#ifndef STIM_CUDA_UPDATE_DIR_THRESHOLD_GLOBALD_H #define STIM_CUDA_UPDATE_DIR_THRESHOLD_GLOBAL_H # include # include #include #include #include "cpyToshare.cuh" namespace stim{ namespace cuda{ // this kernel calculates the voting direction for the next iteration based on the angle between the location of this voter and the maximum vote value in its voting area. template __global__ void cuda_update_dir(T* gpuDir, T* gpuVote, T* gpuTh, T* gpuTable, T phi, int rmax, int th_size, int x, int y){ // calculate the coordinate for this current thread. int xi = blockIdx.x * blockDim.x + threadIdx.x; // calculate the voting direction based on the grtadient direction float theta = gpuTh[3*xi]; //calculate the position and x, y coordinations of this voter in the original image unsigned int i_v = gpuTh[3*xi+2]; unsigned int y_v = i_v/x; unsigned int x_v = i_v - (y_v*x); //initialize the vote direction to zero gpuDir[xi] = 0; // define a local variable to maximum value of the vote image in the voting area for this voter float max = 0; // define two local variables for the x and y coordinations where the maximum happened int id_x = 0; int id_y = 0; // compute the size of window which will be checked for finding the voting area for this voter int x_table = 2*rmax +1; int rmax_sq = rmax * rmax; int tx_rmax = threadIdx.x + rmax; if(xi < th_size){ for(int yr = -rmax; yr <= rmax; yr++){ for(int xr = -rmax; xr <= rmax; xr++){ unsigned int ind_t = (rmax - yr) * x_table + rmax - xr; // find the angle between the voter and the current pixel in x and y directions float atan_angle = gpuTable[ind_t]; // check if the current pixel is located in the voting area of this voter. if (((xr * xr + yr *yr)< rmax_sq) && (abs(atan_angle - theta) max) { max = vote_c; id_x = xr; id_y = yr; } } } } unsigned int ind_m = (rmax - id_y) * x_table + (rmax - id_x); float new_angle = gpuTable[ind_m]; gpuDir[xi] = new_angle; } } // this kernel updates the gradient direction by the calculated voting direction. template __global__ void cuda_update_grad(T* gpuTh, T* gpuDir, int th_size, int x, int y){ // calculate the coordinate for this current thread. int xi = blockIdx.x * blockDim.x + threadIdx.x; //update the gradient image with the vote direction gpuTh[3*xi] = gpuDir[xi]; } template void gpu_update_dir(T* gpuVote, T* gpuTh, T* gpuTable, T phi, unsigned int rmax, unsigned int th_size, unsigned int x, unsigned int y){ //calculate the number of bytes in the array unsigned int bytes_th = th_size* sizeof(T); unsigned int max_threads = stim::maxThreadsPerBlock(); dim3 threads(max_threads); dim3 blocks(th_size/threads.x+1); // allocate space on the GPU for the updated vote direction T* gpuDir; cudaMalloc(&gpuDir, bytes_th); //call the kernel to calculate the new voting direction cuda_update_dir <<< blocks, threads>>>(gpuDir, gpuVote, gpuTh, gpuTable, phi, rmax, th_size, x , y); //call the kernel to update the gradient direction cuda_update_grad <<< blocks, threads >>>(gpuTh, gpuDir, th_size, x , y); //free allocated memory cudaFree(gpuDir); } template void cpu_update_dir(T* cpuVote, T* cpuGrad,T* cpuTable, T phi, unsigned int rmax, unsigned int x, unsigned int y){ //calculate the number of bytes in the array unsigned int bytes = x * y * sizeof(T); //calculate the number of bytes in the atan2 table unsigned int bytes_table = (2*rmax+1) * (2*rmax+1) * sizeof(T); //allocate space on the GPU for the Vote Image T* gpuVote; cudaMalloc(&gpuVote, bytes); //copy the input vote image to the GPU HANDLE_ERROR(cudaMemcpy(gpuVote, cpuVote, bytes, cudaMemcpyHostToDevice)); //allocate space on the GPU for the input Gradient image T* gpuGrad; HANDLE_ERROR(cudaMalloc(&gpuGrad, bytes*2)); //copy the Gradient data to the GPU HANDLE_ERROR(cudaMemcpy(gpuGrad, cpuGrad, bytes*2, cudaMemcpyHostToDevice)); //allocate space on the GPU for the atan2 table T* gpuTable; HANDLE_ERROR(cudaMalloc(&gpuTable, bytes_table)); //copy the atan2 values to the GPU HANDLE_ERROR(cudaMemcpy(gpuTable, cpuTable, bytes_table, cudaMemcpyHostToDevice)); //call the GPU version of the update direction function gpu_update_dir(gpuVote, gpuGrad, gpuTable, phi, rmax, x , y); //copy the new gradient image back to the CPU cudaMemcpy(cpuGrad, gpuGrad, bytes*2, cudaMemcpyDeviceToHost) ; //free allocated memory cudaFree(gpuTable); cudaFree(gpuVote); cudaFree(gpuGrad); } } } #endif