/* Copyright <2017> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #ifndef STIM_CENTERLINE_H #define STIM_CENTERLINE_H #include #include namespace stim{ /** This class stores information about a single fiber represented as a set of geometric points * between two branch or end points. This class is used as a fundamental component of the stim::network * class to describe an interconnected (often biological) network. */ template class centerline{ protected: unsigned int N; //number of points in the fiber double **c; //centerline (array of double pointers) /// Initialize an empty fiber void init(){ N=0; c=NULL; } /// Initialize a fiber with N centerline points (all located at [0, 0, 0] with radius 0) void init(unsigned int n){ N = n; //set the number of points c = (double**) malloc(sizeof(double*) * N); //allocate the array pointer for(unsigned int i = 0; i < N; i++) //allocate space for each point c[i] = (double*) malloc(sizeof(double) * 3); } /// Copies an existing fiber to the current fiber /// @param cpy stores the new copy of the fiber void copy( const stim::centerline& cpy, bool kd = 0){ ///allocate space for the new fiber init(cpy.N); ///copy the points for(unsigned int i = 0; i < N; i++){ for(unsigned int d = 0; d < 3; d++) //for each dimension c[i][d] = cpy.c[i][d]; //copy the coordinate } } /// find distance between two points double dist(double* p0, double* p1){ double sum = 0; // initialize variables float v; for(unsigned int d = 0; d < 3; d++) { v = p1[d] - p0[d]; sum +=v * v; } return sqrt(sum); } /// Returns a stim::vec representing the point at index i /// @param i is an index of the desired centerline point stim::vec get_vec(unsigned i){ stim::vec3 r; r.resize(3); r[0] = c[i][0]; r[1] = c[i][1]; r[2] = c[i][2]; return r; } public: centerline(){ init(); } /// Copy constructor centerline(const stim::centerline &obj){ copy(obj); } //initialize a centerline with n points centerline(int n){ init(n); } /// Constructor takes a list of stim::vec points, the radius at each point is set to zero centerline(std::vector< stim::vec > p, bool kd = 0){ init(p.size()); //initialize the fiber //for each point, set the centerline position and radius for(unsigned int i = 0; i < N; i++){ //set the centerline position for(unsigned int d = 0; d < 3; d++) c[i][d] = (double) p[i][d]; } } /// constructor takes a list of points centerline(std::vector< stim::vec3< T > > pos, bool kd = 0){ init(pos.size()); //initialize the fiber //for each point, set the centerline position and radius for(unsigned int i = 0; i < N; i++){ //set the centerline position for(unsigned int d = 0; d < 3; d++) c[i][d] = (double) pos[i][d]; } } /// Assignment operation centerline& operator=(const centerline &rhs){ if(this == &rhs) return *this; //test for and handle self-assignment copy(rhs); return *this; } /// Returns the fiber centerline as an array of stim::vec points std::vector< stim::vec > get_centerline(){ //create an array of stim vectors std::vector< stim::vec3 > pts(N); //cast each point to a stim::vec, keeping only the position information for(unsigned int i = 0; i < N; i++) pts[i] = stim::vec3((T) c[i][0], (T) c[i][1], (T) c[i][2]); //return the centerline array return pts; } /// Split the fiber at the specified index. If the index is an end point, only one fiber is returned std::vector< stim::centerline > split(unsigned int idx){ std::vector< stim::centerline > fl; //create an array to store up to two fibers //if the index is an end point, only the existing fiber is returned if(idx == 0 || idx == N-1){ fl.resize(1); //set the size of the fiber to 1 fl[0] = *this; //copy the current fiber } //if the index is not an end point else{ unsigned int N1 = idx + 1; //calculate the size of both fibers unsigned int N2 = N - idx; fl.resize(2); //set the array size to 2 fl[0].init(N1); //set the size of each fiber fl[1].init(N2); //copy both halves of the fiber unsigned int i, d; //first half for(i = 0; i < N1; i++){ //for each centerline point for(d = 0; d < 3; d++) fl[0].c[i][d] = c[i][d]; //copy each coordinate } //second half for(i = 0; i < N2; i++){ for(d = 0; d < 3; d++) fl[1].c[i][d] = c[idx + i][d]; } } return fl; //return the array } /// Outputs the fiber as a string std::string str(){ std::stringstream ss; //create an iterator for the point list //typename std::list< point >::iterator i; for(unsigned int i = 0; i < N; i++){ ss<<" [ "; for(unsigned int d = 0; d < 3; d++){ ss< operator[](unsigned i){ return get_vec(i); } /// Back method returns the last point in the fiber stim::vec back(){ return get_vec(N-1); } ////resample a fiber in the network stim::centerline resample(T spacing) { std::cout<<"fiber::resample()"< v(3); //v-direction vector of the segment stim::vec p(3); //- intermediate point to be added stim::vec p1(3); // p1 - starting point of an segment on the fiber, stim::vec p2(3); // p2 - ending point, double sum=0; //distance summation std::vector > fiberPositions = centerline(); std::vector > newPointList; // initialize list of new resampled points on the fiber // for each point on the centerline (skip if it is the last point on centerline) for(unsigned int f=0; f< N-1; f++) { p1 = fiberPositions[f]; p2 = fiberPositions[f + 1]; v = p2 - p1; for(unsigned int d = 0; d < 3; d++){ sum +=v[d] * v[d];} //length of segment-distance between starting and ending point T lengthSegment = sqrt(sum); //find Length of the segment as distance between the starting and ending points of the segment if(lengthSegment >= spacing) // if length of the segment is greater than standard deviation resample { // repeat resampling until accumulated stepsize is equsl to length of the segment for(T step=0.0; step