Blame view

qtMainDialog.cpp 3.87 KB
3f36b18e   David Mayerich   Adding planewave ...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
  #include "qtMainDialog.h"
  #include <iostream>
  
  qtMainDialog::qtMainDialog(QWidget *parent, Qt::WindowFlags flags)
      : QMainWindow(parent, flags)
  {
      ui.setupUi(this);
  
      outfile = "ui-out.bmp";
  }
  
  qtMainDialog::~qtMainDialog()
  {
      updating = false;
  }
  
  void qtMainDialog::closeEvent(QCloseEvent *event)
  {
      std::cout<<"Exiting"<<std::endl;
      exit(0);
  
  }
  
  
  /********************************
  Populate the user interface
  ********************************/
  void qtMainDialog::populateUi()
  {
      updating = true;
  
      //get the normal for the image plane
      bsVector n = SCOPE->nf.pos.n();
  
      ui.spinNx->setValue(n[0]);
      ui.spinNy->setValue(n[1]);
      ui.spinNz->setValue(n[2]);
  
      //get the center point for the image plane
      bsPoint c = SCOPE->nf.pos.p(0.5, 0.5);
  
      ui.spinCx->setValue(c[0]);
      ui.spinCy->setValue(c[1]);
      ui.spinCz->setValue(c[2]);
  
      //get the plane size (in microns)
      ptype S = SCOPE->nf.pos.X.len();
      ptype pad_div = SCOPE->padding * 2 + 1;
      S /= pad_div;
  
      ui.spinS->setValue(S);
  
      //get the detector resolution
      ui.spinR->setValue(SCOPE->Ud.R[0]);
  
      updating = false;
  }
  
  /*********************************
  Change the image plane position
  *********************************/
  void qtMainDialog::positionImage()
  {
      if(updating) return;
  
      //get the plane normal
      bsVector n(ui.spinNx->value(), ui.spinNy->value(), ui.spinNz->value());
  
      //get the plane center point
      bsPoint c(ui.spinCx->value(), ui.spinCy->value(), ui.spinCz->value());
  
      //get the plane orientation
      ptype theta = ui.spinTheta->value();
  
      //get the plane size
      ptype S = ui.spinS->value() * (2 * SCOPE->padding + 1);
  
      //create a new image plane
      SCOPE->nf.pos = rts::quad<ptype, 3>(c, n, S, S, theta);
  
  
  }
  
  /*********************************
  Render an image
  *********************************/
  void qtMainDialog::renderImage()
  {
      //run the near-field simulation
      SCOPE->SimulateScattering();
  
  
      //determine the colormap type
      rts::colormapType cmap = rts::cmGrayscale;
  
      if( ui.cmbColormap->currentText() == tr("brewer") )
          cmap = rts::cmBrewer;
      else
          cmap = rts::cmGrayscale;
  
      //near field rendering
      if( ui.radDisplayNearfield->isChecked() )
      {
          scalarslice S;
          bool positive_vals = false;
  
          if( ui.cmbDisplayNearfield->currentText() == tr("magnitude") )
          {
              std::cout<<"magnitude"<<std::endl;
              S = SCOPE->nf.U.Mag();
              positive_vals = true;
              //S.toImage(outfile.toStdString(), positive_vals, cmap);
          }
          else if( ui.cmbDisplayNearfield->currentText() == tr("real") )
              S = SCOPE->nf.U.Real();
          else if( ui.cmbDisplayNearfield->currentText() == tr("imaginary") )
              S = SCOPE->nf.U.Imag();
  
          S.toImage(outfile.toStdString(), positive_vals, cmap);
      }
  
      //run the far-field simulation
      SCOPE->SimulateImaging();
  
      //far field rendering
      if( ui.radDisplayFarfield->isChecked() )
      {
          scalarslice S;
          bool positive_vals = false;
  
          if( ui.cmbDisplayFarfield->currentText() == tr("magnitude") )
          {
              S = SCOPE->Ud.Mag();
              positive_vals = true;
          }
          else if( ui.cmbDisplayFarfield->currentText() == tr("real") )
              S = SCOPE->Ud.Real();
          else if( ui.cmbDisplayFarfield->currentText() == tr("imaginary") )
              S = SCOPE->Ud.Imag();
  
          S.toImage(outfile.toStdString(), positive_vals, cmap);
      }
  
      //detector rendering
      if( ui.radDisplayDetector->isChecked() )
      {
          scalarslice I;
          bool positive_vals = true;
  
          if( ui.cmbDisplayDetector->currentText() == tr("intensity") )
              I = SCOPE->getIntensity();
  
          else if( ui.cmbDisplayDetector->currentText() == tr("absorbance") )
              I = SCOPE->getAbsorbance();
  
          I.toImage(outfile.toStdString(), positive_vals, cmap);
      }
  
  }