev to zero (0) /// transposing basis matrix (because cuBLAS is column-major) double *basis_Transposed = (double*)malloc(M * B * sizeof(double)); memset(basis_Transposed, 0, M * B * sizeof(double)); for (int i = 0; i(temp), sizeof(T) * M); //write the projected vector if(PROGRESS) progress = (double)(xy+1) / XY * 100; //record the current progress } //clean up allocated device memory cudaFree(A_dev); cudaFree(s_dev); cudaFree(basis_dev); cudaFree(center_dev); free(A); free(s); free(temp); target.close(); //close the output file return true; } #endif /// Project the spectra onto a set of basis functions /// @param outfile is the name of the new binary output file that will be created /// @param center is a spectrum about which the data set will be rotated (ex. when performing mean centering) /// @param basis a set of basis vectors that the data set will be projected onto (after centering) /// @param M is the number of basis vectors /// @param mask is a character mask used to limit processing to valid pixels bool project(std::string outfile, double* center, double* basis, unsigned long long M, unsigned char* mask = NULL, bool PROGRESS = false){ #ifdef CUDA_FOUND int dev_count; cudaGetDeviceCount(&dev_count); //get the number of CUDA devices cudaDeviceProp prop; cudaGetDeviceProperties(&prop, 0); //get the property of the first device if(dev_count > 0 && prop.major != 9999) //if the first device is not an emulator return project_cublas(outfile,center,basis,M,mask,PROGRESS); //use cuBLAS to calculate the covariance matrix #endif std::ofstream target(outfile.c_str(), std::ios::binary); //open the target binary file //std::string headername = outfile + ".hdr"; //the header file name //memory allocation unsigned long long XY = X() * Y(); unsigned long long B = Z(); T* s = (T*)malloc(sizeof(T) * B); //allocate space for the spectrum T* rs = (T*)malloc(sizeof(T) * M); //allocate space for the projected spectrum double* bv; //pointer to the current projection vector for(unsigned long long xy = 0; xy < XY; xy++){ //for each spectrum in the image memset(rs, 0, sizeof(T) * M); if(mask == NULL || mask[xy]){ pixel(s, xy); //load the spectrum for(unsigned long long m = 0; m < M; m++){ //for each basis vector bv = &basis[m * B]; //assign 'bv' to the beginning of the basis vector for(unsigned long long b = 0; b < B; b++){ //for each band rs[m] += (T)(((double)s[b] - center[b]) * bv[b]); //center the spectrum and perform the projection } } } target.write(reinterpret_cast(rs), sizeof(T) * M); //write the projected vector if(PROGRESS) progress = (double)(xy+1) / XY * 100; } free(s); //free temporary storage arrays free(rs); target.close(); //close the output file return true; } bool inverse(std::string outfile, double* center, double* basis, unsigned long long B, unsigned long long C = 0, bool PROGRESS = false){ std::ofstream target(outfile.c_str(), std::ios::binary); //open the target binary file std::string headername = outfile + ".hdr"; //the header file name //memory allocation unsigned long long XY = X() * Y(); if(C == 0) C = Z(); //if no coefficient number is given, assume all are used C = std::min(C, Z()); //set the number of coefficients (the user can specify fewer) T* coeff = (T*)malloc(sizeof(T) * Z()); //allocate space for the coefficients T* s = (T*)malloc(sizeof(T) * B); //allocate space for the spectrum double* bv; //pointer to the current projection vector for(unsigned long long xy = 0; xy < XY; xy++){ //for each pixel in the image (expressed as a set of coefficients) pixel(coeff, xy); //load the coefficients memset(s, 0, sizeof(T) * B); //initialize the spectrum to zero (0) for(unsigned long long c = 0; c < C; c++){ //for each basis vector coefficient bv = &basis[c * B]; //assign 'bv' to the beginning of the basis vector for(unsigned long long b = 0; b < B; b++){ //for each component of the basis vector s[b] += (T)((double)coeff[c] * bv[b] + center[b]); //calculate the contribution of each element of the basis vector in the final spectrum } } target.write(reinterpret_cast(s), sizeof(T) * B); //write the projected vector if(PROGRESS) progress = (double)(xy+1) / XY * 100; } free(coeff); //free temporary storage arrays free(s); target.close(); //close the output file return true; } /// Crop a region of the image and save it to a new file. /// @param outfile is the file name for the new cropped image /// @param x0 is the lower-left x pixel coordinate to be included in the cropped image /// @param y0 is the lower-left y pixel coordinate to be included in the cropped image /// @param x1 is the upper-right x pixel coordinate to be included in the cropped image /// @param y1 is the upper-right y pixel coordinate to be included in the cropped image bool crop(std::string outfile, unsigned long long x0, unsigned long long y0, unsigned long long x1, unsigned long long y1, unsigned long long b0, unsigned long long b1, bool PROGRESS = false){ //calculate the new number of samples, lines, and bands unsigned long long samples = x1 - x0; unsigned long long lines = y1 - y0; unsigned long long bands = b1 - b0; //calculate the length of one cropped spectrum unsigned long long L = bands * sizeof(T); //unsigned long long L = Z() * sizeof(T); //allocate space for the spectrum T* temp = (T*)malloc(L); //open an output file for binary writing std::ofstream out(outfile.c_str(), std::ios::binary); //seek to the first pixel in the cropped image file.seekg( (y0 * X() * Z() + x0 * Z() + b0) * sizeof(T), std::ios::beg); //distance between sample spectra in the same line unsigned long long jump_sample = ( (Z() - b1) + b0 ) * sizeof(T); //distance between sample spectra in adjacent lines unsigned long long jump_line = (X() - x1) * Z() * sizeof(T); //unsigned long long sp = y0 * X() + x0; //start pixel //for each pixel in the image for (unsigned y = 0; y < lines; y++) { for (unsigned x = 0; x < samples; x++) { //read the cropped spectral region file.read( (char*) temp, L ); //pixel(temp, sp + x + y * X()); out.write(reinterpret_cast(temp), L); //write slice data into target file file.seekg(jump_sample, std::ios::cur); if(PROGRESS) progress = (double)((y+1) * samples + x + 1) / (lines * samples) * 100; } file.seekg(jump_line, std::ios::cur); } free(temp); return true; } /// Remove a list of bands from the ENVI file /// @param outfile is the file name for the output hyperspectral image (with trimmed bands) /// @param b is an array of bands to be eliminated void trim(std::string outfile, std::vector band_array, bool PROGRESS = false){ std::ofstream out(outfile.c_str(), std::ios::binary); //open the output file for writing file.seekg(0, std::ios::beg); //move to the beginning of the input file size_t B = Z(); //calculate the number of elements in a spectrum size_t Bdst = Z() - band_array.size(); //calculate the number of elements in an output spectrum size_t Bb = B * sizeof(T); //calculate the number of bytes in a spectrum size_t XY = X() * Y(); //calculate the number of pixels in the image T* src = (T*)malloc(Bb); //allocate space to store an input spectrum T* dst = (T*)malloc(Bdst * sizeof(T)); //allocate space to store an output spectrum size_t i; //index into the band array size_t bdst; //index into the output array for(size_t xy = 0; xy < XY; xy++){ //for each pixel i = 0; bdst = 0; file.read((char*)src, Bb); //read a spectrum for(size_t b = 0; b < B; b++){ //for each band if(b != band_array[i]){ //if the band isn't trimmed dst[bdst] = src[b]; //copy the band value to the output spectrum bdst++; } else i++; //otherwise increment i } out.write((char*)dst, Bdst * sizeof(T)); //write the output spectrum if(PROGRESS) progress = (double)(xy + 1) / (double) XY * 100; } free(src); free(dst); } /// Combine two BIP images along the Y axis /// @param outfile is the combined file to be output /// @param infile is the input file stream for the image to combine with this one /// @param Sx is the size of the second image along X /// @param Sy is the size of the second image along Y /// @param offset is a shift (negative or positive) in the combined image to the left or right void combine(std::string outfile, bip* C, long long xp, long long yp, bool PROGRESS = false){ std::ofstream out(outfile.c_str(), std::ios::binary); //open the output file for writing file.seekg(0, std::ios::beg); //move to the beginning of both files C->file.seekg(0, std::ios::beg); size_t S[2]; //size of the output band image size_t p0[2]; //position of the current image in the output size_t p1[2]; //position of the source image in the output hsi::calc_combined_size(xp, yp, C->X(), C->Y(), S[0], S[1], p0[0], p0[1], p1[0], p1[1]); //calculate the image placement parameters size_t spec_bytes = Z() * sizeof(T); //calculate the number of bytes in a spectrum T* spec = (T*)malloc(spec_bytes); //allocate space for a spectrum for(size_t y = 0; y < S[1]; y++){ //for each pixel in the destination image for(size_t x = 0; x < S[0]; x++){ if(x >= p0[0] && x < p0[0] + X() && y >= p0[1] && y < p0[1] + Y()) //if this pixel is in the current image file.read((char*)spec, spec_bytes); else if(x >= p1[0] && x < p1[0] + C->X() && y >= p1[1] && y < p1[1] + C->Y()) //if this pixel is in the source image C->file.read((char*)spec, spec_bytes); else memset(spec, 0, spec_bytes); out.write((char*)spec, spec_bytes); //write to the output file } if(PROGRESS) progress = (double)( (y+1) * S[0] + 1) / (double) (S[0] * S[1]) * 100; } } /// Convolve the given band range with a kernel specified by a vector of coefficients. /// @param outfile is an already open stream to the output file /// @param C is an array of coefficients /// @param start is the band to start processing (the first coefficient starts here) /// @param nbands is the number of bands to process /// @param center is the index for the center coefficient for the kernel (used to set the wavelengths in the output file) void convolve(std::string outfile, std::vector C, size_t start, size_t end, unsigned char* mask = NULL, bool PROGRESS = false){ std::ofstream out(outfile.c_str(), std::ios::binary); //open the output file for writing size_t N = end - start + 1; //number of bands in the output spectrum size_t Nb = N * sizeof(T); //size of the output spectrum in bytes size_t B = Z(); //calculate the number of values in a spectrum size_t Bb = B * sizeof(T); //calculate the size of a spectrum in bytes file.seekg(0, std::ios::beg); //move to the beginning of the input file size_t nC = C.size(); //get the number of bands that the kernel spans T* inspec = (T*)malloc(Bb); //allocate space for the input spectrum T* outspec = (T*)malloc(Nb); //allocate space for the output spectrum size_t XY = X() * Y(); //number of pixels in the image for(size_t xy = 0; xy < XY; xy++){ //for each pixel file.read((char*)inspec, Bb); //read an input spectrum memset(outspec, 0, Nb); //set the output spectrum to zero (0) if(mask == NULL || mask[xy]){ for(size_t b = 0; b < N; b++){ //for each component of the spectrum for(size_t c = 0; c < nC; c++){ //for each coefficient in the kernel outspec[b] += (T)(inspec[b + start + c] * C[c]); //perform the sum/multiply part of the convolution } } } out.write((char*)outspec, Nb); //output the band if(PROGRESS) progress = (double)(xy+1) / (double)XY * 100; } } void deriv(std::string outfile, size_t d, size_t order, const std::vector w, unsigned char* mask = NULL, bool PROGRESS = false){ std::ofstream out(outfile.c_str(), std::ios::binary); //open the output file for writing size_t B = Z(); //calculate the number of values in a spectrum size_t Bb = B * sizeof(T); //calculate the size of a spectrum in bytes bool UNIFORM = true; double ds = w[1] - w[0]; //initialize ds for(size_t b = 1; b < B; b++) //test to see if the spectral spacing is uniform (if it is, convolution is much faster) if(w[b] - w[b-1] != ds) UNIFORM = false; size_t nC = order + d; //approximating a derivative requires order + d samples file.seekg(0, std::ios::beg); //move to the beginning of the input file T* inspec = (T*)malloc(Bb); //allocate space for the input spectrum T* outspec = (T*)malloc(Bb); //allocate space for the output spectrum size_t XY = X() * Y(); //number of pixels in the image size_t mid = (size_t)(nC / 2); //calculate the mid point of the kernel size_t iw; //index to the first wavelength used to evaluate the derivative at this band for(size_t xy = 0; xy < XY; xy++){ //for each pixel file.read((char*)inspec, Bb); //read an input spectrum memset(outspec, 0, Bb); //set the output spectrum to zero (0) if(mask == NULL || mask[xy]){ iw = 0; for(size_t b = 0; b < mid; b++){ //for each component of the spectrum std::vector w_pts(w.begin() + iw, w.begin() + iw + nC); //get the wavelengths corresponding to each sample std::vector C = diff_coefficients(w[b], w_pts, d); //get the optimal sample weights for(size_t c = 0; c < nC; c++) //for each coefficient in the kernel outspec[b] += (T)(inspec[iw + c] * C[c]); //perform the sum/multiply part of the convolution } std::vector w_pts(w.begin(), w.begin() + nC); //get the wavelengths corresponding to each sample std::vector C = diff_coefficients(w[0], w_pts, d); //get the optimal sample weights for(size_t b = mid; b <= B - (nC - mid); b++){ iw = b - mid; if(!UNIFORM){ //if the spacing is non-uniform, we have to re-calculate these points every iteration std::vector w_pts(w.begin() + iw, w.begin() + iw + nC); //get the wavelengths corresponding to each sample std::vector C = diff_coefficients(w[b], w_pts, d); //get the optimal sample weights } for(size_t c = 0; c < nC; c++) //for each coefficient in the kernel outspec[b] += (T)(inspec[iw + c] * C[c]); //perform the sum/multiply part of the convolution } iw = B - nC; for(size_t b = B - (nC - mid) + 1; b < B; b++){ std::vector w_pts(w.begin() + iw, w.begin() + iw + nC); //get the wavelengths corresponding to each sample std::vector C = diff_coefficients(w[b], w_pts, d); //get the optimal sample weights for(size_t c = 0; c < nC; c++) //for each coefficient in the kernel outspec[b] += (T)(inspec[iw + c] * C[c]); //perform the sum/multiply part of the convolution } } out.write((char*)outspec, Bb); //output the band if(PROGRESS) progress = (double)(xy+1) / (double)XY * 100; } } /// Close the file. bool close(){ file.close(); return true; } }; } #endif