#ifndef STIM_CUDA_UPDATE_DIR_GLOBALD_H #define STIM_CUDA_UPDATE_DIR_GLOBAL_H # include # include #include #include #include #include "cpyToshare.cuh" #define RMAX_TEST 8 namespace stim{ namespace cuda{ // this kernel calculates the voting direction for the next iteration based on the angle between the location of this voter and the maximum vote value in its voting area. template __global__ void cuda_update_dir(T* gpuDir, T* gpuVote, T* gpuGrad, T* gpuTable, T phi, int rmax, int x, int y){ extern __shared__ T atan2_table[]; //calculate the start point for this block //int bxi = blockIdx.x * blockDim.x; stim::cuda::sharedMemcpy(atan2_table, gpuTable, (2 * rmax + 1) * (2 * rmax + 1), threadIdx.x, blockDim.x); __syncthreads(); // calculate the 2D coordinates for this current thread. //int xi = bxi + threadIdx.x; int xi = blockIdx.x * blockDim.x + threadIdx.x; int yi = blockIdx.y * blockDim.y + threadIdx.y; if(xi >= x || yi >= y) return; //if the index is outside of the image, terminate the kernel int i = yi * x + xi; // convert 2D coordinates to 1D float theta = gpuGrad[2*i]; // calculate the voting direction based on the grtadient direction - global memory fetch gpuDir[i] = 0; //initialize the vote direction to zero float max = 0; // define a local variable to maximum value of the vote image in the voting area for this voter int id_x = 0; // define two local variables for the x and y position of the maximum int id_y = 0; int x_table = 2*rmax +1; // compute the size of window which will be checked for finding the voting area for this voter int rmax_sq = rmax * rmax; int tx_rmax = threadIdx.x + rmax; float atan_angle; float vote_c; unsigned int ind_t; for(int yr = -rmax; yr <= rmax; yr++){ //for each counter in the y direction if (yi+yr >= 0 && yi + yr < y){ //if the counter exists (we aren't looking outside of the image) for(int xr = -rmax; xr <= rmax; xr++){ //for each counter in the x direction if((xr * xr + yr *yr)< rmax_sq){ //if the counter is within range of the voter ind_t = (rmax - yr) * x_table + rmax - xr; //calculate the index to the atan2 table atan_angle = atan2_table[ind_t]; //retrieve the direction vector from the table //atan_angle = atan2((float)yr, (float)xr); if (abs(atan_angle - theta) max) { // compare the vote value of this pixel with the max value to find the maxima and its index. max = vote_c; id_x = xr; id_y = yr; } } } } } } unsigned int ind_m = (rmax - id_y) * x_table + (rmax - id_x); float new_angle = gpuTable[ind_m]; if(xi < x && yi < y) gpuDir[i] = new_angle; } //end kernel // this kernel updates the gradient direction by the calculated voting direction. template __global__ void cuda_update_grad(T* gpuGrad, T* gpuDir, int x, int y){ // calculate the 2D coordinates for this current thread. int xi = blockIdx.x * blockDim.x + threadIdx.x; int yi = blockIdx.y * blockDim.y + threadIdx.y; // convert 2D coordinates to 1D int i = yi * x + xi; //update the gradient image with the vote direction gpuGrad[2*i] = gpuDir[i]; } template void gpu_update_dir(T* gpuVote, T* gpuGrad, T* gpuTable, T phi, unsigned int rmax, unsigned int x, unsigned int y){ //calculate the number of bytes in the array unsigned int bytes = x * y * sizeof(T); unsigned int max_threads = stim::maxThreadsPerBlock(); dim3 threads(sqrt(max_threads), sqrt(max_threads)); dim3 blocks(x/threads.x + 1, y/threads.y + 1); // allocate space on the GPU for the updated vote direction T* gpuDir; cudaMalloc(&gpuDir, bytes); size_t shared_mem = sizeof(T) * std::pow((2 * rmax + 1), 2); std::cout<<"Shared memory for atan2 table: "<>>(gpuDir, gpuVote, gpuGrad, gpuTable, phi, rmax, x , y); //call the kernel to update the gradient direction cuda_update_grad <<< blocks, threads >>>(gpuGrad, gpuDir, x , y); //free allocated memory cudaFree(gpuDir); } template void cpu_update_dir(T* cpuVote, T* cpuGrad,T* cpuTable, T phi, unsigned int rmax, unsigned int x, unsigned int y){ //calculate the number of bytes in the array unsigned int bytes = x * y * sizeof(T); //calculate the number of bytes in the atan2 table unsigned int bytes_table = (2*rmax+1) * (2*rmax+1) * sizeof(T); //allocate space on the GPU for the Vote Image T* gpuVote; cudaMalloc(&gpuVote, bytes); //copy the input vote image to the GPU HANDLE_ERROR(cudaMemcpy(gpuVote, cpuVote, bytes, cudaMemcpyHostToDevice)); //allocate space on the GPU for the input Gradient image T* gpuGrad; HANDLE_ERROR(cudaMalloc(&gpuGrad, bytes*2)); //copy the Gradient data to the GPU HANDLE_ERROR(cudaMemcpy(gpuGrad, cpuGrad, bytes*2, cudaMemcpyHostToDevice)); //allocate space on the GPU for the atan2 table T* gpuTable; HANDLE_ERROR(cudaMalloc(&gpuTable, bytes_table)); //copy the atan2 values to the GPU HANDLE_ERROR(cudaMemcpy(gpuTable, cpuTable, bytes_table, cudaMemcpyHostToDevice)); //call the GPU version of the update direction function gpu_update_dir(gpuVote, gpuGrad, gpuTable, phi, rmax, x , y); //copy the new gradient image back to the CPU cudaMemcpy(cpuGrad, gpuGrad, bytes*2, cudaMemcpyDeviceToHost) ; //free allocated memory cudaFree(gpuTable); cudaFree(gpuVote); cudaFree(gpuGrad); } } } #endif