ECE 3340 - Programming Assignment 2

Monte-Carlo Integration

This assignment is designed to teach you how to generate and use random numbers. You will implement a Monte-Carlo integrator that can compute the definite integral of spherical functions.

The problem

Your application will take a series of command-line arguments as floating point values:
$\left[s_{0}, s_{1}, \ldots, s_{n-1}, s_{n}, \alpha, N\right]$
The values s_{0} through s_{n} are coefficients of a degree n spherical harmonic function $f(\theta, \phi)$. Spherical harmonics are a set of basis functions that can be used to build functions in spherical coordinates. I will provide a C function that will return the value of $\boldsymbol{f}(\boldsymbol{\theta}, \boldsymbol{\phi})$ given a set of coefficients and a sample point $(\boldsymbol{\theta}, \boldsymbol{\phi})$.

Your job is to calculate the integral:

Figure 1: Demonstration of a spherical function
(Pickwick, Wikimedia Commons)

$$
\int_{0}^{\alpha} \int_{0}^{2 \pi} f(\theta, \phi) \sin \phi d \theta d \phi
$$

where α is a solid angle and N is the number of Monte-Carlo samples.
This is extremely difficult to compute analytically, however these types of integrals are used routinely when simulating electromagnetic field propagation. This type of analysis is particularly useful when estimating light scattered from particles or spheres - a topic known as Mie scattering.

Your implementation is required to have the following functions (implemented separately):

- a 32-bit uniform pseudo-random number generator
- Use a linear congruential generator with a period of at least 2^{32}
- Speed is important, so minimize the number of arithmetic operations used in the LCG
- 2D Monte-Carlo integrator - draw from a set of random 2D samples of $f(\theta, \phi)$

Output the following things in this order:

1) The LCG parameters that you used, including
a. modulus m
b. multiplier a
c. increment c
d. your seed value x_{0}
2) The value of $f(\theta, \phi)$ at $(0,0)$ and $(0,2 \pi)$
3) The integral evaluated using N samples

Turning in your code

Your code must be written in C or C++ using a single file. Upload your code to Blackboard. You'll want to run large tests using VS "Release" mode. This implements optimization and removes debug symbols.

Figure 2: The set of spherical harmonic basis functions up to degree-5 (by Franz Zotter)

Examples

I have written code that you can use to visualize your functions given a set of spherical harmonic coefficients. This code is available on the course website: http://stim.ee.uh.edu/education/ece-3340-numerical-methods/

harmonics: $\quad 1,0,1,0.5,2,0,3$
$\alpha=0.5$ radians
integral: 1.769

harmonics: $\quad 0.84,0.39,0.78$,
0.8, 0.91
$\alpha=1.5$ radians
integral:
2.5756

Rubric

Name \qquad
input format
output format (1 or 2 decimal values)
correct interface with SH code
LCG
parameters optimize period ___ / 10
correct implementation
/ 10
minimum number of operations ___ / 15
input and code commented
2D Monte-Carlo integrator/ 102D Monte-Carlo integratorsample distribution computed correctly
\qquad/ 10integrand computed correctly/ 10
samples scaled correctly / 10input and code commented
\square/ 10
Total/ 100

