Numerical integration

1) Compute the $4^{\text {th }}$ order Runge-Kutta values (K_{1}, K_{2}, K_{3}, and K_{4}) used to solve the exponential equation:

$$
y^{\prime}=y
$$

for one step using the initial condition $\left(x_{0}, y_{0}\right)=(4.5,1)$ and $\Delta x=2$. Compare this to one step of Heun's method and calculate the relative error for both.
2) Compute the minimum degree Lagrange interpolating polynomial for the following set of nodes:

\mathbf{x}	$\frac{1}{3}$	$\frac{1}{4}$	1
$\mathbf{f (x)}$	2	-1	7

3) Compute the following integral using Simpson's Rule:

$$
\int_{0}^{1}\left(1+x^{2}\right)^{-1} d x
$$

using partition points at $x=0,0.5$, and 1 . What is the relative error (you can use Wolfram to integrate)?

