#ifndef STIM_CENTERLINE_H #define STIM_CENTERLINE_H #include #include //#include namespace stim{ /** This class stores information about a single fiber represented as a set of geometric points * between two branch or end points. This class is used as a fundamental component of the stim::network * class to describe an interconnected (often biological) network. */ template class centerline{ protected: unsigned int N; //number of points in the fiber double **c; //centerline (array of double pointers) // ANNkd_tree* kdt; //kd-tree stores all points in the fiber for fast searching /// Initialize an empty fiber void init() { N=0; c=NULL; // kdt = NULL; } /// Initialize a fiber with N centerline points (all located at [0, 0, 0] with radius 0) void init(unsigned int n) { N = n; //set the number of points // kdt = NULL; c = (double**) malloc(sizeof(double*) * N); //allocate the array pointer for(unsigned int i = 0; i < N; i++) //allocate space for each point c[i] = (double*) malloc(sizeof(double) * 3); } /// Copies an existing fiber to the current fiber /// @param cpy stores the new copy of the fiber void copy( const stim::centerline& cpy, bool kd = 0){ ///allocate space for the new fiber init(cpy.N); ///copy the points for(unsigned int i = 0; i < N; i++){ for(unsigned int d = 0; d < 3; d++) //for each dimension c[i][d] = cpy.c[i][d]; //copy the coordinate } // if(kd) // gen_kdtree(); //generate the kd tree for the new fiber } /// generate a KD tree for points on fiber // void gen_kdtree() // { // int n_data = N; //create an array of data points // ANNpointArray pts = (ANNpointArray)c; //cast the centerline list to an ANNpointArray // kdt = new ANNkd_tree(pts, n_data, 3); //build a KD tree // } /// find distance between two points double dist(double* p0, double* p1){ double sum = 0; // initialize variables float v; for(unsigned int d = 0; d < 3; d++) { v = p1[d] - p0[d]; sum +=v * v; } return sqrt(sum); } /// This function retreives the index for the fiber point closest to q /// @param q is a reference point used to find the closest point on the fiber center line // unsigned int ann( stim::vec q ){ // ANNidxArray idx = new ANNidx[1]; //variable used to hold the nearest point // ANNdistArray sq_dist = new ANNdist[1]; //variable used to hold the squared distance to the nearest point // kdt->annkSearch(q.data(), 1, idx, sq_dist); //search the KD tree for the nearest neighbor // return *idx; // } /// Returns a stim::vec representing the point at index i /// @param i is an index of the desired centerline point stim::vec get_vec(unsigned i){ stim::vec3 r; r.resize(3); r[0] = c[i][0]; r[1] = c[i][1]; r[2] = c[i][2]; return r; } public: centerline(){ init(); } /// Copy constructor centerline(const stim::centerline &obj){ copy(obj); } //temp constructor for graph visualization centerline(int n) { init(n); } /// Constructor takes a list of stim::vec points, the radius at each point is set to zero centerline(std::vector< stim::vec > p, bool kd = 0){ init(p.size()); //initialize the fiber //for each point, set the centerline position and radius for(unsigned int i = 0; i < N; i++){ //set the centerline position for(unsigned int d = 0; d < 3; d++) c[i][d] = (double) p[i][d]; //set the radius } //generate a kd tree // if(kd) // gen_kdtree(); } /// constructor takes a list of points centerline(std::vector< stim::vec3< T > > pos, bool kd = 0){ init(pos.size()); //initialize the fiber //for each point, set the centerline position and radius for(unsigned int i = 0; i < N; i++){ //set the centerline position for(unsigned int d = 0; d < 3; d++) c[i][d] = (double) pos[i][d]; //set the radius } //generate a kd tree //if(kd) // gen_kdtree(); } /// Assignment operation centerline& operator=(const centerline &rhs){ if(this == &rhs) return *this; //test for and handle self-assignment copy(rhs); return *this; } /// Return the point on the fiber closest to q /// @param q is the query point used to locate the nearest point on the fiber centerline // stim::vec nearest(stim::vec q){ // // stim::vec temp( (double) q[0], (double) q[1], (double) q[2]); // // unsigned int idx = ann(temp); //determine the index of the nearest neighbor // // return stim::vec((T) c[idx][0], (T) c[idx][1], (T) c[idx][2]); //return the nearest centerline point // } /// Return the point index on the fiber closest to q /// @param q is the query point used to locate the nearest point on the fiber centerline // unsigned int nearest_idx(stim::vec q){ // // stim::vec temp((double) q[0], (double) q[1], (double) q[2]); // // unsigned int idx = ann(temp); //determine the index of the nearest neighbor // // return idx; //return the nearest centerline point index // } /// Returns the fiber centerline as an array of stim::vec points std::vector< stim::vec > get_centerline(){ //create an array of stim vectors std::vector< stim::vec3 > pts(N); //cast each point to a stim::vec, keeping only the position information for(unsigned int i = 0; i < N; i++) pts[i] = stim::vec3((T) c[i][0], (T) c[i][1], (T) c[i][2]); //return the centerline array return pts; } /// Split the fiber at the specified index. If the index is an end point, only one fiber is returned std::vector< stim::centerline > split(unsigned int idx){ std::vector< stim::centerline > fl; //create an array to store up to two fibers //if the index is an end point, only the existing fiber is returned if(idx == 0 || idx == N-1){ fl.resize(1); //set the size of the fiber to 1 fl[0] = *this; //copy the current fiber } //if the index is not an end point else{ unsigned int N1 = idx + 1; //calculate the size of both fibers unsigned int N2 = N - idx; fl.resize(2); //set the array size to 2 fl[0].init(N1); //set the size of each fiber fl[1].init(N2); //copy both halves of the fiber unsigned int i, d; //first half for(i = 0; i < N1; i++){ //for each centerline point for(d = 0; d < 3; d++) fl[0].c[i][d] = c[i][d]; //copy each coordinate } //second half for(i = 0; i < N2; i++){ for(d = 0; d < 3; d++) fl[1].c[i][d] = c[idx + i][d]; } } return fl; //return the array } /// Calculates the set of fibers resulting from a connection between the current fiber and a fiber f /// @param f is the fiber that will be connected to the current fiber /* std::vector< stim::centerline > connect( stim::centerline &f, double dist){ double min_dist; unsigned int idx0, idx1; //go through each point in the query fiber, looking for the indices for the closest points for(unsigned int i = 0; i < f.n_pts(); i++){ //Run through all points and find the index with the closest point, then partition the fiber and return two fibers. } } */ /// Outputs the fiber as a string std::string str(){ std::stringstream ss; //create an iterator for the point list //typename std::list< point >::iterator i; for(unsigned int i = 0; i < N; i++){ ss<<" [ "; for(unsigned int d = 0; d < 3; d++){ ss< operator[](unsigned i){ return get_vec(i); } /// Back method returns the last point in the fiber stim::vec back(){ return get_vec(N-1); } ////resample a fiber in the network stim::centerline resample(T spacing) { std::cout<<"fiber::resample()"< v(3); //v-direction vector of the segment stim::vec p(3); //- intermediate point to be added stim::vec p1(3); // p1 - starting point of an segment on the fiber, stim::vec p2(3); // p2 - ending point, double sum=0; //distance summation std::vector > fiberPositions = centerline(); std::vector > newPointList; // initialize list of new resampled points on the fiber // for each point on the centerline (skip if it is the last point on centerline) //unsigned int N = fiberPositions.size(); // number of points on the fiber for(unsigned int f=0; f< N-1; f++) { p1 = fiberPositions[f]; p2 = fiberPositions[f + 1]; v = p2 - p1; for(unsigned int d = 0; d < 3; d++){ sum +=v[d] * v[d];} //length of segment-distance between starting and ending point T lengthSegment = sqrt(sum); //find Length of the segment as distance between the starting and ending points of the segment if(lengthSegment >= spacing) // if length of the segment is greater than standard deviation resample { // repeat resampling until accumulated stepsize is equsl to length of the segment for(T step=0.0; step