Blame view

options.h 12.9 KB
3f56f1f9   dmayerich   initial commit
1
2
3
  //AnyOption for command-line processing
  //#include "anyoption.h"
  
d6f53e68   dmayerich   rts organization
4
  #include "rts/optics/material.h"
3f56f1f9   dmayerich   initial commit
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
  
  #include "nearfield.h"
  #include "microscope.h"
  #include "colormap.h"
  #include "fileout.h"
  //extern nearfieldStruct* NF;
  extern microscopeStruct* SCOPE;
  extern fileoutStruct gFileOut;
  
  //default values
  #include "defaults.h"
  
  #include <string>
  #include <sstream>
  #include <fstream>
  #include <limits>
  using namespace std;
  
  #include <boost/program_options.hpp>
  namespace po = boost::program_options;
  
  static void loadSpheres(string sphereList)
  {
      /*This function loads a list of sphere given in the string sphereList
          The format is:
              x y z a m
          where
              x, y, z = sphere position (required)
              a = sphere radius (required)
              m = material ID (optional) */
  
      std::stringstream ss(sphereList);
  
      while(!ss.eof())
      {
          //create a new sphere
          sphere newS;
  
          //get the sphere data
          ss>>newS.p[0];
          ss>>newS.p[1];
          ss>>newS.p[2];
          ss>>newS.a;
  
          if(ss.peek() != '\n')
              ss>>newS.iMaterial;
  
          //add the new sphere to the sphere vector
          SCOPE->nf.sVector.push_back(newS);
  
          //ignore the rest of the line
          ss.ignore(std::numeric_limits<std::streamsize>::max(), '\n');
  
          //check out the next element (this should set the EOF error flag)
          ss.peek();
      }
  
  
  
  }
  
  static void loadSpheres(po::variables_map vm)
  {
      //if a files are specified
      if(vm.count("sphere-file"))
      {
          cout<<"Sphere files detected."<<endl;
          vector<string> filenames = vm["sphere-file"].as< vector<string> >();
          //load each file
          for(int iS=0; iS<filenames.size(); iS++)
          {
              //load the file into a string
              std::ifstream ifs(filenames[iS].c_str());
  
              if(!ifs)
              {
                  cout<<"Error loading sphere file."<<endl;
                  exit(1);
              }
  
              std::string instr((std::istreambuf_iterator<char>(ifs)), std::istreambuf_iterator<char>());
  
              //load the list of spheres from a string
              loadSpheres(instr);
          }
      }
  
      //load the sphere from the command line
      if(vm.count("sx") || vm.count("sy") || vm.count("sz") || vm.count("s"))
      {
          //create a new sphere
          sphere newS;
  
  		//set defaults
  		if(vm.count("sx"))
              newS.p[0] = vm["sx"].as<ptype>();
          else
              newS.p[0] = DEFAULT_SPHERE_X;
  
  
  		if(vm.count("sy"))
              newS.p[1] = vm["sy"].as<ptype>();
          else
              newS.p[1] = DEFAULT_SPHERE_Y;
  
  		if(vm.count("sz"))
              newS.p[2] = vm["sz"].as<ptype>();
          else
              newS.p[2] = DEFAULT_SPHERE_Z;
  
  		if(vm.count("radius"))
              newS.a = vm["radius"].as<ptype>();
          else
              newS.a = DEFAULT_SPHERE_A;
  
          //add the sphere to the sphere vector
          SCOPE->nf.sVector.push_back(newS);
  
      }
  }
  
  static void loadMaterials(po::variables_map vm)
  {
  	//if materials are specified at the command line
  	if(vm.count("materials"))
  	{
  		vector<ptype> matVec = vm["materials"].as< vector<ptype> >();
  		if(matVec.size() %2 != 0)
  		{
  			cout<<"BIMSim Error: materials must be specified in n, k pairs"<<endl;
  			exit(1);
  		}
  
7d43100a   dmayerich   allow appending t...
138
  
3f56f1f9   dmayerich   initial commit
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
  		for(int i=0; i<matVec.size(); i+=2)
  		{
  			rts::material<ptype> newM(vm["lambda"].as<ptype>(), matVec[i], matVec[i+1]);
  			SCOPE->nf.mVector.push_back(newM);
  		}
  	}
  	else
  	{
  		//add the command line material as the default (material 0)
  		rts::material<ptype> newM(vm["lambda"].as<ptype>(), vm["n"].as<ptype>(), vm["k"].as<ptype>());
  		SCOPE->nf.mVector.push_back(newM);
  	}
  
  	//if file names are specified, load the materials
  	if(vm.count("material-file"))
  	{
          vector<string> filenames = vm["material-file"].as< vector<string> >();
          for(int i=0; i<filenames.size(); i++)
          {
              //load the file into a string
              std::ifstream ifs(filenames[i].c_str());
  
              std::string instr((std::istreambuf_iterator<char>(ifs)), std::istreambuf_iterator<char>());
  
              //load the list of spheres from a string
              rts::material<ptype> newM;
              newM.fromStr(instr, "");
              SCOPE->nf.mVector.push_back(newM);
          }
  	}
  
  }
  
  static void loadNearfieldParams(po::variables_map vm)
  {
  	//test to see if we are simulating a plane wave
  	bool planeWave = DEFAULT_PLANEWAVE;
  	if(vm.count("plane-wave"))
  		planeWave = !planeWave;
  	SCOPE->nf.planeWave = planeWave;
  
  	//get the wavelength
      SCOPE->nf.lambda = vm["lambda"].as<ptype>();
  
  	//get the incident field amplitude
  	SCOPE->nf.A = vm["amplitude"].as<ptype>();
  
  	//get the condenser parameters
      SCOPE->nf.condenser[0] = vm["condenser-min"].as<ptype>();
      SCOPE->nf.condenser[1] = vm["condenser-max"].as<ptype>();
  
  
  	//get the focal rtsPoint position
      SCOPE->nf.focus[0] = vm["fx"].as<ptype>();
      SCOPE->nf.focus[1] = vm["fy"].as<ptype>();
      SCOPE->nf.focus[2] = vm["fz"].as<ptype>();
  
  	//get the incident light direction (k-vector)
  	bsVector spherical;
  	spherical[0] = 1.0;
      spherical[1] = vm["theta"].as<ptype>();
      spherical[2] = vm["phi"].as<ptype>();
  	SCOPE->nf.k = spherical.sph2cart();
  
  
      //incident field order
      SCOPE->nf.m = vm["field-order"].as<int>();
  
      //number of Monte-Carlo samples
      SCOPE->nf.nWaves = vm["samples"].as<int>();
  
  
  
  }
  
  static void loadSliceParams(po::variables_map vm)
  {
      //parameters for the sample plane
  
  
  	//set the default values for the slice position and orientation
  	bsPoint pMin(vm["plane-min-x"].as<ptype>(), vm["plane-min-y"].as<ptype>(), vm["plane-min-z"].as<ptype>());
  	bsPoint pMax(vm["plane-max-x"].as<ptype>(), vm["plane-max-y"].as<ptype>(), vm["plane-max-z"].as<ptype>());
  	bsVector normal(vm["plane-norm-x"].as<ptype>(), vm["plane-norm-y"].as<ptype>(), vm["plane-norm-z"].as<ptype>());
  	SCOPE->setPos(pMin, pMax, normal);
  
  	//resolution
  	SCOPE->setRes(vm["resolution"].as<unsigned int>(),
  				  vm["resolution"].as<unsigned int>(),
  				  vm["padding"].as<unsigned int>(),
  				  vm["supersample"].as<unsigned int>());
  
  
  
  
  
  	SCOPE->setNearfield();
  
  
  
  }
  
  static void loadMicroscopeParams(po::variables_map vm)
  {
      //objective
      SCOPE->objective[0] = vm["objective-min"].as<ptype>();
      SCOPE->objective[1] = vm["objective-max"].as<ptype>();
  
  
  
  
  
  }
  
  static void loadOutputParams(po::variables_map vm)
  {
7d43100a   dmayerich   allow appending t...
255
256
257
258
      //append simulation results to previous binary files
      gFileOut.append = DEFAULT_APPEND;
      if(vm.count("append"))
          gFileOut.append = true;
3f56f1f9   dmayerich   initial commit
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
  
  	//image parameters
  	//component of the field to be saved
  	std::string fieldStr;
      fieldStr = vm["output-type"].as<string>();
  
      if(fieldStr == "magnitude")
          gFileOut.field = fileoutStruct::fieldMag;
      else if(fieldStr == "intensity")
          gFileOut.field = fileoutStruct::fieldIntensity;
      else if(fieldStr == "polarization")
          gFileOut.field = fileoutStruct::fieldPolar;
      else if(fieldStr == "imaginary")
          gFileOut.field = fileoutStruct::fieldImag;
      else if(fieldStr == "real")
          gFileOut.field = fileoutStruct::fieldReal;
      else if(fieldStr == "angular-spectrum")
          gFileOut.field = fileoutStruct::fieldAngularSpectrum;
  
  
  	//image file names
  	gFileOut.intFile = vm["intensity"].as<string>();
  	gFileOut.absFile = vm["absorbance"].as<string>();
  	gFileOut.transFile = vm["transmittance"].as<string>();
  	gFileOut.nearFile = vm["near-field"].as<string>();
  	gFileOut.farFile = vm["far-field"].as<string>();
  
  	//colormap
  	std::string cmapStr;
      cmapStr = vm["colormap"].as<string>();
      if(cmapStr == "brewer")
          gFileOut.colormap = rts::colormap::cmBrewer;
      else if(cmapStr == "gray")
          gFileOut.colormap = rts::colormap::cmGrayscale;
      else
          cout<<"color-map value not recognized (using default): "<<cmapStr<<endl;
  }
  
  static void OutputOptions()
  {
  	cout<<SCOPE->nf.toStr();
  
  }
  
  static void SetOptions(po::options_description &desc)
  {
  	desc.add_options()
  		("help,h", "prints this help")
  		("plane-wave,P", "simulates an incident plane wave")
  		("intensity,I", po::value<string>()->default_value(DEFAULT_INTENSITY_FILE), "output measured intensity (filename)")
  		("absorbance,A", po::value<string>()->default_value(DEFAULT_ABSORBANCE_FILE), "output measured absorbance (filename)")
  		("transmittance,T", po::value<string>()->default_value(DEFAULT_TRANSMITTANCE_FILE), "output measured transmittance (filename)")
  		("far-field,F", po::value<string>()->default_value(DEFAULT_FAR_FILE), "output far-field at detector (filename)")
  		("near-field,N", po::value<string>()->default_value(DEFAULT_NEAR_FILE), "output field at focal plane (filename)")
  		("extended-source,X", po::value<string>()->default_value(DEFAULT_EXTENDED_SOURCE), "image of source at focus (filename)")
  		//("sx,x", po::value<ptype>()->default_value(DEFAULT_SPHERE_X), "sphere coordinates")
  		//("sy,y", po::value<ptype>()->default_value(DEFAULT_SPHERE_Y))
  		//("sz,z", po::value<ptype>()->default_value(DEFAULT_SPHERE_Z))
  		("sx,x", po::value<ptype>(), "sphere coordinates")
  		("sy,y", po::value<ptype>())
  		("sz,z", po::value<ptype>())
  		("radius,r", po::value<ptype>()->default_value(DEFAULT_SPHERE_A), "sphere radius")
  		("samples,s", po::value<int>()->default_value(DEFAULT_SAMPLES), "Monte-Carlo samples used to compute Us")
  		("sphere-file,S", po::value< vector<string> >()->multitoken(), "sphere file:\n [x y z radius material]")
  		("amplitude,a", po::value<ptype>()->default_value(DEFAULT_AMPLITUDE), "incident field amplitude")
  		("n,n", po::value<ptype>()->default_value(DEFAULT_N, "1.4"), "sphere phase speed")
  		("k,k", po::value<ptype>()->default_value(DEFAULT_K), "sphere absorption coefficient")
  		("material-file,M", po::value< vector<string> >()->multitoken(), "material file:\n [lambda n k]")
  		("materials", po::value< vector<ptype> >()->multitoken(), "materials specified using n, k pairs:\n ex. --materials n1 k1 n2 k2\n (if used --n and --k are ignored)")
  		("lambda,l", po::value<ptype>()->default_value(DEFAULT_LAMBDA), "incident wavelength")
  		("theta,t", po::value<ptype>()->default_value(DEFAULT_K_THETA), "light direction (polar coords)")
  		("phi,p", po::value<ptype>()->default_value(DEFAULT_K_PHI))
  		("fx", po::value<ptype>()->default_value(DEFAULT_FOCUS_X), "incident focal point")
  		("fy", po::value<ptype>()->default_value(DEFAULT_FOCUS_Y))
  		("fz", po::value<ptype>()->default_value(DEFAULT_FOCUS_Z))
  		("condenser-max,C", po::value<ptype>()->default_value(DEFAULT_CONDENSER_MAX), "condenser numerical aperature")
  		("condenser-min,c", po::value<ptype>()->default_value(DEFAULT_CONDENSER_MIN), "condenser obscuration NA")
  		("objective-max,O", po::value<ptype>()->default_value(DEFAULT_OBJECTIVE_MAX), "objective numerical aperature")
  		("objective-min,o", po::value<ptype>()->default_value(DEFAULT_OBJECTIVE_MIN), "objective obscuration NA")
  		("field-order", po::value<int>()->default_value(DEFAULT_FIELD_ORDER), "order of the incident field")
  		("output-type,f", po::value<string>()->default_value(DEFAULT_FIELD_TYPE), "output field value:\n magnitude, polarization, real, imaginary, angular-spectrum")
  		("resolution,R", po::value<unsigned int>()->default_value(DEFAULT_SLICE_RES), "resolution of the detector")
  		("padding,d", po::value<unsigned int>()->default_value(DEFAULT_PADDING), "FFT padding for the objective bandpass")
  		("supersample", po::value<unsigned int>()->default_value(DEFAULT_SUPERSAMPLE), "super-sampling rate for the detector field")
  		("colormap", po::value<string>()->default_value(DEFAULT_COLORMAP), "colormap: gray, brewer")
  		("append", "append result to an existing file\n (binary files only)")
  		("plane-min-x,u", po::value<ptype>()->default_value(DEFAULT_SLICE_MIN_X), "lower-left corner of the field slice")
  		("plane-min-y,v", po::value<ptype>()->default_value(DEFAULT_SLICE_MIN_Y))
  		("plane-min-z,w", po::value<ptype>()->default_value(DEFAULT_SLICE_MIN_Z))
  		("plane-max-x,U", po::value<ptype>()->default_value(DEFAULT_SLICE_MAX_X), "upper-right corner of the field slice")
  		("plane-max-y,V", po::value<ptype>()->default_value(DEFAULT_SLICE_MAX_Y))
  		("plane-max-z,W", po::value<ptype>()->default_value(DEFAULT_SLICE_MAX_Z))
  		("plane-norm-x", po::value<ptype>()->default_value(DEFAULT_SLICE_NORM_X), "field slice normal")
  		("plane-norm-y", po::value<ptype>()->default_value(DEFAULT_SLICE_NORM_Y))
  		("plane-norm-z", po::value<ptype>()->default_value(DEFAULT_SLICE_NORM_Z));
  }
  
  static void LoadParameters(int argc, char *argv[])
  {
  	//create an option description
  	po::options_description desc("Allowed options");
  
  	//fill it with options
  	SetOptions(desc);
  
      po::variables_map vm;
  	po::store(po::parse_command_line(argc, argv, desc), vm);
  	po::notify(vm);
  
  	//display help and exit
  	if(vm.count("help"))
  	{
  		cout<<desc<<endl;
  		exit(1);
  	}
  
  	//load spheres
  	loadSpheres(vm);
  
  	//load materials
  	loadMaterials(vm);
  
  	loadNearfieldParams(vm);
  
  	loadOutputParams(vm);
  
  	loadMicroscopeParams(vm);
  
  	loadSliceParams(vm);
  
      //if an extended source will be used
      if(vm["extended-source"].as<string>() != "")
      {
          //load the point sources
          string filename = vm["extended-source"].as<string>();
          SCOPE->LoadExtendedSource(filename);
  
      }
  
  
  
  
  
  }