Blame view

EstimateMaterial.cpp 3.16 KB
8ffb8373   dmayerich   Improved material...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
  #include "globals.h"
  #include <stdlib.h>
  #define PI 3.14159
  
  double CalculateError(double* E)
  {
      //Calculate the error between the Reference Spectrum and the Simulated Spectrum
      double sumE = 0.0;
      int nVals = RefSpectrum[currentSpec].size();
      double nu;
      for(int i=0; i<nVals; i++)
      {
          nu = RefSpectrum[currentSpec][i].nu;
          E[i] = RefSpectrum[currentSpec][i].A + nu * refSlope - SimSpectrum[i].A;
          sumE += E[i]*E[i];
      }
  
      return sumE/nVals;
  }
  
  void EstimateK(double* E)
  {
      int nVals = RefSpectrum[currentSpec].size();
      double nuStart = RefSpectrum[currentSpec].front().nu;
      double nuEnd = RefSpectrum[currentSpec].back().nu;
  
      double r = radius/10000.0;
      double nu;
      double dNu = (nuEnd - nuStart)/(nVals-1);
      double eScale;
      for(int i=0; i<nVals; i++)
      {
          nu = nuStart + i*2;
  
          eScale = 1/(8*PI*r*nu);
          EtaK[i].A = EtaK[i].A + eScale * E[i];
          if(EtaK[i].A < 0.0) EtaK[i].A = 0.0;
      }
  }
  
  void EstimateMaterial()
  {
      /*This function estimates the material properties of a sphere based on the
      input spectrum RefSpectrum and the optical properties of the system.
      1) The material properties are stored in EtaK and EtaN
      2) The best fit is stored in SimSpectrum*/
  
      //initialize the material index of refraction
      EtaN.clear();
      EtaK.clear();
  
      //insert the default material properties
      SpecPair temp;
      for(int s=0; s<(int)RefSpectrum[currentSpec].size(); s++)
      {
          //the real part of the IR is the user-specified baseline IR
          temp.nu = RefSpectrum[currentSpec][s].nu;
          temp.A = baseIR;
          EtaN.push_back(temp);
          //the imaginary part of the IR is zero absorbance
          temp.A = 0.0f;
          EtaK.push_back(temp);
      }
  
  
      //allocate space to store the list of error values
      double* E = (double*)malloc(sizeof(double) * RefSpectrum[currentSpec].size());
      //copy the absorbance values into a linear array
      double* k = (double*)malloc(sizeof(double) * EtaK.size());
      double* n = (double*)malloc(sizeof(double) * EtaN.size());
  
      //iterate to solve for both n and k
      double sumE = 99999.9;
      int j=0;
      //clear the console
      system("cls");
      while(sumE > minMSE && j < maxFitIter)
      {
          //simulate a spectrum based on the current IR
          SimulateSpectrum();
  
          //calculate the error term
          sumE = CalculateError(E);
  
          //estimate the new absorbance
          EstimateK(E);
  
          //use Kramers-Kronig to compute n
  
          for(unsigned int i=0; i<EtaK.size(); i++)
              k[i] = EtaK[i].A;
          cudaKramersKronig(n, k, EtaK.size(), EtaK.front().nu, EtaK.back().nu, baseIR);
  
          //copy the real part of the index of refraction into the vector
          EtaN.clear();
          for(int i=0; i<(int)EtaK.size(); i++)
          {
              temp.nu =  EtaK[i].nu;
              temp.A = n[i];
              EtaN.push_back(temp);
          }
  
          cout<<"    E = "<<sumE<<endl;
          j++;
          //SaveSpectrum(n, nVals, "simNj.txt");
          //SaveSpectrum(k, nVals, "simKj.txt");
          //SaveSpectrum(simSpec, nVals, "simSpec.txt");
          //exit(1);
  
      }
  
      free(E);
      free(k);
      free(n);
  
  
  
  
  }