#ifndef STIM_CUDA_VOTE_SHARED_H #define STIM_CUDA_VOTE_SHARED # include # include #include #include #include "cpyToshare.cuh" namespace stim{ namespace cuda{ // this kernel calculates the vote value by adding up the gradient magnitudes of every voter that this pixel is located in their voting area template __global__ void cuda_vote(T* gpuVote, T* gpuGrad, T* gpuTable, T phi, int rmax, int x, int y){ //generate a pointer to shared memory (size will be specified as a kernel parameter) extern __shared__ float s_grad[]; //calculate the start point for this block int bxi = blockIdx.x * blockDim.x; // calculate the 2D coordinates for this current thread. int xi = bxi + threadIdx.x; int yi = blockIdx.y * blockDim.y + threadIdx.y; // convert 2D coordinates to 1D int i = yi * x + xi; // define a local variable to sum the votes from the voters float sum = 0; //calculate the width of the shared memory block int swidth = 2 * rmax + blockDim.x; // compute the size of window which will be checked for finding the proper voters for this pixel int x_table = 2*rmax +1; int rmax_sq = rmax * rmax; int tx_rmax = threadIdx.x + rmax; int bxs = bxi - rmax; //for every line (along y) for(int yr = -rmax; yr <= rmax; yr++){ if (yi+yr=0){ //copy the portion of the image necessary for this block to shared memory __syncthreads(); cpyG2S1D2ch(s_grad, gpuGrad, bxs, yi + yr , 2*swidth, 1, threadIdx, blockDim, x, y); __syncthreads(); if(xi < x && yi < y){ for(int xr = -rmax; xr <= rmax; xr++){ //find the location of this voter in the atan2 table int id_t = (yr + rmax) * x_table + xr + rmax; // calculate the angle between the pixel and the current voter in x and y directions float atan_angle = gpuTable[id_t]; // calculate the voting direction based on the grtadient direction int idx_share = xr + tx_rmax ; float theta = s_grad[idx_share*2]; float mag = s_grad[idx_share*2 + 1]; // check if the current voter is located in the voting area of this pixel. if (((xr * xr + yr *yr)< rmax_sq) && (abs(atan_angle - theta) void gpu_vote(T* gpuVote, T* gpuGrad, T* gpuTable, T phi, unsigned int rmax, unsigned int x, unsigned int y){ unsigned int max_threads = stim::maxThreadsPerBlock(); dim3 threads(max_threads, 1); dim3 blocks(x/threads.x + (x %threads.x == 0 ? 0:1) , y); // specify share memory unsigned int share_bytes = (2*rmax + threads.x)*1*2*sizeof(T); //call the kernel to do the voting cuda_vote <<< blocks, threads,share_bytes >>>(gpuVote, gpuGrad, gpuTable, phi, rmax, x , y); } template void cpu_vote(T* cpuVote, T* cpuGrad,T* cpuTable, T phi, unsigned int rmax, unsigned int x, unsigned int y){ //calculate the number of bytes in the array unsigned int bytes = x * y * sizeof(T); //calculate the number of bytes in the atan2 table unsigned int bytes_table = (2*rmax+1) * (2*rmax+1) * sizeof(T); //allocate space on the GPU for the Vote Image T* gpuVote; cudaMalloc(&gpuVote, bytes); //allocate space on the GPU for the input Gradient image T* gpuGrad; HANDLE_ERROR(cudaMalloc(&gpuGrad, bytes*2)); //copy the Gradient Magnitude data to the GPU HANDLE_ERROR(cudaMemcpy(gpuGrad, cpuGrad, bytes*2, cudaMemcpyHostToDevice)); //allocate space on the GPU for the atan2 table T* gpuTable; HANDLE_ERROR(cudaMalloc(&gpuTable, bytes_table)); //copy the atan2 values to the GPU HANDLE_ERROR(cudaMemcpy(gpuTable, cpuTable, bytes_table, cudaMemcpyHostToDevice)); //call the GPU version of the vote calculation function gpu_vote(gpuVote, gpuGrad, gpuTable, phi, rmax, x , y); //copy the Vote Data back to the CPU cudaMemcpy(cpuVote, gpuVote, bytes, cudaMemcpyDeviceToHost) ; //free allocated memory cudaFree(gpuTable); cudaFree(gpuVote); cudaFree(gpuGrad); } } } #endif