#ifndef STIM_BSQ_H #define STIM_BSQ_H #include "../envi/envi_header.h" #include "../envi/binary.h" #include "../envi/bil.h" #include #include #include namespace stim{ /** The BIP class represents a 3-dimensional binary file stored using band sequential (BSQ) image encoding. The binary file is stored such that X-Y "frames" are stored sequentially to form an image stack along the z-axis. When accessing the data sequentially on disk, the dimensions read, from fastest to slowest, are X, Y, Z. This class is optimized for data streaming, and therefore supports extremely large (terabyte-scale) files. Data is loaded from disk on request. Functions used to access data are written to support efficient reading. */ template class bsq: public binary { protected: std::vector w; //band wavelengths unsigned int offset; using binary::R; unsigned long X(){ return R[0]; } unsigned long Y(){ return R[1]; } unsigned long Z(){ return R[2]; } using binary::nnz; using binary::progress; public: using binary::open; using binary::file; using binary::read_line_2; using binary::read_plane_2; //using binary::getSlice; /// Open a data file for reading using the class interface. /// @param filename is the name of the binary file on disk /// @param X is the number of samples along dimension 1 /// @param Y is the number of samples (lines) along dimension 2 /// @param B is the number of samples (bands) along dimension 3 /// @param header_offset is the number of bytes (if any) in the binary header /// @param wavelengths is an STL vector of size B specifying a numerical label for each band bool open(std::string filename, unsigned int X, unsigned int Y, unsigned int B, unsigned int header_offset, std::vector wavelengths){ //copy the wavelengths to the BSQ file structure w = wavelengths; //copy the wavelengths to the structure offset = header_offset; return open(filename, vec(X, Y, B), header_offset); } /// Retrieve a single band (based on index) and stores it in pre-allocated memory. /// @param p is a pointer to an allocated region of memory at least X * Y * sizeof(T) in size. /// @param page <= B is the integer number of the band to be copied. bool band_index( T * p, unsigned int page){ return read_plane_2(p, page); //call the binary read_plane function (don't let it update the progress) } /// Retrieve a single band (by numerical label) and stores it in pre-allocated memory. /// @param p is a pointer to an allocated region of memory at least X * Y * sizeof(T) in size. /// @param wavelength is a floating point value (usually a wavelength in spectral data) used as a label for the band to be copied. bool band( T * p, double wavelength, bool PROGRESS = false){ if(PROGRESS) progress = 0; //if there are no wavelengths in the BSQ file if(w.size() == 0) return band_index(p, (unsigned int)wavelength); unsigned int XY = X() * Y(); //calculate the number of pixels in a band unsigned page = 0; //get the two neighboring bands (above and below 'wavelength') //if wavelength is smaller than the first one in header file if ( w[page] > wavelength ){ band_index(p, page); return true; } while( w[page] < wavelength ) { page++; //if wavelength is larger than the last wavelength in the header file // (the wavelength is out of bounds) if (page == Z()) { band_index(p, Z()-1); //return the last band return true; } } //when the page counter points to the first band above 'wavelength' if ( wavelength < w[page] ){ //do the interpolation T * p1; T * p2; p1=(T*)malloc( XY * sizeof(T)); //memory allocation p2=(T*)malloc( XY * sizeof(T)); band_index(p1, page - 1); band_index(p2, page ); for(unsigned i=0; i < XY; i++){ double r = (double) (wavelength - w[page-1]) / (double) (w[page] - w[page-1]); p[i] = (p2[i] - p1[i]) * r + p1[i]; } free(p1); free(p2); } //if the wavelength is equal to a wavelength in header file else{ band_index(p, page); //return the band } if(PROGRESS) progress = 100; return true; } /// Retrieve a single spectrum (Z-axis line) at a given (x, y) location and stores it in pre-allocated memory. /// @param p is a pointer to pre-allocated memory at least B * sizeof(T) in size. /// @param x is the x-coordinate (dimension 1) of the spectrum. /// @param y is the y-coordinate (dimension 2) of the spectrum. bool spectrum(T * p, unsigned x, unsigned y, bool PROGRESS = false){ return read_line_2(p, x, y, PROGRESS); } /// Retrieve a single pixel and stores it in pre-allocated memory. /// @param p is a pointer to pre-allocated memory at least sizeof(T) in size. /// @param n is an integer index to the pixel using linear array indexing. bool pixel(T * p, unsigned n){ unsigned bandnum = X() * Y(); //calculate numbers in one band if ( n >= bandnum){ //make sure the pixel number is right std::cout<<"ERROR: sample or line out of range"<::header, std::ios::beg); //point to the certain pixel for (unsigned i = 0; i < Z(); i++) { file.read((char *)(p + i), sizeof(T)); file.seekg((bandnum - 1) * sizeof(T), std::ios::cur); //go to the next band } return true; } /// Perform baseline correction given a list of baseline points and stores the result in a new BSQ file. /// @param outname is the name of the output file used to store the resulting baseline-corrected data. /// @param wls is the list of baseline points based on band labels. bool baseline(std::string outname, std::vector wls, unsigned char* mask = NULL, bool PROGRESS = false ) { unsigned N = wls.size(); //get the number of baseline points std::ofstream target(outname.c_str(), std::ios::binary); //open the target binary file std::string headername = outname + ".hdr"; //the header file name //simplify image resolution unsigned int B = Z(); //calculate the number of bands unsigned int XY = X() * Y(); //calculate the number of pixels in a band unsigned int S = XY * sizeof(T); //calculate the number of bytes in a band double ai, bi; //stores the two baseline points wavelength surrounding the current band double ci; //stores the current band's wavelength unsigned control=0; T * a; //pointers to the high and low band images T * b; T * c; //pointer to the current image a = (T*)malloc( S ); //memory allocation b = (T*)malloc( S ); c = (T*)malloc( S ); if (a == NULL || b == NULL || c == NULL){ std::cout<<"ERROR: error allocating memory"; exit(1); } //initialize lownum, highnum, low, high ai=w[0]; //if no baseline point is specified at band 0, //set the baseline point at band 0 to 0 if(wls[0] != w[0]){ bi = wls[control]; memset(a, (char)0, S); } //else get the low band else{ control += 1; band(a, ai); bi = wls[control]; } //get the high band band(b, bi); //correct every band for(unsigned cii = 0; cii < B; cii++){ //update baseline points, if necessary if( w[cii] >= bi && cii != B - 1) { //if the high band is now on the last BL point? if (control != N-1) { control++; //increment the index std::swap(a, b); //swap the baseline band pointers ai = bi; bi = wls[control]; band(b, bi); } //if the last BL point on the last band of the file? else if ( wls[control] < w[B - 1]) { std::swap(a, b); //swap the baseline band pointers memset(b, (char)0, S); //clear the high band ai = bi; bi = w[B - 1]; } } //get the current band band_index(c, cii); ci = w[cii]; //perform the baseline correction for(unsigned i=0; i < XY; i++){ if(mask != NULL && !mask[i]) //if the pixel is excluded by a mask c[i] = 0; //set the value to zero else{ double r = (double) (ci - ai) / (double) (bi - ai); c[i] =(T) ( c[i] - (b[i] - a[i]) * r - a[i] ); } } target.write(reinterpret_cast(c), S); //write the corrected data into destination if(PROGRESS)progress = (double)(cii+1) / B * 100; } //header.save(headername); //save the new header file free(a); free(b); free(c); target.close(); return true; } /// Normalize all spectra based on the value of a single band, storing the result in a new BSQ file. /// @param outname is the name of the output file used to store the resulting baseline-corrected data. /// @param w is the label specifying the band that the hyperspectral image will be normalized to. /// @param t is a threshold specified such that a spectrum with a value at w less than t is set to zero. Setting this threshold allows the user to limit division by extremely small numbers. bool normalize(std::string outname, double w, unsigned char* mask = NULL, bool PROGRESS = false) { unsigned int B = Z(); //calculate the number of bands unsigned int XY = X() * Y(); //calculate the number of pixels in a band unsigned int S = XY * sizeof(T); //calculate the number of bytes in a band std::ofstream target(outname.c_str(), std::ios::binary); //open the target binary file std::string headername = outname + ".hdr"; //the header file name T * b; //pointers to the certain wavelength band T * c; //pointer to the current image b = (T*)malloc( S ); //memory allocation c = (T*)malloc( S ); band(b, w); //get the certain band into memory for(unsigned j = 0; j < B; j++) { band_index(c, j); //get the current band into memory for(unsigned i = 0; i < XY; i++) { if(mask != NULL && !mask[i]) c[i] = (T)0.0; else c[i] = c[i] / b[i]; } target.write(reinterpret_cast(c), S); //write normalized data into destination if(PROGRESS) progress = (double)(j+1) / B * 100; } //header.save(headername); //save the new header file free(b); free(c); target.close(); return true; } /// Convert the current BSQ file to a BIL file with the specified file name. /// @param outname is the name of the output BIL file to be saved to disk. bool bil(std::string outname, bool PROGRESS = false) { //simplify image resolution //unsigned int L = X() * Z() * sizeof(T); //calculate the number of bytes of a ZX slice unsigned int jump = (Y() - 1) * X() * sizeof(T); std::ofstream target(outname.c_str(), std::ios::binary); std::string headername = outname + ".hdr"; unsigned int L = X(); T* line = (T*)malloc(sizeof(T) * L); for ( unsigned y = 0; y < Y(); y++) //for each y position { file.seekg(y * X() * sizeof(T), std::ios::beg); //seek to the beginning of the xz slice for ( unsigned z = 0; z < Z(); z++ ) //for each band { file.read((char *)line, sizeof(T) * X()); //read a line target.write((char*)line, sizeof(T) * X()); //write the line to the output file file.seekg(jump, std::ios::cur); //seek to the next band if(PROGRESS) progress = (double)((y+1) * Z() + z + 1) / (Z() * Y()) * 100; //update the progress counter } //std::cout< w[n-1] || rb >w[n-1]){ std::cout<<"ERROR: left bound or right bound out of bandwidth"< rb){ std::cout<<"ERROR: right bound should be bigger than left bound"<= w[ai]){ ai++; } while (rab <= w[bi]){ bi--; } band(lp, lb); band(rp, rb); //calculate the beginning and the ending part baseline_band(lb, rb, lp, rp, rab, cur2); //ending part baseline_band(lb, rb, lp, rp, w[bi], cur); for(unsigned j = 0; j < XY; j++){ result[j] += (rab - w[bi]) * (cur[j] + cur2[j]) / 2.0; } baseline_band(lb, rb, lp, rp, lab, cur2); //beginnning part baseline_band(lb, rb, lp, rp, w[ai], cur); for(unsigned j = 0; j < XY; j++){ result[j] += (w[ai] - lab) * (cur[j] + cur2[j]) / 2.0; } //calculate the area ai++; for(unsigned i = ai; i <= bi ;i++) { baseline_band(lb, rb, lp, rp, w[ai], cur2); for(unsigned j = 0; j < XY; j++) { result[j] += (w[ai] - w[ai-1]) * (cur[j] + cur2[j]) / 2.0; } std::swap(cur,cur2); //swap the band pointers } free(lp); free(rp); free(cur); free(cur2); return true; } /// Compute the ratio of two baseline-corrected peaks. The result is stored in a pre-allocated array. /// @param lb1 is the label value for the left baseline point for the first peak (numerator) /// @param rb1 is the label value for the right baseline point for the first peak (numerator) /// @param pos1 is the label value for the first peak (numerator) position /// @param lb2 is the label value for the left baseline point for the second peak (denominator) /// @param rb2 is the label value for the right baseline point for the second peak (denominator) /// @param pos2 is the label value for the second peak (denominator) position /// @param result is a pointer to a pre-allocated array at least X * Y * sizeof(T) in size bool ph_to_ph(double lb1, double rb1, double pos1, double lb2, double rb2, double pos2, T * result){ T* p1 = (T*)malloc(X() * Y() * sizeof(T)); T* p2 = (T*)malloc(X() * Y() * sizeof(T)); //get the two peak band height(lb1, rb1, pos1, p1); height(lb2, rb2, pos2, p2); //calculate the ratio in result for(unsigned i = 0; i < X() * Y(); i++){ if(p1[i] == 0 && p2[i] ==0) result[i] = 1; else result[i] = p1[i] / p2[i]; } free(p1); free(p2); return true; } /// Compute the ratio between a peak area and peak height. /// @param lb1 is the label value for the left baseline point for the first peak (numerator) /// @param rb1 is the label value for the right baseline point for the first peak (numerator) /// @param pos1 is the label value for the first peak (numerator) position /// @param lb2 is the label value for the left baseline point for the second peak (denominator) /// @param rb2 is the label value for the right baseline point for the second peak (denominator) /// @param pos2 is the label value for the second peak (denominator) position /// @param result is a pointer to a pre-allocated array at least X * Y * sizeof(T) in size bool pa_to_ph(double lb1, double rb1, double lab1, double rab1, double lb2, double rb2, double pos, T* result){ T* p1 = (T*)malloc(X() * Y() * sizeof(T)); T* p2 = (T*)malloc(X() * Y() * sizeof(T)); //get the area and the peak band area(lb1, rb1, lab1, rab1, p1); height(lb2, rb2, pos, p2); //calculate the ratio in result for(unsigned i = 0; i < X() * Y(); i++){ if(p1[i] == 0 && p2[i] ==0) result[i] = 1; else result[i] = p1[i] / p2[i]; } free(p1); free(p2); return true; } /// Compute the ratio between two peak areas. /// @param lb1 is the label value for the left baseline point for the first peak (numerator) /// @param rb1 is the label value for the right baseline point for the first peak (numerator) /// @param lab1 is the label value for the left bound (start of the integration) of the first peak (numerator) /// @param rab1 is the label value for the right bound (end of the integration) of the first peak (numerator) /// @param lb2 is the label value for the left baseline point for the second peak (denominator) /// @param rb2 is the label value for the right baseline point for the second peak (denominator) /// @param lab2 is the label value for the left bound (start of the integration) of the second peak (denominator) /// @param rab2 is the label value for the right bound (end of the integration) of the second peak (denominator) /// @param result is a pointer to a pre-allocated array at least X * Y * sizeof(T) in size bool pa_to_pa(double lb1, double rb1, double lab1, double rab1, double lb2, double rb2, double lab2, double rab2, T* result){ T* p1 = (T*)malloc(X() * Y() * sizeof(T)); T* p2 = (T*)malloc(X() * Y() * sizeof(T)); //get the area and the peak band area(lb1, rb1, lab1, rab1, p1); area(lb2, rb2, lab2, rab2, p2); //calculate the ratio in result for(unsigned i = 0; i < X() * Y(); i++){ if(p1[i] == 0 && p2[i] ==0) result[i] = 1; else result[i] = p1[i] / p2[i]; } free(p1); free(p2); return true; } /// Compute the definite integral of a baseline corrected peak. /// @param lb is the label value for the left baseline point /// @param rb is the label value for the right baseline point /// @param lab is the label for the start of the definite integral /// @param rab is the label for the end of the definite integral /// @param result is a pointer to a pre-allocated array at least X * Y * sizeof(T) in size bool x_area(double lb, double rb, double lab, double rab, T* result){ T* lp; //left band pointer T* rp; //right band pointer T* cur; //current band 1 T* cur2; //current band 2 unsigned XY = X() * Y(); unsigned S = XY * sizeof(T); lp = (T*) malloc(S); //memory allocation rp = (T*) malloc(S); cur = (T*) malloc(S); cur2 = (T*) malloc(S); memset(result, (char)0, S); //find the wavelenght position in the whole band unsigned int n = w.size(); unsigned int ai = 0; //left bound position unsigned int bi = n - 1; //right bound position //to make sure the left and the right bound are in the bandwidth if (lb < w[0] || rb < w[0] || lb > w[n-1] || rb >w[n-1]){ std::cout<<"ERROR: left bound or right bound out of bandwidth"< rb){ std::cout<<"ERROR: right bound should be bigger than left bound"<= w[ai]){ ai++; } while (rab <= w[bi]){ bi--; } band(lp, lb); band(rp, rb); //calculate the beginning and the ending part baseline_band(lb, rb, lp, rp, rab, cur2); //ending part baseline_band(lb, rb, lp, rp, w[bi], cur); for(unsigned j = 0; j < XY; j++){ result[j] += (rab - w[bi]) * (rab + w[bi]) * (cur[j] + cur2[j]) / 4.0; } baseline_band(lb, rb, lp, rp, lab, cur2); //beginnning part baseline_band(lb, rb, lp, rp, w[ai], cur); for(unsigned j = 0; j < XY; j++){ result[j] += (w[ai] - lab) * (w[ai] + lab) * (cur[j] + cur2[j]) / 4.0; } //calculate f(x) times x ai++; for(unsigned i = ai; i <= bi ;i++) { baseline_band(lb, rb, lp, rp, w[ai], cur2); for(unsigned j = 0; j < XY; j++) { result[j] += (w[ai] - w[ai-1]) * (w[ai] + w[ai-1]) * (cur[j] + cur2[j]) / 4.0; } std::swap(cur,cur2); //swap the band pointers } free(lp); free(rp); free(cur); free(cur2); return true; } /// Compute the centroid of a baseline corrected peak. /// @param lb is the label value for the left baseline point /// @param rb is the label value for the right baseline point /// @param lab is the label for the start of the peak /// @param rab is the label for the end of the peak /// @param result is a pointer to a pre-allocated array at least X * Y * sizeof(T) in size bool cpoint(double lb, double rb, double lab, double rab, T* result){ T* p1 = (T*)malloc(X() * Y() * sizeof(T)); T* p2 = (T*)malloc(X() * Y() * sizeof(T)); //get the area and the peak band x_area(lb, rb, lab, rab, p1); area(lb, rb, lab, rab, p2); //calculate the ratio in result for(unsigned i = 0; i < X() * Y(); i++){ if(p1[i] == 0 && p2[i] ==0) result[i] = 1; else result[i] = p1[i] / p2[i]; } free(p1); free(p2); return true; } /// Create a mask based on a given band and threshold value. /// All pixels in the /// specified band greater than the threshold are true and all pixels less than the threshold are false. /// @param mask_band is the band used to specify the mask /// @param threshold is the threshold used to determine if the mask value is true or false /// @param p is a pointer to a pre-allocated array at least X * Y in size bool build_mask(double mask_band, double threshold, unsigned char* p = NULL, bool PROGRESS = false){ T* temp = (T*)malloc(X() * Y() * sizeof(T)); //allocate memory for the certain band band(temp, mask_band); for (unsigned int i = 0; i < X() * Y(); i++) { if (temp[i] < threshold) p[i] = 0; else p[i] = 255; if(PROGRESS) progress = (double) (i+1) / (X() * Y()); } free(temp); return true; } /// Apply a mask file to the BSQ image, setting all values outside the mask to zero. /// @param outfile is the name of the masked output file /// @param p is a pointer to memory of size X * Y, where p(i) = 0 for pixels that will be set to zero. bool apply_mask(std::string outfile, unsigned char* p){ std::ofstream target(outfile.c_str(), std::ios::binary); unsigned XY = X() * Y(); //calculate number of a band unsigned L = XY * sizeof(T); T * temp = (T*)malloc(L); for (unsigned i = 0; i < Z(); i++) //for each spectral bin { band_index(temp, i); //get the specified band (by index) for ( unsigned j = 0; j < XY; j++) // for each pixel { if(p[j] == 0){ //if the mask is 0 at that pixel temp[j] = 0; //set temp to zero } else{ continue; } } target.write(reinterpret_cast(temp), L); //write the XY slice at that band to disk } target.close(); free(temp); return true; } /// Copies all spectra corresponding to nonzero values of a mask into a pre-allocated matrix of size (B x P) /// where P is the number of masked pixels and B is the number of bands. The allocated memory can be accessed /// using the following indexing: i = p*B + b /// @param matrix is the destination for the pixel data /// @param mask is the mask bool sift(T* matrix, unsigned char* mask){ unsigned long long XY = X() * Y(); //Number of XY pixels unsigned long long L = XY * sizeof(T); //size of XY plane (in bytes) //calculate the number of pixels in the mask unsigned long long P = 0; if(mask == NULL) P = XY; else{ for(unsigned long long xy = 0; xy < XY; xy++){ if(mask[xy] != 0) P++; } } T* band_image = (T*) malloc( XY * sizeof(T)); //allocate space for a single band unsigned long long i; //pixel index into the sifted array for(unsigned long long b = 0; b < Z(); b++){ //for each band in the data set band_index(band_image, b); //retrieve an image of that band i = 0; for(unsigned long long xy = 0; xy < XY; xy++){ if(mask == NULL || mask[xy] != 0){ //if the pixel is valid matrix[i*Z() + b] = band_image[xy]; //copy it to the appropriate point in the values[] array i++; } } } return true; } /// Saves only those spectra corresponding to mask value != 0 to pre-allocated memory /// @param matrix is the destination for the sifted pixels /// @param p is the mask file used for sifting /*bool sift(T* matrix, unsigned char* p){ // open a band (XY plane) unsigned long XY = X() * Y(); //Number of XY pixels unsigned long L = XY * sizeof(T); //size of XY pixels //count the number of masked pixels unsigned long P = 0; //allocate space for the number of pixels for(unsigned long xy = 0; xy < XY; xy++){ //count the number of pixels if(p[xy] != 0) P++; } T* bandvals = (T*) malloc(sizeof(T) * P); //allocate a temporary array to store the pixels for a single band memset(matrix, 0, sizeof(T) * P * Z()); for (unsigned long z = 0; z < Z(); z++){ //for each band if(!sift_band(bandvals, z, p)){ std::cout<<"ERROR sifting band index "<(temp_vox), sizeof(T)); //write the XY slice at that band to disk } else{ continue; } } if(PROGRESS) progress = (double)(i+1)/ B * 100; } target.close(); free(temp); progress = 100; return true; } /// Generates a spectral image from a matrix of spectral values in lexicographic order and a mask bool unsift(std::string outfile, unsigned char* p, unsigned int samples, unsigned int lines){ //create a binary output stream std::ofstream target(outfile.c_str(), std::ios::binary); //make sure that there's only one line if(Y() != 1){ std::cout<<"ERROR in stim::bsq::sift() - number of lines does not equal 1"<(unsifted), sizeof(T) * XY); } //std::cout<<"unsifted"<(temp), L); //write slice data into target file file.seekg(jumpb, std::ios::cur); } free(temp); return true; } /// Close the file. bool close(){ file.close(); return true; } }; } #endif