/* Copyright <2017> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #ifndef STIM_CENTERLINE_H #define STIM_CENTERLINE_H #include #include #include namespace stim{ /** This class stores information about a single fiber represented as a set of geometric points * between two branch or end points. This class is used as a fundamental component of the stim::network * class to describe an interconnected (often biological) network. */ template class centerline : public std::vector< stim::vec3 >{ protected: std::vector L; //stores the integrated length along the fiber (used for parameterization) ///Return the normalized direction vector at point i (average of the incoming and outgoing directions) vec3 d(size_t i) { if (size() <= 1) return vec3(0, 0, 0); //if there is insufficient information to calculate the direction, return a null vector if (size() == 2) return (at(1) - at(0)).norm(); //if there are only two points, the direction vector at both is the direction of the line segment if (i == 0) return (at(1) - at(0)).norm(); //the first direction vector is oriented towards the first line segment if (i == size() - 1) return (at(size() - 1) - at(size() - 2)).norm(); //the last direction vector is oriented towards the last line segment //all other direction vectors are the average direction of the two joined line segments vec3 a = at(i) - at(i - 1); vec3 b = at(i + 1) - at(i); vec3 ab = a.norm() + b.norm(); return ab.norm(); } //initializes the integrated length vector to make parameterization easier, starting with index idx (all previous indices are assumed to be correct) void update_L(size_t start = 0) { L.resize(size()); //allocate space for the L array if (start == 0) { L[0] = 0; //initialize the length value for the first point to zero (0) start++; } stim::vec3 d; for (size_t i = start; i < size(); i++) { //for each line segment in the centerline d = at(i) - at(i - 1); L[i] = L[i - 1] + d.len(); //calculate the running length total } } void init() { if (size() == 0) return; //return if there aren't any points update_L(); } /// Returns a stim::vec representing the point at index i /// @param i is an index of the desired centerline point stim::vec get_vec(unsigned i){ return std::vector< stim::vec3 >::at(i); } ///finds the index of the point closest to the length l on the lower bound. ///binary search. size_t findIdx(T l) { for (size_t i = 1; i < L.size(); i++) { //for each point in the centerline if (L[i] > l) return i - 1; //if we have passed the desired length value, return i-1 } return L.size() - 1; /*size_t i = L.size() / 2; size_t max = L.size() - 1; size_t min = 0; while (i < L.size() - 1){ if (l < L[i]) { max = i; i = min + (max - min) / 2; } else if (L[i] <= l && L[i + 1] >= l) { break; } else { min = i; i = min + (max - min) / 2; } } return i;*/ } ///Returns a position vector at the given length into the fiber (based on the pvalue). ///Interpolates the radius along the line. ///@param l: the location of the in the cylinder. ///@param idx: integer location of the point closest to l but prior to it. stim::vec3 p(T l, int idx) { T rat = (l - L[idx]) / (L[idx + 1] - L[idx]); stim::vec3 v1 = at(idx); stim::vec3 v2 = at(idx + 1); return(v1 + (v2 - v1)*rat); } public: using std::vector< stim::vec3 >::at; using std::vector< stim::vec3 >::size; centerline() : std::vector< stim::vec3 >() { init(); } centerline(size_t n) : std::vector< stim::vec3 >(n){ init(); } centerline(std::vector > pos) : std::vector > (pos) { init(); } //overload the push_back function to update the length vector void push_back(stim::vec3 p) { std::vector< stim::vec3 >::push_back(p); update_L(size() - 1); } ///Returns a position vector at the given p-value (p value ranges from 0 to 1). ///interpolates the position along the line. ///@param pvalue: the location of the in the cylinder, from 0 (beginning to 1). stim::vec3 p(T pvalue) { if (pvalue <= 0.0) return at(0); //return the first element if (pvalue >= 1.0) return back(); //return the last element T l = pvalue*L[L.size() - 1]; int idx = findIdx(l); return p(l, idx); } ///Update centerline internal parameters (currently the L vector) void update() { init(); } ///Return the length of the entire centerline T length() { return L.back(); } /// stitch two centerlines ///@param c1, c2: two centerlines ///@param sigma: sample rate static std::vector< stim::centerline > stitch(stim::centerline c1, stim::centerline c2 = stim::centerline()) { std::vector< stim::centerline > result; stim::centerline new_centerline; stim::vec3 new_vertex; // if only one centerline, stitch itself! if (c2.size() == 0) { size_t num = c1.size(); size_t id = 100000; // store the downsample start position T threshold; if (num < 4) { // if the number of vertex is less than 4, do nothing result.push_back(c1); return result; } else { // test geometry start vertex stim::vec3 v1 = c1[1] - c1[0]; // vector from c1[0] to c1[1] for (size_t p = 2; p < num; p++) { // 90° standard??? stim::vec3 v2 = c1[p] - c1[0]; float cosine = v2.dot(v1); if (cosine < 0) { id = p; threshold = v2.len(); break; } } if (id != 100000) { // find a downsample position on the centerline T* c; c = (T*)malloc(sizeof(T) * (num - id) * 3); for (size_t p = id; p < num; p++) { for (size_t d = 0; d < 3; d++) { c[p * 3 + d] = c1[p][d]; } } stim::kdtree kdt; kdt.create(c, num - id, 5); // create tree T* query = (T*)malloc(sizeof(T) * 3); for (size_t d = 0; d < 3; d++) query[d] = c1[0][d]; size_t index; T dist; kdt.search(query, 1, &index, &dist); free(query); free(c); if (dist > threshold) { result.push_back(c1); } else { // the loop part new_vertex = c1[index]; new_centerline.push_back(new_vertex); for (size_t p = 0; p < index + 1; p++) { new_vertex = c1[p]; new_centerline.push_back(new_vertex); } result.push_back(new_centerline); new_centerline.clear(); // the tail part for (size_t p = index; p < num; p++) { new_vertex = c1[p]; new_centerline.push_back(new_vertex); } result.push_back(new_centerline); } } else { // there is one potential problem that two positions have to be stitched // test geometry end vertex stim::vec3 v1 = c1[num - 2] - c1[num - 1]; for (size_t p = num - 2; p > 0; p--) { // 90° standard stim::vec3 v2 = c1[p - 1] - c1[num - 1]; float cosine = v2.dot(v1); if (cosine < 0) { id = p; threshold = v2.len(); break; } } if (id != 100000) { // find a downsample position T* c; c = (T*)malloc(sizeof(T) * (id + 1) * 3); for (size_t p = 0; p < id + 1; p++) { for (size_t d = 0; d < 3; d++) { c[p * 3 + d] = c1[p][d]; } } stim::kdtree kdt; kdt.create(c, id + 1, 5); // create tree T* query = (T*)malloc(sizeof(T) * 1 * 3); for (size_t d = 0; d < 3; d++) query[d] = c1[num - 1][d]; size_t index; T dist; kdt.search(query, 1, &index, &dist); free(query); free(c); if (dist > threshold) { result.push_back(c1); } else { // the tail part for (size_t p = 0; p < index + 1; p++) { new_vertex = c1[p]; new_centerline.push_back(new_vertex); } result.push_back(new_centerline); new_centerline.clear(); // the loop part for (size_t p = index; p < num; p++) { new_vertex = c1[p]; new_centerline.push_back(new_vertex); } new_vertex = c1[index]; new_centerline.push_back(new_vertex); result.push_back(new_centerline); } } else { // no stitch position result.push_back(c1); } } } } // two centerlines else { // find stitch position based on nearest neighbors size_t num1 = c1.size(); T* c = (T*)malloc(sizeof(T) * num1 * 3); // c1 as reference point for (size_t p = 0; p < num1; p++) // centerline to array for (size_t d = 0; d < 3; d++) // because right now my kdtree code is a relatively close code, it has its own structure c[p * 3 + d] = c1[p][d]; // I will merge it into stimlib totally in the near future stim::kdtree kdt; // kdtree object kdt.create(c, num1, 5); // create tree size_t num2 = c2.size(); T* query = (T*)malloc(sizeof(T) * num2 * 3); // c2 as query point for (size_t p = 0; p < num2; p++) { for (size_t d = 0; d < 3; d++) { query[p * 3 + d] = c2[p][d]; } } std::vector index(num2); std::vector dist(num2); kdt.search(query, num2, &index[0], &dist[0]); // find the nearest neighbors in c1 for c2 // clear up free(query); free(c); // find the average vertex distance of one centerline T sigma1 = 0; T sigma2 = 0; for (size_t p = 0; p < num1 - 1; p++) sigma1 += (c1[p] - c1[p + 1]).len(); for (size_t p = 0; p < num2 - 1; p++) sigma2 += (c2[p] - c2[p + 1]).len(); sigma1 /= (num1 - 1); sigma2 /= (num2 - 1); float threshold = 4 * (sigma1 + sigma2) / 2; // better way to do this? T min_d = *std::min_element(dist.begin(), dist.end()); // find the minimum distance between c1 and c2 if (min_d > threshold) { // if the minimum distance is too large result.push_back(c1); result.push_back(c2); #ifdef DEBUG std::cout << "The distance between these two centerlines is too large" << std::endl; #endif } else { // auto smallest = std::min_element(dist.begin(), dist.end()); unsigned int smallest = std::min_element(dist.begin(), dist.end()); // auto i = std::distance(dist.begin(), smallest); // find the index of min-distance in distance list unsigned int i = std::distance(dist.begin(), smallest); // find the index of min-distance in distance list // stitch position in c1 and c2 int id1 = index[i]; int id2 = i; // actually there are two cases // first one inacceptable // second one acceptable if (id1 != 0 && id1 != num1 - 1 && id2 != 0 && id2 != num2 - 1) { // only stitch one end vertex to another centerline result.push_back(c1); result.push_back(c2); } else { if (id1 == 0 || id1 == num1 - 1) { // if the stitch vertex is the first or last vertex of c1 // for c2, consider two cases(one degenerate case) if (id2 == 0 || id2 == num2 - 1) { // case 1, if stitch position is also on the end of c2 // we have to decide which centerline get a new vertex, based on direction // for c1, computer the direction change angle stim::vec3 v1, v2; float alpha1, alpha2; // direction change angle if (id1 == 0) v1 = (c1[1] - c1[0]).norm(); else v1 = (c1[num1 - 2] - c1[num1 - 1]).norm(); v2 = (c2[id2] - c1[id1]).norm(); alpha1 = v1.dot(v2); if (id2 == 0) v1 = (c2[1] - c2[0]).norm(); else v1 = (c2[num2 - 2] - c2[num2 - 1]).norm(); v2 = (c1[id1] - c2[id2]).norm(); alpha2 = v1.dot(v2); if (abs(alpha1) > abs(alpha2)) { // add the vertex to c1 in order to get smooth connection // push back c1 if (id1 == 0) { // keep geometry information new_vertex = c2[id2]; new_centerline.push_back(new_vertex); for (size_t p = 0; p < num1; p++) { // stitch vertex on c2 -> geometry start vertex on c1 -> geometry end vertex on c1 new_vertex = c1[p]; new_centerline.push_back(new_vertex); } } else { for (size_t p = 0; p < num1; p++) { // stitch vertex on c2 -> geometry end vertex on c1 -> geometry start vertex on c1 new_vertex = c1[p]; new_centerline.push_back(new_vertex); } new_vertex = c2[id2]; new_centerline.push_back(new_vertex); } result.push_back(new_centerline); new_centerline.clear(); // push back c2 for (size_t p = 0; p < num2; p++) { new_vertex = c2[p]; new_centerline.push_back(new_vertex); } result.push_back(new_centerline); } else { // add the vertex to c2 in order to get smooth connection // push back c1 for (size_t p = 0; p < num1; p++) { new_vertex = c1[p]; new_centerline.push_back(new_vertex); } result.push_back(new_centerline); new_centerline.clear(); // push back c2 if (id2 == 0) { // keep geometry information new_vertex = c1[id1]; new_centerline.push_back(new_vertex); for (size_t p = 0; p < num2; p++) { // stitch vertex on c2 -> geometry start vertex on c1 -> geometry end vertex on c1 new_vertex = c2[p]; new_centerline.push_back(new_vertex); } } else { for (size_t p = 0; p < num2; p++) { // stitch vertex on c2 -> geometry end vertex on c1 -> geometry start vertex on c1 new_vertex = c2[p]; new_centerline.push_back(new_vertex); } new_vertex = c1[id1]; new_centerline.push_back(new_vertex); } result.push_back(new_centerline); } } else { // case 2, the stitch position is on c2 // push back c1 if (id1 == 0) { // keep geometry information new_vertex = c2[id2]; new_centerline.push_back(new_vertex); for (size_t p = 0; p < num1; p++) { // stitch vertex on c2 -> geometry start vertex on c1 -> geometry end vertex on c1 new_vertex = c1[p]; new_centerline.push_back(new_vertex); } } else { for (size_t p = 0; p < num1; p++) { // geometry end vertex on c1 -> geometry start vertex on c1 -> stitch vertex on c2 new_vertex = c1[p]; new_centerline.push_back(new_vertex); } new_vertex = c2[id2]; new_centerline.push_back(new_vertex); } result.push_back(new_centerline); new_centerline.clear(); // push back c2 for (size_t p = 0; p < id2 + 1; p++) { // first part new_vertex = c2[p]; new_centerline.push_back(new_vertex); } result.push_back(new_centerline); new_centerline.clear(); for (size_t p = id2; p < num2; p++) { // second part new_vertex = c2[p]; new_centerline.push_back(new_vertex); } result.push_back(new_centerline); } } else { // if the stitch vertex is the first or last vertex of c2 // push back c2 if (id2 == 0) { // keep geometry information new_vertex = c1[id1]; new_centerline.push_back(new_vertex); for (size_t p = 0; p < num2; p++) { // stitch vertex on c1 -> geometry start vertex on c2 -> geometry end vertex on c2 new_vertex = c2[p]; new_centerline.push_back(new_vertex); } } else { for (size_t p = 0; p < num2; p++) { // geometry end vertex on c2 -> geometry start vertex on c2 -> stitch vertex on c1 new_vertex = c2[p]; new_centerline.push_back(new_vertex); } new_vertex = c1[id1]; new_centerline.push_back(new_vertex); result.push_back(new_centerline); new_centerline.clear(); // push back c1 for (size_t p = 0; p < id1 + 1; p++) { // first part new_vertex = c1[p]; new_centerline.push_back(new_vertex); } result.push_back(new_centerline); new_centerline.clear(); for (size_t p = id1; p < num1; p++) { // second part new_vertex = c1[p]; new_centerline.push_back(new_vertex); } result.push_back(new_centerline); } } } } } return result; } /// Split the fiber at the specified index. If the index is an end point, only one fiber is returned std::vector< stim::centerline > split(unsigned int idx){ std::vector< stim::centerline > fl; //create an array to store up to two fibers size_t N = size(); //if the index is an end point, only the existing fiber is returned if(idx == 0 || idx == N-1){ fl.resize(1); //set the size of the fiber to 1 fl[0] = *this; //copy the current fiber } //if the index is not an end point else{ unsigned int N1 = idx + 1; //calculate the size of both fibers unsigned int N2 = N - idx; fl.resize(2); //set the array size to 2 fl[0] = stim::centerline(N1); //set the size of each fiber fl[1] = stim::centerline(N2); //copy both halves of the fiber unsigned int i; //first half for(i = 0; i < N1; i++) //for each centerline point fl[0][i] = std::vector< stim::vec3 >::at(i); fl[0].init(); //initialize the length vector //second half for(i = 0; i < N2; i++) fl[1][i] = std::vector< stim::vec3 >::at(idx+i); fl[1].init(); //initialize the length vector } return fl; //return the array } /// Outputs the fiber as a string std::string str(){ std::stringstream ss; size_t N = std::vector< stim::vec3 >::size(); ss << "---------[" << N << "]---------" << std::endl; for (size_t i = 0; i < N; i++) ss << std::vector< stim::vec3 >::at(i) << std::endl; ss << "--------------------" << std::endl; return ss.str(); } /// Back method returns the last point in the fiber stim::vec3 back(){ return std::vector< stim::vec3 >::back(); } ////resample a fiber in the network stim::centerline resample(T spacing) { //std::cout<<"fiber::resample()"< v; //v-direction vector of the segment stim::vec3 p; //- intermediate point to be added stim::vec3 p1; // p1 - starting point of an segment on the fiber, stim::vec3 p2; // p2 - ending point, //double sum=0; //distance summation size_t N = size(); centerline new_c; // initialize list of new resampled points on the fiber // for each point on the centerline (skip if it is the last point on centerline) for(unsigned int f=0; f< N-1; f++) { p1 = at(f); p2 = at(f+1); v = p2 - p1; T lengthSegment = v.len(); //find Length of the segment as distance between the starting and ending points of the segment if(lengthSegment >= spacing){ // if length of the segment is greater than standard deviation resample // repeat resampling until accumulated stepsize is equsl to length of the segment for(T step=0.0; step