Blame view

sphere.cu 4.14 KB
51b6469a   dmayerich   added look-up tables
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
  #include "sphere.h"
  #include "rts/math/legendre.h"
  
  __global__ void gpuScalarUsp(bsComplex* Usp, bsComplex* h, bsComplex* B, int Nl, int rR, int thetaR)
  {
      //get the current coordinate in the plane slice

  	int ir = blockIdx.x * blockDim.x + threadIdx.x;

  	int itheta = blockIdx.y * blockDim.y + threadIdx.y;
  
  	//make sure that the thread indices are in-bounds

  	if(itheta >= thetaR || ir >= rR) return;
  
  	int i = itheta * rR + ir;
  
  	//ptype dr = (rmax - a) / (rR - 1);
  	ptype dtheta = (PI) / (thetaR - 1);
  
  	//comptue the current angle and distance
  	//ptype r = dr * ir + a;
  	ptype theta = dtheta * itheta;
  	ptype cos_theta = cos(theta);
  
  	//initialize the Legendre polynomial
  	ptype P[2];
  	rts::init_legendre<ptype>(cos_theta, P[0], P[1]);
  
  	//initialize the result
  	bsComplex Us((ptype)0, (ptype)0);
  
      //for each order l
      for(int l=0; l <= Nl; l++)
      {
          if(l == 0)
          {
              Us += B[l] * h[ir * (Nl+1) + l] * P[0];
              //Us += P[0];
          }
          else
          {
              if(l > 1)
              {
                  rts::shift_legendre<ptype>(l, cos_theta, P[0], P[1]);
              }
              Us += B[l] * h[ir * (Nl+1) + l] * P[1];
              //Us += P[1];
          }
  
  
      }
  	Usp[i] = Us;
  	//Usp[i] = h[ir * (Nl+1)];
  	//Usp[i] = ir;
  
  }

  

  __global__ void gpuScalarUip(bsComplex* Uip, bsComplex* j, bsComplex* A, int Nl, int aR, int thetaR)
  {
      //get the current coordinate in the plane slice

  	int ia = blockIdx.x * blockDim.x + threadIdx.x;

  	int itheta = blockIdx.y * blockDim.y + threadIdx.y;
  
  	//make sure that the thread indices are in-bounds

  	if(itheta >= thetaR || ia >= aR) return;
  
  	int i = itheta * aR + ia;
  
  	ptype dtheta = (PI) / (thetaR - 1);
  
  	//comptue the current angle and distance
  	ptype theta = dtheta * itheta;
  	ptype cos_theta = cos(theta);
  
  	//initialize the Legendre polynomial
  	ptype P[2];
  	rts::init_legendre<ptype>(cos_theta, P[0], P[1]);
  
  	//initialize the result
  	bsComplex Ui((ptype)0, (ptype)0);
  
      //for each order l
      for(int l=0; l <= Nl; l++)
      {
          if(l == 0)
          {
              Ui += A[l] * j[ia * (Nl+1) + l] * P[0];
          }
          else
          {
              if(l > 1)
              {
                  rts::shift_legendre<ptype>(l, cos_theta, P[0], P[1]);
              }
              Ui += A[l] * j[ia * (Nl+1) + l] * P[1];
          }
  
  
      }
  	Uip[i] = Ui;
  }

  

  void sphere::scalarUsp(bsComplex* h, int rR, int thetaR)
  {
  	//copy the hankel function to the GPU
      bsComplex* gpu_h;
      HANDLE_ERROR( cudaMalloc( (void**)&gpu_h, sizeof(bsComplex) * (Nl + 1) * rR ) );
      HANDLE_ERROR( cudaMemcpy( gpu_h, h, sizeof(bsComplex) * (Nl + 1) * rR, cudaMemcpyHostToDevice ) );
  
      //allocate memory for the scattering coefficients

      bsComplex* gpuB;

      HANDLE_ERROR(cudaMalloc((void**) &gpuB, (Nl+1) * sizeof(bsComplex)));
      //copy the scattering coefficients to the GPU

      HANDLE_ERROR(cudaMemcpy(gpuB, &B[0], (Nl+1) * sizeof(bsComplex), cudaMemcpyHostToDevice));
  
      //create one thread for each pixel of the field slice

  	dim3 dimBlock(SQRT_BLOCK, SQRT_BLOCK);

  	dim3 dimGrid((Usp.R[0] + SQRT_BLOCK -1)/SQRT_BLOCK, (Usp.R[1] + SQRT_BLOCK - 1)/SQRT_BLOCK);
  
  	gpuScalarUsp<<<dimGrid, dimBlock>>>(Usp.x_hat, gpu_h, gpuB, Nl, rR, thetaR);
  
  	//free memory
  	cudaFree(gpu_h);
  	cudaFree(gpuB);
  
  }
  
  void sphere::scalarUip(bsComplex* j, int rR, int thetaR)
  {
  	//copy the bessel and hankel LUTs to the GPU
      bsComplex* gpu_j;
      HANDLE_ERROR( cudaMalloc( (void**)&gpu_j, sizeof(bsComplex) * (Nl + 1) * rR ) );
      HANDLE_ERROR( cudaMemcpy( gpu_j, j, sizeof(bsComplex) * (Nl + 1) * rR, cudaMemcpyHostToDevice ) );
  
      //allocate memory for the scattering coefficients

      bsComplex* gpuA;

      HANDLE_ERROR(cudaMalloc((void**) &gpuA, (Nl+1) * sizeof(bsComplex)));
      //copy the scattering coefficients to the GPU

      HANDLE_ERROR(cudaMemcpy(gpuA, &A[0], (Nl+1) * sizeof(bsComplex), cudaMemcpyHostToDevice));
  
      //create one thread for each pixel of the field slice

  	dim3 dimBlock(SQRT_BLOCK, SQRT_BLOCK);

  	dim3 dimGrid((Uip.R[0] + SQRT_BLOCK -1)/SQRT_BLOCK, (Uip.R[1] + SQRT_BLOCK - 1)/SQRT_BLOCK);
  
  	gpuScalarUip<<<dimGrid, dimBlock>>>(Uip.x_hat, gpu_j, gpuA, Nl, rR, thetaR);
  
  	//free memory
  	cudaFree(gpu_j);
  	cudaFree(gpuA);
  
  }