- 1) **Demonstrate Horner's algorithm.** Horner's algorithm, also known as synthetic division, can be used to:
 - a. evaluate a polynomial for x = c
 - b. factor the polynomial into the form f(x) = (x c)q(x) + R
 - c. determine the value of f'(c)

Demonstrate synthetic division on the following polynomial, giving the result at x = 2 and the value of f'(2): $x^5 - 3x^3 + 2x^2 + x - 7$. Show how you get the value of the derivative f'(2).

2) Demonstrate the bisection method.

- a. Compute the first four steps of the bisection method for the polynomial $x^3 3x^2 + 2$ on the interval [-2, 0]. Create a table with entries for a, b, f(a), f(b), c, and f(c).
- b. Compute the actual root location x = r (using Wolfram Alpha, a calculator, etc.).
- c. Calculate the absolute error for all four steps (add them to your table).

3) Demonstrate the method of false position.

- a. Clearly plot the function $x^3 3x^2 + 2$ on the interval [-1, 0.7].
- **b. Graphically** demonstrate the first three steps of the method of false position to find the root in this interval. **You don't have to do the math.** Just draw clearly.

4) Demonstrate the modified false position method.

a. $y = x^2 - 2$ where $0 \le x \le 2$ (Here's where you'll do the math)