Blame view

fileout.cu 4.56 KB
3f56f1f9   dmayerich   initial commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
  #include "fileout.h"
  //#include "scalarfield.h"

  

  

  /*void fileoutStruct::saveMag(fieldslice* U, std::string filename, rts::colormap::colormapType cmap)

  {
      int Rx = U->R[0];
      int Ry = U->R[1];
  

  	//allocate space for a scalar field on the GPU

  	ptype* gpuScalar;

  	int memsize = sizeof(ptype) * Rx * Ry;

  	HANDLE_ERROR(cudaMalloc((void**) &gpuScalar, memsize));
  	HANDLE_ERROR(cudaMemset(gpuScalar, 0, memsize));

  	U->Mag(gpuScalar);

  
  

  	rts::colormap::gpu2image<ptype>(gpuScalar, filename, Rx, Ry, 0, colorMax, cmap);

  

  	HANDLE_ERROR(cudaFree(gpuScalar));

  }
  
  void fileoutStruct::saveReal_scalar(fieldslice* U, std::string filename, rts::colormap::colormapType cmap)

  {

  	//returns the real component

  	scalarslice sf = U->Real();

  	sf.toImage(filename, false, cmap);

  

  }
  
  void fileoutStruct::saveImag_scalar(fieldslice* U, std::string filename, rts::colormap::colormapType cmap)

  {

  	//returns the imaginary component of a field (assumed scalar)

  	scalarslice sf = U->Imag();

  	sf.toImage(filename, false, cmap);

  }
  
  void fileoutStruct::saveIntensity(fieldslice* U, std::string filename, rts::colormap::colormapType cmap)
  {
  	//get the intensity of the field
      scalarslice sf = U->Intensity();

  	sf.toImage(filename, true, cmap);
  }
  
  void fileoutStruct::saveAngularSpectrum(fieldslice* U, std::string filename, rts::colormap::colormapType cmap)
  {
      ptype* gpuScalar;
      int memsize = sizeof(ptype) * U->R[0] * U->R[1];

  	HANDLE_ERROR(cudaMalloc((void**) &gpuScalar, memsize));
  	HANDLE_ERROR(cudaMemset(gpuScalar, 0, memsize));
  
  	//convert the field slice to its angular spectrum
  	U->toAngularSpectrum();
  
  	//convert the angular spectrum to a scalar field
  	U->Mag(gpuScalar);
  
  	//save the color image
  	rts::colormap::gpu2image<ptype>(gpuScalar, filename, U->R[0], U->R[1], 0, colorMax, cmap);

  

  	HANDLE_ERROR(cudaFree(gpuScalar));
  
  }*/
  
  void fileoutStruct::saveNearField(nearfieldStruct* nf)
  {
      if(nearFile == "") return;
  
      if(field == fieldReal)
      {
          scalarslice S = nf->U.Real();
          S.toImage(nearFile, false, colormap);
      }
      if(field == fieldImag)
      {
          scalarslice S = nf->U.Imag();
          S.toImage(nearFile, false, colormap);
      }
      if(field == fieldMag)
      {
          scalarslice S = nf->U.Mag();
          S.toImage(nearFile, true, colormap);
      }
  }
  
  void fileoutStruct::saveFarField(microscopeStruct* scope)
  {
      if(farFile == "") return;
  
      if(field == fieldReal)
      {
          scalarslice S = scope->Ud.Real();
          S.toImage(farFile, false, colormap);
      }
      if(field == fieldImag)
      {
          scalarslice S = scope->Ud.Imag();
          S.toImage(farFile, false, colormap);
      }
      if(field == fieldMag)
      {
          scalarslice S = scope->Ud.Mag();
          S.toImage(farFile, true, colormap);
      }
  
  }
  
  void fileoutStruct::saveDetector(microscopeStruct* scope)
  {
  	//intensity
      if(intFile != "")
      {
          scalarslice I = scope->getIntensity();
  
          if(is_binary(intFile))
7d43100a   dmayerich   allow appending t...
116
              I.toEnvi(intFile, scope->nf.lambda, append);
3f56f1f9   dmayerich   initial commit
117
118
119
120
121
122
123
      }
      //absorbance
      if(absFile != "")
      {
          scalarslice I = scope->getAbsorbance();
  
          if(is_binary(absFile))
7d43100a   dmayerich   allow appending t...
124
              I.toEnvi(absFile, scope->nf.lambda, append);
3f56f1f9   dmayerich   initial commit
125
126
127
128
129
130
131
132
133
          else
              I.toImage(absFile);
      }
      //transmittance
      if(transFile != "")
      {
          scalarslice I = scope->getTransmittance();
  
          if(is_binary(transFile))
7d43100a   dmayerich   allow appending t...
134
              I.toEnvi(transFile, scope->nf.lambda, append);
3f56f1f9   dmayerich   initial commit
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
          else
              I.toImage(transFile);
      }
  
  }
  
  bool fileoutStruct::is_binary(std::string filename)
  {
      //this function guesses if a file name is binary or a standard image
      //  do this by just testing extensions
  
      //get the extension
      size_t i = filename.find_last_of('.');
  
      //if there is no extension, return true
      if( i == std::string::npos )
          return true;
  
      //otherwise grab the extension
      std::string ext = filename.substr(i+1);
      if(ext == "bmp" ||
         ext == "jpg" ||
         ext == "tif" ||
         ext == "gif" ||
         ext == "png")
         return false;
      else
          return true;
  }
  
  

  

  void fileoutStruct::Save(microscopeStruct* scope)

  {
  	//save images of the fields in the microscope
  
  	//if the user specifies an extended source
  	if(scope->focalPoints.size() > 1)
  	{
  		//simulate the extended source and output the detector image
  		scope->SimulateExtendedSource();
  
  	}
  	else
  	{
  		//run the near-field simulation
  		scope->SimulateScattering();
  
  		//output the near field image
  		saveNearField(&scope->nf);
  
  		//run the far-field simulation
  		scope->SimulateImaging();
  
  		saveFarField(scope);
  
  	}
  
  	//save the detector images
      saveDetector(scope);
  
  

  }