Blame view

cudaKK.h 5.48 KB
8ffb8373   dmayerich   Improved material...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
  #include <iostream>
  using namespace std;
  
  __device__ double g(double v0, double v1)
  {
      return (v0 + v1)*log(abs(v0+v1)) + (v0-v1)*log(abs(v0-v1));
  }
  
  __device__ double hfin(double v0, double v1, double dv)
  {
      double e = 0.001;
      double t0 = g(v0+e, v1-dv)/dv;
      double t1 = 2*g(v0+e, v1)/dv;
      double t2 = g(v0+e, v1+dv)/dv;
  
      return -1.0/PI * (t0 - t1 + t2);
  }
  
  __global__ void devKramersKronig(double* gpuN, double* gpuK, int numVals, double nuStart, double nuEnd, double nOffset)
  {
      int i = blockIdx.x * blockDim.x + threadIdx.x;
  
      if(i >= numVals) return;
      double nuDelta = (nuEnd - nuStart)/(numVals - 1);
  
      double nu = nuStart + i*nuDelta;
      double n = 0.0;
      double jNu;
      double jK;
      for(int j=1; j<numVals-1; j++)
      {
          jNu = nuStart + j*nuDelta;
          jK = gpuK[j];
          n += hfin(nu, jNu, nuDelta) * jK;
      }
      gpuN[i] = n + nOffset;
  
  
  }
  
  void cudaKramersKronig(double* cpuN, double* cpuK, int nVals, double nuStart, double nuEnd, double nOffset)
  {
      cout<<"Computing Kramers Kronig."<<endl;
      //This function computes n given k
  
      double* gpuK;
      HANDLE_ERROR(cudaMalloc(&gpuK, sizeof(double)*nVals));
      HANDLE_ERROR(cudaMemcpy(gpuK, cpuK, sizeof(double)*nVals, cudaMemcpyHostToDevice));
      double* gpuN;
      HANDLE_ERROR(cudaMalloc(&gpuN, sizeof(double)*nVals));
  
      dim3 block(BLOCK_SIZE*BLOCK_SIZE);
      dim3 grid(nVals/block.x + 1);
      devKramersKronig<<<grid, block>>>(gpuN, gpuK, nVals, nuStart, nuEnd, nOffset);
  
      HANDLE_ERROR(cudaMemcpy(cpuN, gpuN, sizeof(double)*nVals, cudaMemcpyDeviceToHost));
  
      //free resources
      HANDLE_ERROR(cudaFree(gpuK));
      HANDLE_ERROR(cudaFree(gpuN));
  }
  
  __global__ void devComputeSpectrum(double* I, double2* B, double* alpha, int Nl,
                                     int nSamples, int nLambda, double oThetaI, double oThetaO, double cThetaI, double cThetaO)
  {
      int i = blockIdx.x * blockDim.x + threadIdx.x;
      if(i >= nLambda)
          return;
  
      //compute the delta-theta value
      double dTheta = (oThetaO - oThetaI)/nSamples;
  
      //allocate space for the Legendre polynomials
      double Ptheta[2];
  
      double cosTheta, theta;
      cuDoubleComplex Us;
      cuDoubleComplex UsSample;
      cuDoubleComplex U;
      //cuComplex Ui;
      //Ui.x = 2*PI;
      //Ui.y = 0.0;
      cuDoubleComplex numer;
      numer.x = 0.0;
      cuDoubleComplex exp_numer;
      cuDoubleComplex iL;
      cuDoubleComplex imag;
      imag.x = 0.0;
      imag.y = 1.0;
      double realFac;
      cuDoubleComplex complexFac;
      double PlTheta;
      double Isum = 0.0;
      //float maxVal = 0;
      //float val;
      for(int iTheta = 0; iTheta < nSamples; iTheta++)
      {
          //calculate theta
          theta = iTheta * dTheta + oThetaI;
          cosTheta = cos(theta);
  
          //initialize the theta Legendre polynomial
          Ptheta[0] = 1.0;
          Ptheta[1] = cosTheta;
  
          //initialize the scattered field
          Us.x = Us.y = 0.0;
          iL.x = 1.0;
          iL.y = 0.0;
          for(int l = 0; l<Nl; l++)
          {
              //compute the theta legendre polynomial
              if(l == 0)
                  PlTheta = Ptheta[0];
              else if(l == 1)
                  PlTheta = Ptheta[1];
              else
              {
                  PlTheta = ((2*l - 1)*cosTheta*Ptheta[1] - (l - 1)*Ptheta[0])/l;
                  Ptheta[0] = Ptheta[1];
                  Ptheta[1] = PlTheta;
              }
  
              //compute the real components of the scattered field
              realFac = alpha[l] * PlTheta;
  
              //compute the complex components of the scattered field
              numer.x = 0.0;
              numer.y = -(l*PI)/2.0;
              exp_numer = cExp(numer);
  
              complexFac = cMult(B[Nl * i + l], exp_numer);
              complexFac = cMult(complexFac, iL);
  
  
              //combine the real and complex components
              UsSample = cMult(complexFac, realFac);
              Us = cAdd(Us, UsSample);
  
              //increment the imaginary exponent i^l
              iL = cMult(iL, imag);
  
  
          }
  
          //sum the scattered and incident fields
          if(theta >= cThetaI && theta <= cThetaO)
              U = cAdd(Us, 2*PI);
          else
              U = Us;
          Isum += (U.x*U.x + U.y*U.y) * sin(theta) * 2 * PI * dTheta;
      }
  
      I[i] = Isum;
  }
  
  void cudaComputeSpectrum(double* cpuI, double* cpuB, double* cpuAlpha,
                           int Nl, int nLambda, double oThetaI, double oThetaO, double cThetaI, double cThetaO, int nSamples)
  {
      //copy everything to the GPU
      double2* gpuB;
      HANDLE_ERROR(cudaMalloc(&gpuB, sizeof(double2) * nLambda * Nl));
      HANDLE_ERROR(cudaMemcpy(gpuB, cpuB, sizeof(double2) * nLambda * Nl, cudaMemcpyHostToDevice));
  
  
      double* gpuAlpha;
      HANDLE_ERROR(cudaMalloc(&gpuAlpha, sizeof(double) * Nl));
      HANDLE_ERROR(cudaMemcpy(gpuAlpha, cpuAlpha, sizeof(double) * Nl, cudaMemcpyHostToDevice));
  
      double* gpuI;
      HANDLE_ERROR(cudaMalloc(&gpuI, sizeof(double) * nLambda));
      HANDLE_ERROR(cudaMemset(gpuI, 0, sizeof(double) * nLambda));
  
  
      //call the kernel to compute the spectrum
      dim3 block(BLOCK_SIZE*BLOCK_SIZE);
      dim3 grid(nLambda/block.x + 1);
  
      //devComputeSpectrum
      devComputeSpectrum<<<grid, block>>>(gpuI, (double2*)gpuB, gpuAlpha, Nl,
                                          nSamples, nLambda, oThetaI, oThetaO, cThetaI, cThetaO);
  
      HANDLE_ERROR(cudaMemcpy(cpuI, gpuI, sizeof(double) * nLambda, cudaMemcpyDeviceToHost));
  
      //printf("Final array value: %f\n", cpuI[nLambda-1]);
  
      HANDLE_ERROR(cudaFree(gpuB));
      HANDLE_ERROR(cudaFree(gpuAlpha));
      HANDLE_ERROR(cudaFree(gpuI));
  
  
  
  
39a7d6e9   dmayerich   Added dialog supp...
194
  }