Representing numbers using computers

1) Convert the following to base-10. Decimal values can be expressed as rational numbers. 10011101
11010010
10100011 . 00111111
11100001 . 10110001
$.10011 \times\left(2^{3}\right)_{10}$
2) Assume you are using a base-10 floating point system with a 3 digit normalized mantissa.
a. What is the smallest positive value that can be expressed with an exponent of 3_{10} ?
b. What is the spacing $\left(\epsilon_{10}\right)$ between values in this decade?
c. How does this compare to the spacing $\left(\epsilon_{2}\right)$ of a base- 2 floating point system with a 3 (binary) digit normalized mantissa and an exponent of 11_{2} ?
3) By default, Matlab uses the IEEE 64-bit floating point standard with a 52-bit mantissa. Compute the result of $y=\sqrt{x+4}-2$, where $x=.721273 \times 10^{-3}$ using Matlab. Keep 6 significant figures.
a. Simulate a lower-precision computer: calculate the same function step-by-step keeping 3 significant digits at each step. You can use a calculator for each step - just round to 3 significant figures. Where does the catastrophic cancellation occur?
b. What is the relative error?
c. Reformulate the function to avoid catastrophic cancellation and recalculate using the same (6-digit) precision. What is the relative error?
d. Use the Loss of Precision Theorem to estimate how many significant binary bits are lost in this calculation.
