mstm-generic-main-v2.2.f90
18.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
!
! generic mstm calling program.
!
! this code is intended for user modification. It does not employ input files, command line arguments, etc.
!
! all parameters must be hardwired. read the code for the basic ideas.
!
program main
use mpidefs
use mpidata
use intrinsics
use spheredata
use numconstants
use specialfuncs
use miecoefdata
use translation
use solver
use scatprops
use nearfield
implicit none
integer :: nsphere,neqns,nodrmax,nodrt,i,k,niter,istat,numtheta, &
nblkt,nodrg,m,n,p,l,q,mn,kl,m1,n1,l1,k1,q1,w,klm,mnm,ikm, &
fixedorrandom,numargs,calctmatrix,maxiter,nodrta(1),calcnf, &
calcamn,ip1,ip2,ma,na,nsend,nfplane,nfoutunit,nfoutdata, &
maxmbperproc,trackiterations,nonactive,normalizesm, &
storetranmat,calcsm,niterstep,fftranpresent
integer, allocatable :: nodr(:),ntran(:),sphereblk(:),sphereoff(:)
real (8) :: alphadeg,betadeg,alpha,beta,epsmie,epstran,epssoln, &
qexttot,qabstot,xv,scalefac,qscatot,asymparm, &
rireal,riimag,phideg,theta1d,theta2d,thetad,costheta,phi, &
sm(4,4),time1,time2,fc1,fc2,fc3,fc4,epstcon,qabslm,absrat, &
cbeam,gbfocus(3),maxerr,nfplanepos,nfplanevert(2,2), &
deltax,gammadeg,epspw,gamma,qexttotpar,qexttotper, &
qabstotpar,qabstotper,qscatotpar,qscatotper,cphi,sphi,s11, &
nfdistance
real(8), allocatable :: xsp(:), rpos(:,:),qext(:,:),qabs(:,:), &
qsca(:,:),smc(:,:,:),smt(:,:,:)
complex(8) :: sa(4),chiralfactor
complex(8), allocatable :: amnp(:,:),amnp0(:,:,:,:),ri(:,:), &
gmn(:),amnp1(:,:,:),amnp2(:,:,:)
character*30 :: inputfile,spherefile,parmfile,outfile,tmatrixfile,&
amnfile,nfoutfile,runfile
complex(8), allocatable :: pmnp0(:,:,:,:)
integer :: ierr,rank,printinputdata,runprintunit,numprocs
!
! this main program was set up to perform a loop of T matrix calculations,
! all involving scaled sphere positions from the file 'ran200fvp5.pos'
!
!
! extra variable declarations go here
!
integer :: case,numcases
real(8) :: xsp0,rpos0(3,200),rotang,volfrac,volfrac0,volfrac1,posscale
complex(8) :: ri0
!
! define the sphere properties and run parameters
!
nsphere=200
xsp0=3.d0
ri0=(1.31d0,0.0d0)
chiralfactor=0.d0
volfrac0=0.1d0
volfrac1=0.5d0
allocate(xsp(nsphere),rpos(3,nsphere),nodr(nsphere),ntran(nsphere), &
ri(2,nsphere),sphereblk(nsphere),sphereoff(nsphere+1))
spherefile='ran200fvp5.pos'
open(1,file=spherefile)
do i=1,nsphere
read(1,*) xsp(i),rpos0(:,i)
enddo
close(1)
outfile='test.dat'
runfile=' '
xsp=xsp0
xv=xsp0*dble(nsphere)**.3333d0
ri=ri0
epsmie=1.d-4
epstran=1.d-6
epssoln=1.d-10
niter=2000
fixedorrandom=1
theta1d=0.
theta2d=180.
numtheta=181
maxmbperproc=1500.
storetranmat=1
nfdistance=10000.
normalizesm=0
calcamn=1
amnfile='amn-temp.dat'
phideg=0.d0
alphadeg=0.d0
betadeg=0.d0
trackiterations=0
calcnf=0
cbeam=0.d0
nfplane=1
nfplanepos=0.d0
deltax=0.2d0
nfplanevert=reshape((/-40.d0,-40.d0,40.d0,40.d0/),(/2,2/))
gammadeg=0.d0
nfoutfile='nftest2b.dat'
nfoutunit=2
nfoutdata=1
epspw=0.01d0
calctmatrix=1
tmatrixfile='tmatrix-temp.dat'
epstcon=1.d-6
!
! this erases the output file: the code runs a loop where
! output values are appended to the file
!
open(1,file=outfile)
close(1,status='delete')
if(runfile.ne.' ') then
runprintunit=4
open(runprintunit,file=runfile)
else
runprintunit=6
endif
call setrunparameters(run_print_unit=runprintunit)
!
! initialize mpi
!
call ms_mpi(mpi_command='init')
!
! this is the main variable loop. In this example the volume fraction of the spheres
! is changed with each case.
!
numcases=20
do case=1,numcases-1
volfrac=volfrac0+(volfrac1-volfrac0)*dble(case-1)/dble(numcases-1)
posscale=(volfrac1/volfrac)**.33333d0
rpos=rpos0*posscale*xsp0
write(runprintunit,'('' case, fv:'',i5,f8.2)') case, volfrac
!
! the rest of the code is basically the same as the mstm
! main program, without the getrunparameter calls.
!
if(numtheta.gt.0) then
if(allocated(smt)) deallocate(smt)
allocate(smt(4,4,numtheta))
endif
!
! determine if optical activity is present
!
nonactive=1
do i=1,nsphere
if(cdabs(ri(1,i)-ri(2,i)).gt.1.d-10) then
nonactive=0
exit
endif
enddo
!
! calculation of sphere mie coefficients, order limits
!
call miecoefcalc(nsphere,xsp,ri,epsmie)
call getmiedata(sphere_order=nodr,max_order=nodrmax,number_equations=neqns, &
sphere_block=sphereblk,sphere_block_offset=sphereoff)
!
! determine the size of the parallel run and set it up
!
call ms_mpi(mpi_command='size',mpi_size=numprocs)
call ms_mpi(mpi_command='rank',mpi_rank=rank)
call ms_mpi(mpi_command='barrier')
call mpisetup(nsphere,nodr,rpos,fixedorrandom,maxmbperproc,storetranmat, &
nfdistance,fftranpresent,runprintunit)
call ms_mpi(mpi_command='barrier')
!
! this was an option for moving the GB focal point
!
gbfocus=(/0.d0,dble(case-1),0.d0/)*.5d0
gbfocus=0.d0
!
! translation matrix calculation
!
call mpirottranmtrxsetup(nsphere,nodr,rpos,(1.d0,0.d0),storetranmat, &
nfdistance,runprintunit)
call ms_mpi(mpi_command='barrier')
!
! determine orders required to expand scattered fields about target origin
!
call tranorders(nsphere,nodr,rpos,epstran,ntran,nodrt)
!
! report the size of the run
!
if(rank.eq.0) then
write(runprintunit,'('' maximum sphere order:'',i5)') nodrmax
write(runprintunit,'('' estimated T matrix order:'',i5)') nodrt
write(runprintunit,'('' number of equations:'',i9)') neqns
call flush(runprintunit)
endif
!
! the main calculations
!
if(fixedorrandom.eq.1) then
!
! random orientation option
!
if(allocated(qext)) deallocate(qext,qabs,qsca)
allocate(qext(nsphere,1), qabs(nsphere,1), qsca(nsphere,1))
if(calctmatrix.ge.1) then
!
! this option calculates the T matrix either from the beginning or where left off
!
if(rank.eq.0) time1=mytime()
call tmatrixsoln(neqns,nsphere,nodr,nodrt,xsp,rpos,epssoln,epstcon,niter,&
calctmatrix,tmatrixfile,fftranpresent,niterstep,qext,qabs,qsca,istat)
if(rank.eq.0) then
time2=mytime()-time1
call timewrite(runprintunit,' execution time:',time2)
endif
call rottranmtrxclear()
else
!
! and this has the T matrix already calculated and stored in the file.
!
! read the order of the T matrix and broadcast to the processors.
!
if(rank.eq.0) then
open(3,file=tmatrixfile)
read(3,*) nodrt
close(3)
write(runprintunit,'('' t matrix order:'',i5)') nodrt
call flush(runprintunit)
endif
nodrta(1)=nodrt
call ms_mpi(mpi_command='bcast',mpi_send_buf_i=nodrta,mpi_number=1,mpi_rank=0)
nodrt=nodrta(1)
call ms_mpi(mpi_command='barrier')
endif
!
! the T matrix is available; calculate the random orientation scattering matrix
!
nblkt=nodrt*(nodrt+2)
nodrg=nodrt*2
if(allocated(smc)) deallocate(smc)
allocate(smc(4,4,0:nodrg))
call ranorientscatmatrix(xv,nsphere,nodrt,nodrg,cbeam,tmatrixfile,smc,qext, &
qabs,qsca)
if(rank.eq.0) then
qexttot=sum(qext(:,1)*xsp*xsp)/xv/xv
qabstot=sum(qabs(:,1)*xsp*xsp)/xv/xv
qscatot=qexttot-qabstot
asymparm=dble(smc(1,1,1)/smc(1,1,0))/3.d0
call ranorienscatmatrixcalc(numtheta,theta1d,theta2d,1,smc,nodrg,smt)
endif
else
!
! fixed orientation option
!
alpha=alphadeg*pi/180.d0
beta=betadeg*pi/180.d0
phi=phideg*pi/180.d0
if(allocated(amnp)) deallocate(amnp)
allocate(amnp(neqns,2))
if(allocated(qext)) deallocate(qext,qabs,qsca)
allocate(qext(nsphere,3), qabs(nsphere,3), qsca(nsphere,3))
if(calcamn.eq.1) then
!
! this option calculates the scattering coefficients
!
if(rank.eq.0) time1=mytime()
call fixedorsoln(neqns,nsphere,nodr,alpha,beta,cbeam,xsp,rpos,epssoln,&
epstran,niter,amnp,qext,qabs,qsca,maxerr,maxiter,trackiterations, &
fftranpresent,niterstep,istat)
!
! write the scattering coefficients to the file
!
if(rank.eq.0) then
time2=mytime()-time1
write(runprintunit,'('' max iterations, soln error:'',i6,e13.5)') &
maxiter,maxerr
call timewrite(runprintunit,' execution time:',time2)
open(3,file=amnfile)
do i=1,nsphere
write(3,'(6e13.5)') qext(i,:),qabs(i,:),qsca(i,:)
allocate(amnp1(0:nodr(i)+1,nodr(i),2),amnp2(0:nodr(i)+1,nodr(i),2))
ip1=sphereoff(i)+1
ip2=sphereoff(i)+sphereblk(i)
amnp1=reshape(amnp(ip1:ip2,1),(/nodr(i)+2,nodr(i),2/))
amnp2=reshape(amnp(ip1:ip2,2),(/nodr(i)+2,nodr(i),2/))
do n=1,nodr(i)
do m=-n,n
if(m.le.-1) then
ma=n+1
na=-m
else
ma=m
na=n
endif
write(3,'(4e17.9)') amnp1(ma,na,1),amnp2(ma,na,1)
write(3,'(4e17.9)') amnp1(ma,na,2),amnp2(ma,na,2)
enddo
enddo
deallocate(amnp1,amnp2)
enddo
close(3)
endif
else
!
! this option reads the scattering coefficients from the file
!
if(rank.eq.0) then
open(3,file=amnfile)
do i=1,nsphere
read(3,'(6e13.5)') qext(i,:),qabs(i,:),qsca(i,:)
allocate(amnp1(0:nodr(i)+1,nodr(i),2),amnp2(0:nodr(i)+1,nodr(i),2))
do n=1,nodr(i)
do m=-n,n
if(m.le.-1) then
ma=n+1
na=-m
else
ma=m
na=n
endif
read(3,'(4e17.9)') amnp1(ma,na,1),amnp2(ma,na,1)
read(3,'(4e17.9)') amnp1(ma,na,2),amnp2(ma,na,2)
enddo
enddo
ip1=sphereoff(i)+1
ip2=sphereoff(i)+sphereblk(i)
amnp(ip1:ip2,1)=reshape(amnp1(0:nodr(i)+1,1:nodr(i),1:2),(/sphereblk(i)/))
amnp(ip1:ip2,2)=reshape(amnp2(0:nodr(i)+1,1:nodr(i),1:2),(/sphereblk(i)/))
deallocate(amnp1,amnp2)
enddo
close(3)
endif
!
! broadcast the scattering coefficients to the other processors
!
nsend=neqns*2
call ms_mpi(mpi_command='bcast',mpi_send_buf_dc=amnp,mpi_number=nsend,mpi_rank=0)
endif
!
! calculate the efficiency factors
!
cphi=cos(phi)
sphi=sin(phi)
qexttotpar=sum((qext(:,1)*cphi*cphi+2.d0*qext(:,3)*cphi*sphi+qext(:,2)*sphi*sphi) &
*xsp*xsp)/xv/xv
qexttotper=sum((qext(:,1)*sphi*sphi-2.d0*qext(:,3)*cphi*sphi+qext(:,2)*cphi*cphi) &
*xsp*xsp)/xv/xv
qabstotpar=sum((qabs(:,1)*cphi*cphi+2.d0*qabs(:,3)*cphi*sphi+qabs(:,2)*sphi*sphi) &
*xsp*xsp)/xv/xv
qabstotper=sum((qabs(:,1)*sphi*sphi-2.d0*qabs(:,3)*cphi*sphi+qabs(:,2)*cphi*cphi) &
*xsp*xsp)/xv/xv
qscatotpar=qexttotpar-qabstotpar
qscatotper=qexttotper-qabstotper
qexttot=(qexttotpar+qexttotper)*.5d0
qabstot=(qabstotpar+qabstotper)*.5d0
qscatot=(qscatotpar+qscatotper)*.5d0
qext(:,1)=(qext(:,1)+qext(:,2))*.5d0
qabs(:,1)=(qabs(:,1)+qabs(:,2))*.5d0
qsca(:,1)=(qsca(:,1)+qsca(:,2))*.5d0
call rottranmtrxclear()
!
! calculate the target-based expansion and rotate to the incident field frame
!
allocate(amnp0(0:nodrt+1,nodrt,2,2),pmnp0(0:nodrt+1,nodrt,2,2))
do k=1,2
call amncommonorigin(neqns,nsphere,nodr,ntran,nodrt,rpos, &
amnp(1:neqns,k),amnp0(0:,1:,1:,k))
call rotvec(alpha,beta,0.d0,nodrt,nodrt,amnp0(0:,1:,1:,k),1)
enddo
!
! calculate the asymmetry parameter and the scattering matrix
!
allocate(gmn(0:2))
call s11expansion(amnp0,nodrt,0,1,gmn)
asymparm=dble(gmn(1)/gmn(0))/3.d0
do i=1,numtheta
thetad=theta1d+(theta2d-theta1d)*(i-1)/max(1.d0,dble(numtheta-1))
costheta=cos(thetad*pi/180.d0)
call scatteringmatrix(amnp0,nodrt,xv,costheta,phi,sa,smt(:,:,i))
enddo
deallocate(amnp0,pmnp0,gmn)
endif
!
! output file operations
!
if(rank.eq.0) then
open(1,file=outfile,position='append')
if(nonactive.eq.0) then
write(1,'('' sphere S.P., pos. (x,y,z), ref. index (L,R), Qext, Qsca, Qabs, Qabs/Qabs,LM'')')
else
write(1,'('' sphere S.P., pos. (x,y,z), ref. index, Qext, Qsca, Qabs, Qabs/Qabs,LM'')')
endif
do i=1,nsphere
call getmiedata(which_sphere=i,sphere_qabs=qabslm)
if(dimag(ri(1,i)).eq.0.d0.and.dimag(ri(2,i)).eq.0.d0) then
absrat=1.d0
else
absrat=qabs(i,1)/qabslm
endif
if(nonactive.eq.0) then
write(1,'(i5,4f10.4,4f10.6,3e13.5,f8.4)') i, xsp(i),rpos(:,i)+gbfocus, ri(:,i), &
qext(i,1),qsca(i,1),qabs(i,1),absrat
else
write(1,'(i5,4f10.4,2f10.6,3e13.5,f8.4)') i, xsp(i),rpos(:,i)+gbfocus, ri(1,i), &
qext(i,1),qsca(i,1),qabs(i,1),absrat
endif
enddo
if(fixedorrandom.eq.1) then
write(1,'('' total ext, abs, scat efficiencies, w.r.t. xv, and asym. parm'')')
write(1,'(6e13.5)') qexttot,qabstot,qscatot,asymparm
else
write(1,'('' unpolarized total ext, abs, scat efficiencies, w.r.t. xv, and asym. parm'')')
write(1,'(6e13.5)') qexttot,qabstot,qscatot,asymparm
write(1,'('' parallel total ext, abs, scat efficiencies'')')
write(1,'(6e13.5)') qexttotpar,qabstotpar,qscatotpar
write(1,'('' perpendicular total ext, abs, scat efficiencies'')')
write(1,'(6e13.5)') qexttotper,qabstotper,qscatotper
endif
write(1,'('' scattering matrix elements'')')
if(normalizesm.eq.0) then
write(1,'('' theta s11 s22 s33'',&
&'' s44'',&
&'' s21 s32 s43 s31'',&
&'' s42 s41'')')
do i=1,numtheta
thetad=theta1d+(theta2d-theta1d)*(i-1)/max(1.d0,dble(numtheta-1))
write(1,'(f8.2,10e12.4)') thetad,smt(1,1,i),smt(2,2,i),smt(3,3,i), &
smt(4,4,i),smt(1,2,i),smt(2,3,i),smt(3,4,i),smt(1,3,i), &
smt(2,4,i),smt(1,4,i)
enddo
else
write(1,'('' theta s11 s22/s11 s33'',&
&''/s11 s44'',&
&''/s11 s21/s11 s32/s11 s43/s11 s31'',&
&''/s11 s42/s11 s41/s11'')')
do i=1,numtheta
thetad=theta1d+(theta2d-theta1d)*(i-1)/max(1.d0,dble(numtheta-1))
s11=smt(1,1,i)
write(1,'(f8.2,10e12.4)') thetad,smt(1,1,i),smt(2,2,i)/s11,smt(3,3,i)/s11, &
smt(4,4,i)/s11,smt(1,2,i)/s11,smt(2,3,i)/s11,smt(3,4,i)/s11,smt(1,3,i)/s11, &
smt(2,4,i)/s11,smt(1,4,i)/s11
enddo
endif
if(fixedorrandom.eq.1) then
write(1,'('' scattering matrix expansion coefficients'')')
write(1,'('' w a11 a22 a33 '',&
&''a23 a32 a44 a12 '',&
&''a34 a13 a24 a14'')')
do w=0,nodrg
write(1,'(i5,11e12.4)') w,smc(1,1,w),smc(2,2,w),&
smc(3,3,w),smc(2,3,w),smc(3,2,w),smc(4,4,w),&
smc(1,2,w),smc(3,4,w),smc(1,3,w),smc(2,4,w),&
smc(1,4,w)
enddo
endif
close(1)
endif
!
! near field calculation options
!
if(fixedorrandom.eq.0.and.calcnf.eq.1) then
!
! this was a modification to the main: the near field file
! is opened for appending
!
if(rank.eq.0) then
open(nfoutunit,file=nfoutfile,position='append')
endif
gamma=gammadeg*pi/180.d0
call nearfieldgridcalc(neqns,nsphere,nodr,alpha,beta,cbeam,xsp,rpos,ri,amnp, &
nfplane,nfplanepos,nfplanevert,gbfocus,deltax,gamma,nfoutunit,epspw, &
nfoutdata,runprintunit)
if(rank.eq.0) then
close(nfoutunit)
endif
endif
!
! all done!
!
!
! and this ends the main variable loop.
!
enddo
!
! time to go home
!
call ms_mpi(mpi_command='finalize')
end