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1 Purpose

MSTM is a FORTRAN-90 code for calculating the time–harmonic electromagnetic scattering properties of
a group of spheres. The algorithm applies the multiple sphere T matrix method, and the results can be
considered exact to the truncation error of the vector spherical wave function (VSWF) expansions used to
represent the fields. The code can

• calculate the cross sections, asymmetry parameters, and far–field scattering matrix elements for both
fixed and random orientations with respect to the incident wave,

• model both plane wave and Gaussian profile incident beams, and

• generate maps of the electric field distributions along any arbitrary plane and including points both
within and external to the spheres.

The MSTM code is intended to replace the FORTRAN-77 scsmtm.for and scsmfo.for codes that were
previously developed by the author. In revising the multiple sphere scattering codes, the programming goals
were to develop a code which

• is as compiler– and machine–independent as possible,

• can be compiled and run on both serial and distributed–memory parallel processing platforms,

• optimally uses the memory and (for parallel platforms) processor resources of the machine, and

• allows for a wide range of calculation and output options without modification and recompilation of
the code.

Those familiar with the old codes should have little difficulty working with MSTM. The new code replaces all
static array dimensions will dynamic memory allocation, and this eliminates the need to adjust PARAMETER
statements to meet the memory requirements of the machine and/or the calculation. The code also incorpo-
rates message passing interface (MPI) commands to implement execution on distributed memory, multiple
processor compute clusters.

A summary of the mathematical formulation and algorithm is given in Sec. (2), and compilation and
execution of the code are described in Sec. (3). An overview of the code structure, and directions on how to
modify the code for specialized applications, is found in Sec. (5).

2 Mathematical Formulation

2.1 Interaction equations

In the most general sense, the purpose of the code is to render a complete description of the electromagnetic
fields, in both the near and far field regions, that result from the excitation of a target of NS spheres with
a time–harmonic field. A target, illustrated in Fig. 1, is specified by the size parameters xi = kai = 2πai/λ,
relative bulk refractive indices mi = m′

i + im′′
i , where i =

√
−1, and positions relative to a common target

origin ri = (Xi, Yi, Zi) for i = 1, 2, . . . NS . The spheres can also be optically active, with distinct left and
right–handed refractive indices (new in version 2.1). The optical activity of a sphere is determined by a
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Figure 1: Ensemble configuration

complex chiral factor for the sphere, denoted as χi, so that the left and right hand refractive indices are
given by

mL =
m

1− χm
, mR =

m

1 + χm
, m =

2mLmR

mL +mR
(1)

The spheres can be in point contact with their neighbors, yet they cannot overlap.
The formulation represents an extension of Lorenz-Mie theory (for optically active spheres) to the multiple

sphere system. The field external to the spheres is represented by the superposition of the incident and
scattered fields, except in this case the scattered field consists of components radiated from each sphere in
the target;

Eext = Einc +Esca = Einc +

NS∑
i=1

Esca,i (2)

The incident and scattered fields, at the ith sphere in the cluster, can be represented by regular and outgoing
vector spherical wave function (VSWF) expansions, centered about the origin of the sphere;

Einc =

Li∑
n=1

n∑
m=−n

2∑
p=1

f imnp N
(1)
mnp(r− ri) (3)

Esca,i =

Li∑
n=1

n∑
m=−n

2∑
p=1

aimnp N
(3)
mnp(r− ri) (4)

In the above, Nmnp denotes the VSWF of either type 1 (regular) or 3 (outgoing), of order n, degree m,
and mode p = 1 (TM) or 2 (TE). The functions are defined in the Appendix. The incident field coefficients
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f imnp will depend on the characteristics of the incident field, whereas the scattered field coefficients aimnp are
unknown and are sought from the solution. The order truncation limit Li in Eq. (4) is chosen to provide an
acceptable level of convergence of the series; this topic will be covered in more detail below.

Application of the continuity equations at the surface of each sphere results in a system of interaction
equations for the scattered field coefficients;

aimnp −
2∑

p′=1

ainpp′

NS∑
j=1
j ̸=i

Lj∑
l=1

l∑
k=−l

2∑
q=1

Hi−j
mnp′ klq a

j
klq =

2∑
p′=1

ainpp′ f imnp′ (5)

in which ainpp′ denote the optically active (OA) Mie coefficients of the sphere and depend on the sphere

size parameter and L and R refractive indices, and Hi−j is the outgoing VSWF translation matrix which
transforms the outgoing VSWF centered about origin j into an expansion of regular VSWF centered about
origin i. Formulas for the OA Mie coefficients and the translation matrix elements appear in the Appendix.

Equation (5), in conjunction with Eqs. (2)-(4), represents the formal solution for the scattered field
produced by the sphere ensemble. In the case of equal–sized spheres with equal truncation limits LS , Eq. (5)
forms a system of 2NS LS (LS+2) linear equations for the set of scattering coefficients. The matrix Hi−j will
be fully populated for an arbitrary translation between j and i, and correspondingly all orders/degrees/modes
of the scattered field from a sphere j will (in general) influence a particular order/degree/mode of the field at
i. This is in stark contrast to the isolated sphere case, in which each scattering order/degree/mode is excited
only by the same harmonic component for the incident field. And it is in this respect that the multiple sphere
solution departs – in a practical sense – from the single sphere Mie theory: the latter provides an explicit
formula for the scattered field, whereas the former gives only an implicit relationship. That is, numerical
methods (in the form of linear equation solvers) are needed to produce a useable solution. This characteristic
has obvious relevance with regard to the order truncation limit Li. Specifically, closure of Eqs. (5) requires
an a–priori value of Li for each sphere. In most situations Li can be set using a Lorenz-Mie criterion for
the isolated sphere i, yet there are specific situations in which interactions among neighboring spheres can
have a significant effect on the convergence of Eq. (4) [1]. To accommodate such situations, the code allows
for both automatic (based on the Lorenz-Mie criterion) and manual (user–set) specification of Li.

2.2 Numerical solution of the interaction equations

Iterative methods are used in the code to obtain numerical solutions to Eq. (5). Our experience, and that of
others, is that the biconjugate gradient method (BCGM) provides the most reliable, and fastest, solution to
Eq. (5), as compared to over/under relaxation and order–of–scattering methods [3]. The number of iterations
required for a solution depends on a host of parameters; i.e., the number, size parameters, and refractive
indices of the spheres, and the proximity of the spheres to each other. In general, as the spheres become more
widely separated the solution will converge faster. An important factor affecting convergence is whether any
of the spheres is at or near a resonance mode; such conditions can lead to extremely small convergence rates
and may be more effectively solved using direct methods [4].

It is relatively expensive, from a computational operations viewpoint, to calculate the translation matrix
elements Hi−j

mnp klq for an arbitrary translation from origins j to i. In particular, each element involves a finite
summation of a scalar spherical wave function – vector coupling coefficient product (see Appendix). Because
of this, precalculation and memory storage of the translation matrix elements can result in a considerably
faster iterative solution to Eq. (5) as compared to the situation in which the elements are calculated on–the–
fly during each iteration step. Memory storage of the elements for all sphere pair translations, however, can
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become impractical for large scale systems of spheres. It is possible to factor the translation matrices Hi−j

into rotational and axial translational parts [2], which results in a decoupling of order and degree and leads
to both faster matrix–vector multiplication and smaller matrix storage requirements. This factorization is
used in the MSTM code. Nevertheless, the memory required to store the complete set of translation matrices
will always scale as N2

S .
Beginning with version 2.2, the MSTM code employs a hybrid BCGM calculation scheme, designed to

minimize memory use without sacrificing execution time, to solve the interaction equations of Eq. (5). The
procedure is to first split the interaction with sphere i into near field and far field parts;

aimnp −
2∑

p′=1

ainpp′

∑
j∈NF (i)

Lj∑
l=1

l∑
k=−l

2∑
q=1

Hi−j
mnp′ klq a

j
klq

−
2∑

p′=1

ainpp′

∑
j∋NF (i)

Lj∑
l=1

l∑
k=−l

2∑
q=1

Hi−j
mnp′ klq a

j
klq =

2∑
p′=1

ainpp′ f imnp′ (6)

The criterion to determine whether sphere j is in the near field set NF (i) for sphere i will depend on the
translation distance kri−j and the order truncations Li and Lj . The translation matrix for the far field set is
now approximated by the limiting formula for k ri−j ≫ L2

S , which results in the matrix reducing to a dyadic
operator, i.e.,

Hmnpklq(kr) ≈ Π∗
mnp(µ, ϕ) ·Πklq(µ, ϕ)F (k r)

= in−l (τmnp(µ) τklq(µ) + τmn3−p(µ) τkl3−q(µ)) e
i (k−m)ϕ 4π

i k r
ei k r, k r ≫ (n+ l)2 (7)

where µ = cos θ andΠmnp = (−i)n(τmnp θ̂, i τmn3−p ϕ̂) exp(imϕ) is the vector spherical harmonic; definitions
appear in the Appendix. The far field form is now used to construct an iterative scheme to Eq. (6), so that

ai,νmnp −
2∑

p′=1

ainpp′

∑
j∈NF (i)

Lj∑
l=1

l∑
k=−l

2∑
q=1

Hi−j
mnp′ klq a

j,ν
klq

−
2∑

p′=1

ainpp′

∑
j∋NF (i)

F i−j Π∗ i−j
mnp′ ·

Lj∑
l=1

l∑
k=−l

2∑
q=1

Πi−j
klq a

j,ν
klq =

2∑
p′=1

ainpp′

(
f imnp′ + bi,ν−1

mnp′

)
(8)

in which superscript ν denotes the νth–corrected approximation to the solution, and the correction coefficients
bimnp are given by

bi,νmnp =
∑

j∋NF (i)

Lj∑
l=1

l∑
k=−l

2∑
q=1

(
Hi−j

mnp′ klq − F i−j Π∗ i−j
mnp′ ·Πi−j

klq

)
aj,νklq (9)

The general solution strategy starts with bi,0mnp = 0, and the BCGM is applied to Eq. (8) to seek a solution

for ai,1mnp. At convergence of the BCGM for a set error criterion, or after a set number of iterations of the

BCGM (whichever comes first), the correction factors bi,1mnp are calculated from Eq. (9), using the current

values of ai,1mnp, and the BCGM continues with ν = 2. The procedure stop when the both the error in Eq. (8)
and the norm of bν − bν−1 have decreased below a set criterion.
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Figure 2: Target and incident field frames

This strategy has two significant advantages in the context of large–scale systems of spheres. First, it
significantly reduces the memory requirements, in that it is only necessary to store the near–field translation
matrices. Precisely how much memory is required depends on both NS and the criteria for choosing the near
field sets; the latter is controlled via code input options. The vector spherical harmonic functions Π can be
efficiently calculated on the fly, and thus little if any advantage is gained by their precalculation and memory
storage. Secondly, the interactions involving the far–field translation operators can be performed significantly
faster than those involving the exact operators – the former is a dyadic (vector–vector) product, the latter
a matrix–vector product – and an iteration of Eq. (8) can be performed in a fraction of the time required
for an iteration to Eq. (5). Even though calculation of the correction coefficients in Eq. (9) is expensive –
since the exact translation elements are calculated explicitly for each correction stage – the hybrid method
typically provides solutions in execution times that are comparable to (and often less than) those obtained
from straight BCGM solution of Eq. (5) with stored translation matrices.

2.3 Incident and total scattered field

Referring to Fig. 2, the propagation direction ẑ′ of the incident field is defined by an azimuth angle α and
polar angle β relative to the target coordinate frame. The angle γ appearing in Fig. 2 is used to define the
scattering plane, upon which the amplitude and scattering matrix elements are based. The procedure for
calculating the amplitude and scattering matrix elements will be discussed in the following section, yet for
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now it is noted that determination of these properties, for a set incident direction, requires the solution to
Eq. (5) for two mutually orthogonal linear polarizations of the incident field. In the code, the two states

correspond to polarization in the β̂ and α̂ directions as illustrated in Fig. 2.
In addition to the standard case of plane wave incidence, the code also provides for the representation

of collimated incident beams having a Gaussian amplitude distribution. In the Gaussian beam (GB) case,
the incident field expansion coefficients centered about sphere i, appearing in Eqs. (3) and (5), cannot be
related to those relative to some other origin by a simple phase shift relation. The general approach used in
the code is to define the incident field expansion, for either the plane wave or GB case, relative to the target
origin, and then use the VSWF translation theorem to obtain the values of f imnp.

At the target origin, the incident field expansion will appear as

Einc(r) =
L∑

n=1

n∑
m=−n

2∑
p=1

fmnp N
(1)
mnp(r) (10)

The order truncation limit L in Eq. (10) – which is chosen so that the expansion will yield an acceptable
description of the incident field on each sphere in the ensemble – will typically depend on the size parameter
kaC where aC is the circumscribing sphere radius illustrated in Fig. 1. For a plane wave (PW), the coefficients
for the incident field VSWF expansion, centered about the target origin, are given by(

fmnp,β̂,PW

fmnp,α̂,PW

)
= −4π in+1 e−imα

(
τmnp(cosβ)

i τmn(3−p)(cosβ)

)
(11)

where τmnp are derived from the vector spherical harmonic functions, and are given by

τmnp(cosβ) = −1

4

(
2n+ 1

π

)1/2 (
(−1)p D(n)

−1m(cosβ) +D(n)
1m(cosβ)

)
(12)

with D(n)
km denoting the Wigner d−function [5], the definition of which appears in the Appendix.

Along with a propagation direction and polarization angle, the GB is characterized by a focal point
(taken here to be the target origin) and beam width ω0. For a beam propagating in the +z direction and
polarized in the x direction, the amplitude distribution along the focal plane will be given by

Einc(x, y, 0) = x̂ exp

(
−x

2 + y2

ω2
0

)
(13)

The localized approximation is used in the code to provide a VSWF representation of the GB, which is valid
for kω0 ≥ 5 [6, 7]. The incident field expansion coefficients, for the expansion centered about the beam focal
point, are given by

fmnp,ŝ,GB = gn fmnp,ŝ,PW (14)

gn = exp

[
−
(
n+ 1/2

kω0

)2
]

(15)

where ŝ denotes the specific polarization state.
Since Eq. (10) is assumed to provide a sufficiently accurate representation of the incident field at all

spheres in the target, the sphere–centered expansion for the incident field can be obtained by application of
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the translation theorem to Eq. (10). This results in

f imnp,ŝ =

L∑
l=1

l∑
k=−l

2∑
q=1

J i−0
mnpklq fklq,ŝ (16)

where J i−0 is the regular VSWF translation matrix and f refers to either the PW or GB case.
In a manner analogous to that relating Eq. (3) to Eq. (10), the scattered field from the cluster can be

represented by a single outgoing VSWF expansion centered about the cluster origin, so that

Esca(r) =

LT∑
n=1

n∑
m=−n

2∑
p=1

amnp N
(3)
mnp(r) (17)

amnp =

NS∑
i=1

Li∑
l=1

l∑
k=−l

2∑
q=1

J0−i
mnp klq a

i
klq (18)

The truncation limit LT in the expansion will depend on the distance |r|, with LT → ∞ (i.e., lack of
convergence) as |r| → Max |ri|. In particular, the expansion in Eq. (17) will not be useful to characterize the
near–field characteristics of the scattered electric field. However, Eq. (17) is completely valid in the far–field
regions, and for this limit LT becomes equal to the incident field truncation limit L.

2.4 Coordinate rotation, amplitude and scattering matrix, and cross sections

Referring again to Fig. 2, the scattering plane is defined as the z′ − x′ plane in the incident field coordinate
frame. The incident field coordinate frame (x′, y′, z′), in turn, is obtained by a solid rotation of the target
frame (x, y, z) through the Euler angles (α, β, γ). The expansion coefficients that describe the total scattered
field, for incident polarization parallel or perpendicular to the scattering plane, are obtained by

a′mnp,∥ = a′
mnp,β̂

cos γ + a′mnp,α̂ sin γ (19)

a′mnp,⊥ = a′
mnp,β̂

sin γ − a′mnp,α̂ cos γ (20)

in which β̂ and α̂ denote solutions corresponding to the two incident polarization states, and the prime
denotes that the coefficients have been rotated from the target to the incident field coordinate frames, in
that

a′mnp,ŝ =

n∑
k=−n

D(n)
mk(cosβ) e

i k α aknp,ŝ (21)

where aknp,ŝ refer to the coefficients obtained from Eq. (18), using the sphere coefficients for incident polar-
ization state ŝ. The amplitude matrix elements are obtained by using the the far–field asymptotic form of
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the outgoing VSWF, resulting in

S1 =
L∑

n=1

n∑
m=−n

2∑
p=1

(−i)na′mnp,⊥τmn3−p(cos θ
′) (22)

S2 =

L∑
n=1

n∑
m=−n

2∑
p=1

(−i)n+1a′mnp,∥τmnp(cos θ
′) (23)

S3 =
L∑

n=1

n∑
m=−n

2∑
p=1

(−i)n+1a′mnp,⊥τmnp(cos θ
′) (24)

S4 =
L∑

n=1

n∑
m=−n

2∑
p=1

(−i)na′mnp,∥τmn3−p(cos θ
′) (25)

in which θ′ denotes the scattering angle. Elements of the scattering matrix can be obtained directly from
those of the amplitude matrix following the formulas presented in Bohren and Huffman [8].

The absorption cross section of sphere i is defined so that Cabs,iI0 is the rate at which the sphere absorbs
energy from the incident wave of irradiance (at the focal point, for a GB) I0. For the OA sphere it is given
by

Cabs,i =
2π

k2
Re

Li∑
n=1

n∑
m=−n

2∑
p=1

2∑
q=1

b
i

npq a
i
mnp a

i∗
mnq (26)

in which b
i

np is a property solely of sphere i and is defined by

b
i

npq = −
([

ain
]−1

+ I
)
= −

(
(−1)p+q

ain 3−p 3−q

ain11a
i
n22 − ain12a

i
n21

+ δp−q

)
(27)

The amnp coefficients in the above formula would correspond to either the parallel or perpendicular polariza-
tion values; the absorption cross section for unpolarized incident radiation would be the average of the two.
The absorption cross section of the entire ensemble is obtained from the sum of the individual sphere cross
sections;

Cabs =

NS∑
i=1

Cabs,i (28)

In a similar manner, an extinction cross section of an individual sphere can be defined so that I0 Cext,i

is the rate at which the sphere removes energy from the incident wave. The optical theorem applied to the
field scattered from the sphere gives

Cext,i = −2π

k2
Re

Li∑
n=1

n∑
m=−n

2∑
p=1

aimnpp
i∗
mnp (29)

As before, the scattering and incident field coefficients would correspond to the particular polarization state.
The total ensemble extinction cross section would also be obtained from the sum of the parts;

Cext =

NS∑
i=1

Cext,i (30)
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Unlike the absorption cross section, the extinction cross section for the individual sphere would be difficult
– if not impossible – to experimentally measure. The definition of this quantity relies on the superposition
model of the scattered field, and although this model serves perfectly well as a means to solve Maxwell’s
equations for the ensemble, it is not obvious how the ‘partial’ fields scattered from the individual spheres
could be discriminated in an experiment. The sphere extinction is also not bound by the isolated–particle
inequality of Cext, i > Cabs, i; it is entirely possible for this inequality to be reversed or for Cext, i < 0 on
the individual sphere level. And in this respect a scattering cross section is only meaningful on the target
level, and is obtained from energy conservation via

Csca = Cext + Cabs (31)

Finally, the independent scattering cross section of the sphere is defined as

Ci−sca,i =
2π

k2

Li∑
n=1

n∑
m=−n

2∑
p=1

∣∣aimnp

∣∣2 (32)

and, when multiplied by I0, would represent the power transported from the sphere by the sphere’s scattered
field. It is important to understand that the Ci−sca,i does not have the same additive properties as Eqs. (28)
and (30); the sum of the sphere independent scattering cross sections will not equal Csca. The usefulness
of Ci−sca,i is that it provides, in combination with the absorption and extinction cross sections, a relative
measure of the local incoherent (or multiply–scattered) field intensity in the target of spheres. By multiplying
Eq. (5) through by ai∗mnp and using the definitions of the cross sections, it can be shown that

Cext,i − Ci−sca,i − Cabs,i =
2π

k2
Re

NS∑
j=1
j ̸=i

∑
k,l,q

∑
m,n,p

aimnpH
i−j
mnp klq a

j
klq

= Cd−sca,i (33)

in which Cd−sca,i denotes the dependent scattering cross section of the sphere, and represents the power
flowing to/from the sphere due to the interaction of the sphere’s scattered field with the multiply–scattered
field. In this respect, the relative magnitudes of Cd−sca,i and Cext,i indicates the relative degree to which
the sphere is excited by the multiply–scattered and the incident fields.

2.5 The T matrix relationships

Substitution of Eqs. (16) into Eq. (5) leads to

T i
mnp ν −

2∑
p′=1

ainpp′

NS∑
j=1
j ̸=i

∑
ν′

Hi−j
mnp′ ν′ T

j
ν′ν =

2∑
p′=1

ainpp′ J i−0
mnp′ ν (34)

In the above and what follows, Greek subscripts are shorthand for the degree–order–mode triplet, i.e.,
ν = (klq). The sphere–target T i matrix is defined so that

aiµ =
∑
ν

T i
µν fν (35)
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and will typically have more columns than rows; the largest row and column order will be Li and L,
respectively.

Replacing Eq. (35) into Eq. (18) results in

aµ =

NS∑
i=1

∑
ν

∑
ν′

J0−i
µν′ T

i
ν′ν fν =

∑
ν

Tµν fν (36)

The cluster–centered T matrix treats the ensemble of spheres as a single – albeit nonspherical – particle.
The cross sections of the target and the scattering matrix – in either fixed or random orientation – can be
obtained analytically from its properties. However, the T matrix cannot predict the fields within the cluster
or the cross sections of the individual spheres, because Eq. (17) will be valid only for radii that exceed the
largest sphere–target origin distance. The detailed individual–sphere and near–field information – which is
inaccessible from Eq. (36) – can, however, be obtained from the original superposition model.

Calculation of the target T matrix in the code is accomplished by iterative solution of Eq. (34) for a
succession of ν = (klq) values. The same hybrid BCGM, of the form in Eq. (8), is used to solve Eq. (34).
Upon each solution, the column elements of the T matrix corresponding to ν are obtained via the contraction
in Eq. (36). The algorithm is described in detail in [9].

2.6 Random orientation

The random orientation cross sections can be obtained by using the matrix relationships for the scattered
and incident field, Eqs. (16) and (35), in Eqs. (26) and (29) and integrating the incident field over all
propagation and polarization directions. Because the transformation between PW and GB representations
in Eq. (14) is independent of propagation direction, the integration can be performed in a general manner
without considering the specific form of the incident field. This results in⟨

fmnp (fm′n′p′)
∗⟩

= δm−m′δn−n′δp−p′g2n (37)

where < . . . > denotes orientation averaging and gn is given by Eq. (15); note that the plane wave case will
have gn → 1. The formulas for the individual sphere random orientation cross sections are then

⟨Cabs,i⟩ =
2π

k2
Re

Li∑
n=1

n∑
m=−n

2∑
p=1

2∑
p′=1

∑
ν

b
i

npp′ T i
mnp ν T

i∗
mnp′ ν g

2
ν (38)

⟨Ci−sca,i⟩ =
2π

k2

∑
µ

∑
ν

∣∣T i
µ ν

∣∣2 g2ν (39)

⟨Cext,i⟩ = −2π

k2
Re
∑
µ

∑
ν

J0−i
ν µ T i

µ ν g
2
ν (40)

As before, the total orientation–averaged absorption and extinction cross sections for the cluster will be the
sum of the individual sphere values, and the total scattering cross section will be the difference between the
total extinction and absorption cross sections.

The random–orientation scattering matrix can be obtained analytically from operations on the T matrix,
and is represented as an expansion of generalized spherical functions [9]. The formulas for the expansion
coefficients were originally derived for plane wave excitation, yet for GB excitation the generalized spherical
function expansion for the scattering matrix can be calculated by making the simple transformation

T ′
mnpklq = Tmnpklq gl (41)
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and then applying the plane wave formulas to T ′.

3 Multiple sphere T -matrix (MSTM) code

3.1 Structure and compilation

The code is organized into the following five components:

mstm-modules.f90: Contains modules for data input, special function calculation, iterative linear equation
solving, and scattering property calculation.

mstm-main.f90: The prepackaged main program, which reads input parameters from an input file, calls
the subroutines corresponding to the calculation options, and writes output files.

mpidefs-parallel.f90: A module which defines the MPI commands appearing in the mstm-modules.f90
and mstm-main.f90 code blocks for use on multiprocessor platforms.

mpidefs-serial.f90: A module which defines MPI commands for use on single processor (serial) plat-
forms.

mstm-intrinsics.f90: Compiler–specific (non–standard Fortran) functions for command–line argument
retrieval and system time operations. The users must modify this module to suit their specific compiler.

The actual file names included in the distribution may also include the version identifier, which will appear
as mstm-modules-v2.1.f90, etc. The version identifier will be omitted in the following discussion.

Compilation of the code using the GNU g95 on a MS-Windows, single processor machine would involve

g95 -o mstm.exe mpidefs-serial.f90 mstm-intrinsics.f90

mstm-modules.f90 mstm-main.f90

This places the executable in the file mstm.exe. Compilation using the MPICH2 package for execution on a
parallel machine would use

mpif90 -I/opt/mpich2-1.2.1p1/include -g -o mstm.out

mpidefs-parallel.f90 mstm-intrinsics.f90

mstm-modules.f90 mstm-main.f90

and would put the executable in mstm.out.
Other compilers follow the same basic plan. It is important to compile the module files in the order they

are given. And please remember that the mstm-intrinsics.f90 must be modified to match the command–
line recognition and retrieval intrinsic functions of the compiler. The distribution has the intrinsics set up
for gfortran.

3.2 Prepackaged main program

The mstm-main.f90 program included with the distribution is designed to offer the most common calculation
options and output formats, and should serve the computational purposes of most users. Modification of
the main program for more specialized types of calculations should be straightforward for the programmer
with moderate fortran experience. The code employs a highly modular structure, in which the various tasks
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involved in the solution are performed in specialized subroutines, and modification of the code to perform a
specific task, such as averaging scattering matrix values over several target configurations or calculating near
field values along a non–rectangular domain, will typically involve rearranging subroutine calls to produce
the desired output. Customized coding is discussed in Sec. (5).

In using the code with the default main program, the properties of the sphere cluster and run variables
are passed to the code using an input file. An input file can be designated by a command line argument; on
a serial machine, with the executable named mstm.exe and an input file named mstm-01.inp, the command
to execute the code would appear as

mstm mstm-01.inp

On a parallel machine the execution command will appear in the shell script used to submit the job. I
am only familiar with running the code on the Auburn University College of Engineering HPCC [10], and
you will need to consult with the appropriate gurus to set up a parallel job on your cluster.

The input file must be in the same directory as the executable. The default input file is mstm.inp; this
file must be present if no command line argument is given.

The input file consists of paired lines; the first line of a pair representing a parameter ID, and the second
representing the value or option for that parameter. The order of the paired lines is not important. If a pair
corresponding to a particular parameter is not present, the code will use the default value.

An example of an input file, showing the first few input parameters, is shown below.

number_spheres

100

sphere_position_file

ran100.pos

output_file

test.dat

length_scale_factor

2.d0

real_ref_index_scale_factor

1.6d0

imag_ref_index_scale_factor

0.01d0

mie_epsilon

1.d-3

Note that the parameter ID, i.e., number_spheres or output_file, must appear as written above. A
description of the parameters follows; default values are given in parentheses.

3.2.1 Options related to sphere target specification

number_spheres: NS , the number of spheres in the cluster.

sphere_position_file: File name containing the sphere size, position, and (optionally) refractive index
data. If the filename is blank, or if it is given the value at_bottom, sizes, positions, and refractive
indices appear as the last lines in the input file, following a parameter ID of sphere_sizes_and_
positions. The position file, or the appended position information at the bottom of the input file,
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should have NS lines; if the number of lines is smaller than the input NS , then NS will be reduced
to match the number of lines. All lines in the file must have either 4, 6, or 8 columns. The first four
correspond to the radius and X, Y , Z positions of the ith sphere in the list. Units are arbitrary yet
must be consistent for radius and position. The 5th and 6th columns, if present, correspond to the real
and imaginary parts of the bulk refractive index of the sphere, and the 7th and 8th columns, if present,
correspond to the real and imaginary parts of the chiral factor χ, as defined in Eq. (1). If these columns
are not present the refractive index of the spheres is taken to be the same for all spheres and given
by the refractive index scaling factor, and the chiral factor for the sphere is given by the chiral factor
appearing as an input option (see below). Default is at_bottom: sphere sizes and positions appearing
at the bottom of the input file.

length_scale_factor: Dimensionless length scale factor; the radii and positions obtained from the position
file are multiplied by this factor, so that the size parameter of the ith sphere is the scale factor times
the radius.

real_ref_index_scale_factor: Multiplies the sphere real refractive index value from the position file; if
refractive index values are explicitly given in the position file, then set this parameter to 1. If refractive
index values do not appear in the position file (i.e., 4 column option), then the scale factor becomes
the real refractive index value for all spheres.

imag_ref_index_scale_factor: Same idea as the above, except now applied to the imaginary part of the
refractive index.

real_chiral_factor: Multiplies the sphere real chiral factor from the position file; if chiral factors are
explicitly given in the position file, then set this parameter to 1. If chiral factor values do not appear
in the position file (i.e., 4 or 6 column option), then this parameter becomes the real chiral factor for
all spheres. Non active spheres have this value set to zero (0.d0).

imag_chiral_factor: Same idea as the above, except now applied to the imaginary part of the chiral
factor. Not active spheres have this value set to zero (0.d0).

3.2.2 Options related to numerical solution

mie_epsilon: Convergence criterion for determining the number of orders to include in the Mie expansions
for each sphere (10−4). Setting mie_epsilon to a negative integer −L forces all sphere expansion to
include L orders.

translation_epsilon: Convergence criterion for estimating the maximum order of the T matrix for the
cluster (10−3).

solution_epsilon: Error criterion applied to solution of Eq. (8). When the normalized mean square error
of the solution, for a given correction step ν, decreases below this value an updated correction term
for ν +1 is calculated. The solution exits when the relative norm of the difference between subsequent
corrections ν and ν + 1 decreases below this value. (10−7).

iterations_per_correction: The maximum number of BCGM iterations to Eq. (8) for a given correction
stage ν. A recalculation (correction) via Eq. (9) will be performed when the BCGM iteration count
reaches this value or when the BCGM error drops below solution_epsilon, whichever comes first
(20).
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max_number_iterations: The maximum total number of BCGM iterations to Eq. (8) (summing over all
correction stages). The code will send a message if the maximum number of iterations is exceeded
(2000).

near_field_distance: Real parameter; the set of spheres NF (i) in the near field of sphere i, for which
the exact translation operator is applied in Eq. (8), is determined as all spheres with origin-to-origin
distances kr less than or equal to this value. There are several special options for this parameter:

• A value larger than the maximum sphere-to-sphere kr (i.e., a sufficiently large number, say 106)
will result all spheres belonging to the near field set. In this case, the solution reduces to the BCGM
applied directly to Eq. (5), without far–field corrections. The iterations_per_correction pa-
rameter becomes inapplicable in this case.

• A value smaller than the minimum sphere-to-sphere kr (i.e., zero) will result in all spheres be-
longing to the far field set. Interactions, during BCGM solution of Eq. (8), will be calculated
solely with the far field translation operator. This will typically result in the smallest iteration
execution time, yet the convergence rate of the solution will suffer – especially if the spheres are
close to each other. In particular, using this setting for clusters of contacting spheres may result
in a non-convergence of the BCGM.

• A negative value (i.e., -1.) will apply an automatic criterion to selecting the spheres. The set
NF (i) for sphere i is set under this criterion as the spheres whose origin-to-origin distance to i is
given by

k ri−j ≤
[
1

2
(Li + Lj)

]2
(42)

The default value is -1. (automatic selection). Those performing time–intensive calculations on
large sphere clusters should experiment with different values of this parameter.

max_memory_per_processor: Integer; the maximum memory used for translation matrix storage for each
processor, in MB. Relevant only for parallel runs, this quantity should be somewhat less than the total
memory available to a single processor (1500). This quantity affects how the processors are grouped
for parallel computation of the cluster T matrix, as described in Sec. (3.3).

store_translation_matrix: Integer switch: =0, the near field translation matrices in Eq. (8) are calcu-
lated during iteration and not stored in memory; =1, near field matrices are calculated prior to the
solution and stored in memory, and far field matrices are calculated on the fly; =2, both near and
far field matrices are stored in memory. Use 0 if you run into problems with too much memory being
used; this will result in the code running slower (execution time will typically double), yet the no–store
option will allow for almost unlimited sphere numbers (1).

3.2.3 Options related to incident field and calculated quantities

min_scattering_angle_deg: The starting value of the scattering angle for scattering matrix computations,
in degrees (0.0).

max_scattering_angle_deg: Ending value of scattering angle, in degrees (180.0).

number_scattering_angles: The number of scattering angles, evenly spaced between the minimum and
maximum values, for scattering matrix calculation (181).
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normalize_scattering_matrix: Integer switch: = 1, scattering matrix values Sij for (ij) ̸= (11) are scaled
by S11; = 0, matrix values are unscaled (1).

gaussian_beam_focal_point: X,Y, and Z coordinates of the Gaussian–profile incident beam, relative to
the origin and scaling in the sphere position file (i.e., before length_scale_factor has been applied).
This array defines the origin of the T matrix, and random orientation results are based upon this
origin. (0.0, 0.0, 0.0).

gaussian_beam_constant: Dimensionless parameter CB = 1/kω0 (Eq. (13)) which characterizes the in-
verse width, at the focal point, of an incident Gaussian profile beam. Setting CB = 0 selects plane wave
incidence. The localized approximation used to represent the Gaussian beam is accurate for CB ≤ 0.2.
Default is the plane wave condition (=0.0), and this number is not scaled by the length scaled factor.
Note that Gaussian beam options apply to both fixed orientation and random orientation calculations.

fixed_or_random_orientation: Integer switch: = 0 for a fixed orientation, = 1 for random orientation
results via the T matrix scheme. When = 0, input parameters corresponding to the T matrix solution
are not pertinent to the run, and likewise for the fixed orientation parameters when = 1 (0).

output_file: File name for file to which final calculation results are written; see Sec. (3.4.2) (test.dat).

run_print_file: File name for file to which intermediate output results are written; see Sec. (3.4.1). If
blank, results are written to standard output (the screen). Default is blank.

3.2.4 Options for fixed orientation calculations

incident_azimuth_angle_deg: The azimuth angle α of the incident field propagation direction, relative
to the sphere cluster coordinate system, in degrees (0.0).

incident_polar_angle_deg: Polar angle β for propagation direction, degrees (0.0).

scattering_plane_angle_deg: Angle γ which sets the scattering plane for scattering matrix calculations,
per Fig. 2 and accompanying discussion. Note that if α = β = 0, γ corresponds to the azimuth angle
ϕ of the scattering plane relative to the cluster coordinate system (0.0).

calculate_scattering_coefficients: Integer switch selecting whether the sphere scattering coefficients
aimnp are calculated from solution to Eq. (5) (=1), or read from a file generated from a previous solution
(=0). The latter option is useful for generating near field maps on different planes without having to
recalculate the scattering coefficients (1).

scattering_coefficient_file: File name for the file to which the scattering coefficients are written
(amn-temp.dat).

track_iterations: Integer switch selecting whether the error after each iteration to Eq. (5) is displayed
in the run file (=1), or suppressed (=0). This option allows the user to track the convergence of the
solution (1).

calculate_near_field: Integer switch for calculation of near field: = 0 for no near field calculations, = 1
to select near field calculations. The following 8 input parameters are pertinent only when the near
field is calculated (0).
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near_field_plane_coord: Near field values are calculated in a rectangular grid lying in the plane denoted
by this integer value, = 1: ŷ − ẑ plane; = 2: ẑ− x̂ plane; = 3: x̂− ŷ plane (1).

near_field_plane_position: The distance of the calculation plane from the cluster coordinate origin,
scaled by k and relative to the target coordinate system defined in the sphere position file (0.0).

near_field_plane_vertices: Two pairs of numbers, (kX ′
1, kY

′
1), (kX ′

2, kY
′
2) which denote the vertices

(opposite corners) of the rectangular region, in the near field plane, in which field calculations are
made. X ′ and Y ′ refer to either (y, z), (z, x), or (x, y) for near_field_plane_coord = 1,2,3. The
coordinates in the first pair must be smaller that those in the second pair. The coordinates are not
scaled by the length scale factor; they are implicitly in size parameter units (i.e., scaled by k). Again,
the positions are relative to the target frame. (−10.0,−10.0, 10.0, 10.0).

spacial_step_size: The spacial step size k∆x of calculation grid points (0.1).

polarization_angle_deg: A specific polarization state of the incident field is needed to calculate the near
field. The field is taken to be linearly polarized, with a polarization angle of γ relative to the k̂–ẑ
plane. When β = 0, γ becomes the azimuth angle of the incident electric field vector relative to the
cluster coordinate system (0.0).

near_field_output_file: File name for the output electric field values. The format for the file is described
in Sec. (3.4.3) (nf-temp.dat).

near_field_output_data: Integer switch specifying the data to be written to the output file, = 0, |E|2;
= 1, complex E vector; = 2, complex E and H vectors. See Sec. (3.4.3) (1).

plane_wave_epsilon: The incident field component for the near field calculations – for either the plane
wave or Gaussian beam models – is calculated using a single, regular VWH expansion centered about
the beam focal point. The plane wave epsilon is a convergence criterion for this expansion (0.01).

3.2.5 Options for random orientation calculations

calculate_t_matrix: Integer switch selecting whether the T matrix is read from a file (= 0), calculated
in its entirety and written to a file (= 1), or calculated beginning with the next largest order of
a partially–calculated T matrix read from a file, and appended to the same file (= 2). Option 0
allows for calculation of random properties for different incident beam configurations (plane wave or
Gaussian) without having to recalculate the T matrix. Option 1 calculates the T matrix elements using
the sequential solution of Eqs. (34) until a set convergence criterion is reached. Option 2 is included
for situations in which option 1 is interrupted prior to convergence; the calculations will pick up where
the interrupted run left off and continue until convergence (1).

t_matrix_file: File name for the file to which the T matrix is read (option 0), written (option 1), or read
and appended (2). Note that the T matrix will be written to a file regardless of whether it is intended
to be used again in subsequent runs: the file serves as temporary storage of T matrix columns during
calculation. This file can be very large – on the order of a few GB – so make sure you have adequate
disk space. (tmatrix-temp.dat).

t_matrix_convergence_epsilon: Calculation of the T matrix is accomplished by solution of the interac-
tion equations for a sequence of right hand sides, with each RHS corresponding to the order l, degree
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k, and mode q component of a generalized plane wave expansion centered about the focal point. For
each order l the random–orientation extinction and scattering efficiencies of the cluster are calculated,
and a converged T matrix is identified when the absolute difference in the efficiencies, from one order
to the next, decreases below this convergence epsilon (10−6).

3.2.6 Termination of input data

Reading of options from the input file will terminate without error when the end–of file is reached. Alter-
natively, the input can be terminated by using the parameter ID of end_of_options; the input process will
be closed when this line is reached, and ID/parameter values located after this line will have no influence
on the run. This statement is useful for quick modification of an input file, in that ID/parameter pairs can
be shuffled either before or after the end_of_options line within the same file to set up different runs. The
sphere_sizes_and_positions ID has the same effect as end_of_options when sphere sizes and positions
are read from a separate file, yet when the sizes/positions are appended to the input file the ID preceding
the data must be sphere_sizes_and_positions.

3.3 Parallel considerations

The code employs parallelization during four computational tasks: 1) the matrix–vector product Hi−j aj

appearing in Eq. (5); 2) the solution of Eq. (34) for the different right-hand-side vectors; 3) computation of
the expansion coefficients for the random orientation scattering matrix representation; and 4) calculation of
the near field values. The last two steps involve a straightforward distribution of non–recursive computational
tasks among the NP processors used in the run. The first two tasks, however, occur simultaneously during
calculation of the T matrix. The strategy used is to subdivide the NP processors via NP = N1 ·N2. Each
member of the N2 group is involved in a solution, for given right–hand–side, to Eq. (34), and associated with
this member are the N1 processors which are used to perform the matrix–vector product during iteration.
The maximum efficiency is obtained when N1 is made as small as possible and, by extension, N2 as large
as possible; this minimizes the overall amount of data transfer among processors required to complete a
T matrix calculation. When the store_translation_matrix = 1 option is used, the minimum value of
N1 will be determined by the ratio of the memory required to store the complete set of translation matrix
elements to the memory available to a single processor, with the latter quantity user–set by the variable
max_memory_per_processor. On the other hand, the option store_translation_matrix = 0 automatically
results in N1 = 1 and N2 = NP .

In fixed orientation calculations the interaction equations are solved for two mutually orthogonal incident
polarization states. Hence, the code attempts to set the group number N2 = 2 and N1 = NP /2; this is done
automatically if the translation matrices are not stored in memory. Also note that if N1 > NS , then N1−NS

processors will be idle during solution of Eq. (5). All processors will be put to use for subsequent near field
calculations, if performed.

3.4 Output

3.4.1 Run (intermediate) print file

The purpose of the run output is to inform the user of the options and parameters of the calculation,
including the number of equations in Eq. (5), the memory used to store the translation matrices, and an
estimate of the time required to complete the calculation. Intermediate output, of a form dependent on the
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run options (i.e., fixed or random) will appear in the run print file during execution. Warnings and errors
will also appear here.

Runs on parallel platforms should have the run print file set to a filename as opposed to the standard
output; parallel jobs typically have the standard output redirected to a file, and choosing a set run print file
will result in a somewhat cleaner output than what would be produced by redirection. Each write statement
to the run file is followed, in the code, by a flush statement, and this allows the user to follow the output,
without appreciable buffer delay, by refreshing the file in the viewing application.

3.4.2 Output file

Information included in the output file includes

• The relevant run parameters and options for the run, i.e., fixed or random, incident angles, GB, etc.

• A listing of the sphere properties, enumerated in the same order as given in the position file. Sphere data
includes the size parameter and k – scaled position with respect to the target origin (i.e., as defined
in the input file), L and R refractive indices (only the bulk value will appear for systems that are
completely non active), the unpolarized extinction, independent scattering, and absorption efficiencies,
and the ratio of actual to Lorenz-Mie absorption efficiencies. For fixed orientation the efficiencies are
computed from the average of the β and α incident polarization values, and will correspond to values
for unpolarized incident radiation. Both the fixed and random orientation efficiency results account
for the specified GB conditions.

• The total extinction, scattering, and absorption efficiencies of the target, for unpolarized incident
radiation and defined with respect to the volume–mean size parameter, and the asymmetry parameter.

• For fixed orientation calculations, the total efficiency factors for incident polarization parallel and
perpendicular to the scattering plane (new in revision 1.2).

• The scattering matrix values for the set range of scattering angles. The phase function S11 is normalized
so that

1

2

∫ π

0

S11(θ) sin θ dθ = 1 (43)

When normalize_scattering_matrix = 1, the remaining elements are scaled by S11 at the same
angle, i.e., S12(θ)/S11(θ). The listing is limited to the matrix values Sij with j ≥ i. In the case
of random orientation the lower diagonal elements can be obtained from symmetry. Users who need
the full scattering matrix for fixed orientation will need to modify the output statements in the main
program.

• For random orientation runs, the coefficients for the generalized spherical function expansion of the
random orientation scattering matrix. The expansion includes orders 0 to 2L, where L is the order of
the T matrix. Users can consult the main program to see the use of these coefficients in calculating
scattering matrix values.

3.4.3 Near field file

The first line in the near field file contains the pair NF,X′ and NF,Y ′ , which are the number of data points
in the X ′ and Y ′ directions:

NF,X′ = 1 +
X ′

2 −X ′
1

∆x
, NF,Y ′ = 1 +

Y ′
2 − Y ′

1

∆x
(44)
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The second line contains the number NI.S., which is the number of spheres with boundaries that intersect
the near field plotting plane. The next NI.S. lines contain kX ′

i,I.S., kY ′
i,I.S., and Ri,I.S., which denote the

X ′ and Y ′ position of the ith intersecting sphere’s origin when projected onto the plotting plane, and the
radius of the circle formed on the plane by the intersection of the sphere. This information can be used with
a graphics package to draw the locations of the sphere boundaries on top of the field plots. The remaining
NF = NF,X′ ·NF,Y ′ lines in the file contain the calculation points and field values. The first pair of numbers is
the position kX ′, kY ′ of the data point, and these numbers are relative to the target frame as defined by the
sphere position file. The remaining columns for the line depend on the choice of near_field_output_data.
For option 0 the single number |E|2 is written, option 1 writes the real and complex parts of the 3 cartesian
components of the complex vector E (six numbers in all), and option 2 writes the complex electric E and
magnetic H field vectors (12 numbers). The cartesian components are based on the target reference frame.
The electric and magnetic field values are scaled to the corresponding field amplitudes of the incident field
at the target origin. Using this convection, the magnetic field values for a general VSWF expansion are
calculated by

H(r) =
m

i

∑
n=1

n∑
m=−n

2∑
p=1

gmnp Nmn3−p(r) (45)

in which g denote the coefficients of the expansion (a, f , or the internal field coefficients for regions inside a
sphere) and m is the local refractive index, which will be 1 for regions outside a sphere. Observe that the
operation 3 − p switches the mode from one to the other. Calculation of the internal fields (electric and
magnetic) for optically active media is somewhat more complicated than that implied by the above equation;
refer to the Appendix for details.

4 Examples

Please note that the calculation examples provided in this section may have been (and were probably)
performed using previous versions of the MSTM code. Because of this, the specific appearance of the input
and output information may not coincide with that obtained from your version of the code.

4.1 Calculation of random orientation properties for a
spherical cluster

The first example will demonstrate how MSTM is used to calculate the random–orientation properties of a
spherical cluster of spheres. The calculations were run using the original version of the MSTM code, and the
run and output files will show some differences with the current version. The target is shown in Fig. 3,
and consists of NS = 375 non-active spheres distributed uniformly into a spherical volume with an average
volume fraction of c = 0.1. The spheres are identical, with size parameter xS = 2 and refractive index
m = 1.31 + 0.1i. The size parameter of the circumscribing sphere of the target is xC = xs(NS/c)

1/3 = 31.1.
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Figure 3: NS = 375 spherical cluster

The input file for the run is

number_spheres

375

sphere_position_file

ran375fvp1.pos

output_file

example_1.dat

run_print_file

run.dat

length_scale_factor

2.d0

real_ref_index_scale_factor

1.31d0

imag_ref_index_scale_factor

0.1d0

fixed_or_random_orientation

1

min_scattering_angle_deg

0.d0

max_scattering_angle_deg

180.d0

number_scattering_angles

361

gaussian_beam_constant

0.0d0

gaussian_beam_focal_point

0.d0,0.d0,0.d0
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calculate_t_matrix

1

Options/parameters not listed are taken to be the default values; the options relating to the GB are actually
the default conditions (i.e., a plane wave) and could have been omitted. Options relating to fixed orientation
calculations – which are not relevant to this run – could also have appeared in the file with no harm done.

The run was executed on the COE HPCC on 128 processors. The file run.dat provides a listing of the
intermediate results:

input file is mstm.inp

position data has 4 records

number of spheres, volume size parameter: 375 0.14422E+02

position file:ran375fvp1.pos

output file:example_1.dat

length, ref. indx. scale factors: 2.000 1.310 0.100

thetamin, thetamax, num. theta: 0.0 180.0 361

epsmie, epssoln, max number iterations: 0.1000E-03 0.1000E-09 2000

plane wave incidence

random orientation calculations

t matrix calculated, stored in file tmatrix-temp.dat

t matrix convergence epsilon: 0.1000E-03

number of processors, number groups, memory per processor: 128 128 917.796

maximum translation matrix storage: 917.7960 MB

minimum translation matrix storage: 917.7960 MB

maximum sphere order: 5

estimated T matrix order: 39

number of equations: 26250

time per iteration: 5.45 sec

time per group solution: 1.65 min

estimated t matrix calcuation time: 41.28 min

n # its qext qabs qsca error est. time rem.

1 16 0.34450E-01 0.11447E-01 0.23003E-01 0.34450E-01 41.28 min

2 16 0.87042E-01 0.29132E-01 0.57910E-01 0.52592E-01 41.28 min

3 16 0.15827E+00 0.53259E-01 0.10501E+00 0.71231E-01 41.28 min

4 16 0.24947E+00 0.84319E-01 0.16515E+00 0.91197E-01 41.28 min

5 16 0.36046E+00 0.12224E+00 0.23822E+00 0.11099E+00 41.28 min

6 16 0.49013E+00 0.16672E+00 0.32340E+00 0.12967E+00 41.28 min

7 16 0.63884E+00 0.21770E+00 0.42114E+00 0.14871E+00 41.28 min

8 16 0.80638E+00 0.27489E+00 0.53150E+00 0.16755E+00 39.52 min

9 16 0.99261E+00 0.33865E+00 0.65396E+00 0.18623E+00 39.52 min

10 16 0.11980E+01 0.40888E+00 0.78915E+00 0.20542E+00 39.52 min

11 14 0.14224E+01 0.48543E+00 0.93692E+00 0.22432E+00 40.83 min

12 14 0.16638E+01 0.56818E+00 0.10956E+01 0.24146E+00 40.83 min

13 15 0.19214E+01 0.65672E+00 0.12646E+01 0.25754E+00 36.57 min

14 15 0.21965E+01 0.75106E+00 0.14454E+01 0.27516E+00 36.57 min

15 15 0.24885E+01 0.85160E+00 0.16369E+01 0.29199E+00 36.57 min

16 15 0.27937E+01 0.95747E+00 0.18362E+01 0.30516E+00 36.88 min

(and after some time...)

35 14 0.74080E+01 0.27411E+01 0.46668E+01 0.15455E-02 10.28 min
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36 15 0.74084E+01 0.27415E+01 0.46670E+01 0.48490E-03 9.07 min

37 15 0.74086E+01 0.27416E+01 0.46670E+01 0.14070E-03 6.65 min

38 15 0.74086E+01 0.27416E+01 0.46670E+01 0.37832E-04 4.51 min

T matrix converged, order: 38

execution time: 46.72 min

t matrix read time: 20.85 sec

d matrix calculation, order+degree per proc.: 46.32

d matrix time: 10.26 sec

scat matrix coef time: 1.88 sec

The processors for this particular run are set up so that each processor independently performs a solution
to Eq. (34), i.e., N1 = 1 and N2 = 128 (Sec. (3.3)). This requires the processor to store the complete set
of translation matrices, which amount to around 1 GB. The number of equations in the listing refers to
the number of unknowns in Eqs. (5). The columns show the current order to the T matrix solution, the
average number of iterations required for a solution, the current values of random–orientation efficiency
factors (defined relative to the volume mean size parameter), the error, and the estimated time required for
the solution to complete. The time estimate is just that – it can be too low or too high – but it typically
is in the right ballpark. Note that the first set of solutions to Eqs. (34) performed by the 128 processors
covered orders 1-7 (7 orders would require 2 · 7 · 9 = 126 solutions, including degree and mode), and the first
seven orders listed therefore have the same estimated time remaining. The T matrix for this run converged
in 38 orders, and the actual execution time was 46.7 min. The last few lines list the times associated
with calculating the expansion coefficients for the random orientation scattering matrix; this calculation will
typically be a small fraction of the overall computation.

The output file is example_1.dat, and a selection of the file is shown in Fig. 4. The sphere positions for
the position file used in the calculations are ordered from the center of the cluster outwards, and the results
show a relative decrease in absorption for spheres closer to the center; this is expected because propagation
of radiation into the cluster is attenuated by absorption.

4.2 Electric field distribution in a slab of spheres

This example run calculates the electric field distribution in and about a cylindrically–shaped cluster. Again,
the run was performed using the original MSTM code, and expect some differences between the output formal
shown here and what you get with the newer versions. The target, illustrated in Fig. 5, consists of NS = 3000
identical spheres with xS = 4, m = 1.6 + 0.01i, and χ = 0, uniformly and randomly packed into a circular
cylinder of radius = axial length, with an average volume fraction of 0.5. The target is excited with an
x̂–polarized Gaussian profile beam of width kω0 = 20 (gaussian_beam_constant=0.05) which propagates
along the axis of the cylindrical target and is focussed on the target center.

The input file for the run is as follows

number_spheres

3000

sphere_position_file

cyl3000fvp5.pos

output_file

example_2a.dat

run_print_file

run.dat

length_scale_factor

25

example_1.dat
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Figure 4: Output file listing for example 1.
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Figure 5: NS = 3000 sphere target

4.d0

real_ref_index_scale_factor

1.6d0

imag_ref_index_scale_factor

0.01d0

fixed_or_random_orientation

0

track_iterations

1

calculate_scattering_coefficients

1

scattering_coefficient_file

amn_cylslab.dat

scattering_plane_angle_deg

0.d0

incident_azimuth_angle_deg

0.d0

incident_polar_angle_deg

0.d0

gaussian_beam_constant

0.05d0

gaussian_beam_focal_point

0.d0,0.d0,0.d0

calculate_near_field

1

near_field_plane_coord

1
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near_field_plane_position

0.d0

near_field_plane_vertices

-80.d0,-80.d0,80.d0,80.d0

spacial_step_size

.2d0

polarization_angle_deg

0.d0

near_field_output_file

nf-temp.dat

near_field_output_data

1

plane_wave_epsilon

0.01d0

The job was run on 128 processors. After about 10 minutes of run time, the intermediate output file run.dat
contains

input file is mstm.inp

position data has 4 records

number of spheres, volume size parameter: 3000 0.57690E+02

position file:cyl3000fvp5.pos

output file:example_2a.dat

length, ref. indx. scale factors: 4.000 1.600 0.010

thetamin, thetamax, num. theta: 0.0 180.0 181

epsmie, epssoln, max number iterations: 0.1000E-03 0.1000E-09 2000

gaussian incident beam: 1/width: 0.0500

beam focal point: 0.000 0.000 0.000

fixed orientation calculations

scattering plane, incident alpha, beta: 0.00 0.00 0.00

common expansion epsilon: 0.1000E-02

scattering coefficients calculated, stored in file amn_cylslab.dat

near field calculated, stored in file nf-temp.dat

near field data output option: 2

near field plane, position: 1 0.000

near field plane vertices: -80.000 -80.000 80.000 80.000

spacial step size: 0.2000

polarization angle, deg.: 0.00

plane wave epsilon: 0.10000E-01

number of processors, number groups, memory per processor: 128 1 1107.756

maximum translation matrix storage:1134.3418 MB

minimum translation matrix storage:1087.0775 MB

maximum sphere order: 7

estimated T matrix order: 101

number of equations: 378000

time per iteration: 38.04 sec

iter, err: 1 0.30257E+02

iter, err: 2 0.25037E+03

iter, err: 3 0.35267E+04

iter, err: 4 0.58164E+01

iter, err: 5 0.74634E+01
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iter, err: 6 0.37805E+02

iter, err: 7 0.14465E+03

iter, err: 8 0.27319E+02

This shows that the calculation consists of solving 3.78×105 complex–values equations for the two incident
polarization states. This solution will take some time to converge via iteration – almost nine hours, in this
case – and that is why the track_iterations option is set; it allows one to gauge whether the solution is
getting anywhere. The final lines of the run file appear as

iter, err: 850 0.37878E-09

iter, err: 851 0.20156E-09

iter, err: 852 0.17621E-09

max iterations, soln error: 937 0.84522E-10

execution time: 8.576 hours

near field calculations

plane, position: 1 0.000

rectangular plot vertices:

min: -80.000 -80.000

max: 80.000 80.000

number of plotting points, step size: 641601 0.200

max plane wave order: 127

estimated time remaining: 6.79 min

estimated time remaining: 4.96 min

estimated time remaining: 3.17 min

estimated time remaining: 1.56 min

estimated time remaining: 0.00 sec

The near field grid specified in the input file consists of the square on the y − z plane of −80 ≤ ky ≤ 80

and −80 ≤ kz ≤ 80, with a step size of ∆ky = ∆kz = 0.2. The polarization angle is 0, i.e., in the β̂ direction,
and since β = 0 (incidence along the z axis), the incident polarization points in the x direction. The plane
on which the field is mapped is therefore perpendicular to the incident polarization direction. Figure 6 shows
results from the calculations. Plotted is the real part of the x component of electric field. The plot on the
left is the grid generated by the original input file, and the plot on the right provides a higher resolution map
in the region of the focal point. Numbers for the second plot were generated from a recalculation of the field
distribution using the scattering coefficients generated from the original calculation. Per the information in
run.dat, calculation of the near field values required around 7 minutes, as opposed to around 9 hours to
calculate the scattering coefficients. The input file for this second run is

number_spheres

3000

sphere_position_file

cyl3000fvp5.pos

output_file

temp.dat

run_print_file

run.dat

length_scale_factor

4.d0

real_ref_index_scale_factor

1.6d0

imag_ref_index_scale_factor

29



Figure 6: Re x̂ ·E distributions, y − z plane, x = 0.
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amn_cylslab.dat
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0.d0
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0.d0
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0.d0
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calculate_near_field

1
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near_field_plane_position

0.d0

near_field_plane_vertices

-25.d0,-50.d0,25.d0,0.d0

spacial_step_size

.1d0

polarization_angle_deg

0.d0

near_field_output_file

nf-temp.dat

near_field_output_data

2

plane_wave_epsilon

0.01d0

A 3–D representation of the field – in which the z axis is represented by time – is shown in the animation
cyl-z-movie5.avi. The animation shows a color density plot of |E|2 in the x−y planes, with the animation
variable being the z position of the plane. Sphere boundaries are denoted by black lines, and they grow and
diminish as the plane sweeps through the spheres. The localization and diffusion of the field can be directly
observed. The frames for the animation were created by a simple modification of the main program, and
this modification is discussed in the next section.

5 Code elements and customization

The prepackaged main program allows for a wide set of calculation and output options, yet many users may
prefer to modify the main program to enable a looped set of calculations (i.e., over a set range of sphere
size parameters or incident angles) or to generate output not provided by the standard package (such as
scattering matrix values over a hemisphere or near field values on a non–rectangular grid). The purpose of
this section is to describe the basic structure, calculation sequence, and subroutine calling conventions, with
the intention of giving the user sufficient information to modify the code to their own purposes.

5.1 Standard main program structure

The listing for the standard main program is sparsely commented. Given here is a more detailed description
of the code. The preamble (declarations) is skipped, yet note that the implicit none convention is used
throughout and all variables must be explicitly declared.

1. Read input file parameters and options (using either the default input file or that specified from the
command line):

printinputdata=1

numargs=mstm_nargs()

if(numargs.eq.0) then

inputfile=’mstm.inp’

else

call mstm_getarg(inputfile)

endif

call inputdata(inputfile,printinputdata)
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mstm_nargs and mstm_getarg is aliases for command line number of arguments and retrieval. These
functions/subroutines need to be defined appropriate to the user’s compiler in mstm-intrinsics.f90.

2. Retrieve run and sphere variables, and allocate arrays:

call getspheredata(number_spheres=nsphere)

allocate(xsp(nsphere),rpos(3,nsphere),nodr(nsphere),ntran(nsphere), &

ri(2,nsphere),sphereblk(nsphere),sphereoff(nsphere+1))

call getspheredata(sphere_size_parameters=xsp,sphere_positions=rpos, &

sphere_refractive_indices=ri,volume_size_parameter=xv)

call getrunparameters(mie_epsilon=epsmie,translation_epsilon=epstran, &

solution_epsilon=epssoln,max_number_iterations=niter, &

fixed_or_random_orientation=fixedorrandom,output_file=outfile, &

min_scattering_angle_deg=theta1d,max_scattering_angle_deg=theta2d, &

number_scattering_angles=numtheta,gaussian_beam_constant=cbeam, &

gaussian_beam_focal_point=gbfocus,run_print_unit=runprintunit, &

max_memory_per_processor=maxmbperproc, &

normalize_scattering_matrix=normalizesm, &

store_translation_matrix=storetranmat, &

near_field_distance=nfdistance, &

iterations_per_correction=niterstep)

if(numtheta.gt.0) then

allocate(smt(4,4,numtheta))

endif

The arrays xsp, rpos, ri, nodr, ntran are the size parameters, x, y, z positions, L and R refractive
indices (ri(1,i) and ri(2,i)), and sphere–based and target–based order limits for the spheres. The
subroutines getspheredata and getrunparameters retrieve the sphere and run information as read
from the input and sphere position files. The following loop determines if optical activity is present –
which will be the case when any of the spheres has different L and R refractive indices.

nonactive=1

do i=1,nsphere

if(cdabs(ri(1,i)-ri(2,i)).gt.1.d-10) then

nonactive=0

exit

endif

enddo

3. Calculate single–sphere properties (Mie coefficients, expansion order limits, etc.):

call miecoefcalc(nsphere,xsp,ri,epsmie)

call getmiedata(sphere_order=nodr,max_order=nodrmax,number_equations=neqns, &

sphere_block=sphereblk,sphere_block_offset=sphereoff)

The arrays sphereblk, sphereoff are used to define the address of the scattering coefficients for a
particular sphere in a single, compacted array containing the scattering coefficients for all the spheres.
neqns is the number of complex equations in Eq. (5).

4. Initiate the MPI environment and determine the distribution of processors into groups for T matrix
calculation:
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call ms_mpi(mpi_command=’init’)

call ms_mpi(mpi_command=’size’,mpi_size=numprocs)

call ms_mpi(mpi_command=’rank’,mpi_rank=rank)

call mpisetup(nsphere,nodr,rpos,fixedorrandom,maxmbperproc,storetranmat, &

nfdistance,fftranpresent,runprintunit)

call ms_mpi(mpi_command=’barrier’)

call mpirottranmtrxsetup(nsphere,nodr,rpos,(1.d0,0.d0),storetranmat,&

nfdistance,runprintunit)

call ms_mpi(mpi_command=’barrier’)

Precisely what happens in this step depends on whether the code is run on a serial (compiled with
mpidefs-serial.f90) or a parallel (mpdefs-parallel.f90) machine. Note that only aliases of the
MPI instructions appear in the main program and the subroutines in mstm-modules.f90; the con-
nections between the aliases and the actual MPI instructions are contained in either mstm-parallel
or mstm-serial. When a serial job is run, the MPI instructions basically do nothing except return.
The structure of the MPI alias subroutine calls will be discussed in a subsequent section. numprocs

and rank are the number of processors and rank (processor ID) for the run. Subroutine mpisetup

partitions the processors into groups for solution of Eq. (34). It also determines the near field groups
for the hybrid CBGM; fftranpresent is an integer (0/1) returned by the subroutine which indicates
whether far field translations are present. Subroutine mpirotranmtrxsetup calculates and stores the
translations matrices for the interaction equations.

5. Determine the orders required to expand the sphere–based expansions about the target origin:

call tranorders(nsphere,nodr,rpos,epstran,ntran,nodrt)

6. The code now reaches a branch based on the fixed or random orientation option.
If fixed_or_random_orientation = 1 (random orientation option), then

6.a. Calculate the T matrix per the sequential solutions to Eq. (34) and write/append to file, or read
the T matrix from the specified file:

call getrunparameters(calculate_t_matrix=calctmatrix,t_matrix_file=tmatrixfile, &

t_matrix_convergence_epsilon=epstcon)

allocate(qext(nsphere,1), qabs(nsphere,1), qsca(nsphere,1))

if(calctmatrix.ge.1) then

if(rank.eq.0) time1=mytime()

call tmatrixsoln(neqns,nsphere,nodr,nodrt,xsp,rpos,epssoln,epstcon,niter,&

calctmatrix,tmatrixfile,fftranpresent,niterstep,qext,qabs,qsca,istat)

if(rank.eq.0) then

time2=mytime()-time1

call timewrite(runprintunit,’ execution time:’,time2)

endif

call rottranmtrxclear()

else

if(rank.eq.0) then

open(3,file=tmatrixfile)

read(3,*) nodrt

close(3)

write(runprintunit,’(’’ t matrix order:’’,i5)’) nodrt
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call flush(runprintunit)

endif

nodrta(1)=nodrt

call ms_mpi(mpi_command=’bcast’,mpi_send_buf_i=nodrta,mpi_number=1,mpi_rank=0)

nodrt=nodrta(1)

call ms_mpi(mpi_command=’barrier’)

endif

The subroutine tmatrixsoln is called only to calculate elements of the T matrix, either from the
beginning or from the next order of a partially–calculated matrix. If calctmatrix = 0, indicating
the T matrix already exists in the file, the file is opened and the order nodrt of the T matrix is
read and broadcast to the other processors.

6.b. Calculate the random orientation efficiency factors, the scattering matrix expansion coefficients,
and the scattering matrix values for the specified range of scattering angles:

nblkt=nodrt*(nodrt+2)

nodrg=nodrt*2

allocate(smc(4,4,0:nodrg))

call ranorientscatmatrix(xv,nsphere,nodrt,nodrg,cbeam, &

tmatrixfile,smc,qext,qabs)

if(rank.eq.0) then

qexttot=sum(qext(:,1)*xsp*xsp)/xv/xv

qabstot=sum(qabs(:,1)*xsp*xsp)/xv/xv

qscatot=qexttot-qabstot

asymparm=dble(smc(1,1,1)/smc(1,1,0))/3.d0

call ranorienscatmatrixcalc(numtheta,theta1d,theta2d,&

1,smc,nodrg,smt)

endif

smc is the array of scattering matrix expansion coefficients and smt is the 4×4×numtheta array
of scattering matrix values. Only the upper triangular elements are computed.

7. If fixed_or_random_orientation = 0 (fixed orientation option), then

7.a. Calculate the sphere scattering coefficients per solution to Eq. (5) for the set α, β and write to
file, or read sphere scattering coefficients from file:

call getrunparameters(calculate_scattering_coefficients=calcamn, &

scattering_coefficient_file=amnfile, &

scattering_plane_angle_deg=phideg, &

incident_azimuth_angle_deg=alphadeg, &

incident_polar_angle_deg=betadeg, &

track_iterations=trackiterations)

alpha=alphadeg*pi/180.d0

beta=betadeg*pi/180.d0

phi=phideg*pi/180.d0

allocate(amnp(neqns,2))

allocate(qext(nsphere,3), qabs(nsphere,3), qsca(nsphere,3))

if(calcamn.eq.1) then

if(rank.eq.0) time1=mytime()

call fixedorsoln(neqns,nsphere,nodr,alpha,beta,cbeam,xsp,rpos,epssoln,&
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epstran,niter,amnp,qext,qabs,qsca,maxerr,maxiter,trackiterations, &

fftranpresent,niterstep,istat)

if(rank.eq.0) then

time2=mytime()-time1

write(runprintunit,’(’’ max iterations, soln error:’’,i6,e13.5)’) &

maxiter,maxerr

call timewrite(runprintunit,’ execution time:’,time2)

open(3,file=amnfile)

do i=1,nsphere

write(3,’(6e13.5)’) qext(i,:),qabs(i,:),qsca(i,:)

allocate(amnp1(0:nodr(i)+1,nodr(i),2),amnp2(0:nodr(i)+1,nodr(i),2))

ip1=sphereoff(i)+1

ip2=sphereoff(i)+sphereblk(i)

amnp1=reshape(amnp(ip1:ip2,1),(/nodr(i)+2,nodr(i),2/))

amnp2=reshape(amnp(ip1:ip2,2),(/nodr(i)+2,nodr(i),2/))

do n=1,nodr(i)

do m=-n,n

if(m.le.-1) then

ma=n+1

na=-m

else

ma=m

na=n

endif

write(3,’(4e17.9)’) amnp1(ma,na,1),amnp2(ma,na,1)

write(3,’(4e17.9)’) amnp1(ma,na,2),amnp2(ma,na,2)

enddo

enddo

deallocate(amnp1,amnp2)

enddo

close(3)

endif

else

if(rank.eq.0) then

open(3,file=amnfile)

do i=1,nsphere

read(3,’(6e13.5)’) qext(i,:),qabs(i,:),qsca(i,:)

allocate(amnp1(0:nodr(i)+1,nodr(i),2),amnp2(0:nodr(i)+1,nodr(i),2))

do n=1,nodr(i)

do m=-n,n

if(m.le.-1) then

ma=n+1

na=-m

else

ma=m

na=n

endif

read(3,’(4e17.9)’) amnp1(ma,na,1),amnp2(ma,na,1)

read(3,’(4e17.9)’) amnp1(ma,na,2),amnp2(ma,na,2)

enddo
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enddo

ip1=sphereoff(i)+1

ip2=sphereoff(i)+sphereblk(i)

amnp(ip1:ip2,1)=reshape(amnp1(0:nodr(i)+1,1:nodr(i),1:2),(/sphereblk(i)/))

amnp(ip1:ip2,2)=reshape(amnp2(0:nodr(i)+1,1:nodr(i),1:2),(/sphereblk(i)/))

deallocate(amnp1,amnp2)

enddo

close(3)

endif

nsend=neqns*2

call ms_mpi(mpi_command=’bcast’,mpi_send_buf_dc=amnp,mpi_number=nsend,mpi_rank=0)

endif

For most applications, the VSWH expansion functions such as amnp are stored in a rank–3 matrix,
with elements given by

amnp =

{
a(n+ 1,−m, p), −n ≤ m ≤ −1

a(m, n, p), 0 ≤ m ≤ n
(46)

The dimensions of the array a are a(0:L+1,L,2), where L is the maximum order. The subroutine
fixedorsoln returns a rank-2 array amnp(neqns,2), in which the second dimension denotes the
incident polarization state (β or α) and the first dimension contains the corresponding scattering
coefficients for the spheres, in fortran–convention compacted order.

7.b. Calculate the sphere efficiency factors (for parallel and perpendicular polarization to the scattering
plane), the common–origin, rotated scattered field expansion, and the scattering matrix values
for the set range of scattering angles:

cphi=cos(phi)

sphi=sin(phi)

qexttotpar=sum((qext(:,1)*cphi*cphi+2.d0*qext(:,3)*cphi*sphi+qext(:,2)*sphi*sphi) &

*xsp*xsp)/xv/xv

qexttotper=sum((qext(:,1)*sphi*sphi-2.d0*qext(:,3)*cphi*sphi+qext(:,2)*cphi*cphi) &

*xsp*xsp)/xv/xv

qabstotpar=sum((qabs(:,1)*cphi*cphi+2.d0*qabs(:,3)*cphi*sphi+qabs(:,2)*sphi*sphi) &

*xsp*xsp)/xv/xv

qabstotper=sum((qabs(:,1)*sphi*sphi-2.d0*qabs(:,3)*cphi*sphi+qabs(:,2)*cphi*cphi) &

*xsp*xsp)/xv/xv

qscatotpar=qexttotpar-qabstotpar

qscatotper=qexttotper-qabstotper

qexttot=(qexttotpar+qexttotper)*.5d0

qabstot=(qabstotpar+qabstotper)*.5d0

qscatot=(qscatotpar+qscatotper)*.5d0

qext(:,1)=(qext(:,1)+qext(:,2))*.5d0

qabs(:,1)=(qabs(:,1)+qabs(:,2))*.5d0

qsca(:,1)=(qsca(:,1)+qsca(:,2))*.5d0

call rottranmtrxclear()

allocate(amnp0(0:nodrt+1,nodrt,2,2),pmnp0(0:nodrt+1,nodrt,2,2))

do k=1,2

call amncommonorigin(neqns,nsphere,nodr,ntran,nodrt,rpos, &

amnp(1:neqns,k),amnp0(0:,1:,1:,k))
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call rotvec(alpha,beta,0.d0,nodrt,nodrt,amnp0(0:,1:,1:,k),1)

enddo

allocate(gmn(0:2))

call s11expansion(amnp0,nodrt,0,1,gmn)

asymparm=dble(gmn(1)/gmn(0))/3.d0

do i=1,numtheta

thetad=theta1d+(theta2d-theta1d)*(i-1)/max(1.d0,dble(numtheta-1))

costheta=cos(thetad*pi/180.d0)

call scatteringmatrix(amnp0,nodrt,xv,costheta,phi,sa,smt(:,:,i))

enddo

deallocate(amnp0,pmnp0,gmn)

8. Write calculation results to output file. These steps are straightforward and need no explanation aside
from the code list.

9. If fixed_or_random_orientation = 0 and calculate_near_field = 1, calculate the near field values
on the specified array and write to the near field output file.

if(fixedorrandom.eq.0) call getrunparameters(calculate_near_field=calcnf)

if(fixedorrandom.eq.0.and.calcnf.eq.1) then

call getrunparameters(near_field_plane_coord=nfplane, &

near_field_plane_position=nfplanepos,near_field_plane_vertices=nfplanevert, &

spacial_step_size=deltax,polarization_angle_deg=gammadeg, &

near_field_output_file=nfoutfile,near_field_output_data=nfoutdata, &

plane_wave_epsilon=epspw)

nfoutunit=2

if(rank.eq.0) then

open(nfoutunit,file=nfoutfile)

endif

gamma=gammadeg*pi/180.d0

call nearfieldgridcalc(neqns,nsphere,nodr,alpha,beta,cbeam,xsp,rpos,ri,amnp, &

nfplane,nfplanepos,nfplanevert,deltax,gamma,nfoutunit,epspw, &

nfoutdata,runprintunit)

if(rank.eq.0) then

close(nfoutunit)

endif

endif

5.2 MPI alias instructions

To facilitate the compilation and execution of the code on both serial and parallel machines, the main program
and the subroutine modules employ aliases to the standard MPI instruction set. The association of the aliases
with the MPI commands is performed solely within mpidefs-serial.f90 or mpidefs-parallel.f90. The
general format of the call to the alias subroutine is as follows

call ms_mpi(mpi_command=command ,mpi_recv_buf_type =recvbuf , &

mpi_send_buf_type =sendbuf ,mpi_number=number , &

mpi_comm=comm ,mpi_group=group ,mpi_rank=rank , &

mpi_size=size ,mpi_new_comm=newcom , &

mpi_new_group=newgroup ,mpi_new_group_list=newgrouplist , &

mpi_operation=operation )
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All of the arguments are optional with the exception of mpi_command, and usage of the subroutine involves
the keyword format as shown above. The arguments are as follows:

mpi_command: Character string denoting MPI command. Options are ’init’, ’finalize’, ’size’, ’rank’, ’group’,
’incl’, ’create’, ’barrier’, ’bcast’, ’send’, ’recv’, ’reduce’, and ’allreduce’, and the commands correspond
directly to the associated MPI standard instructions.

mpi_send_buf_type: Send buffer for MPI operations. Options for type are i (integer), r (single precision
real), c (single precision complex), dp (double precision), and dc (double precision complex). If the
command is either ’reduce’ or ’allreduce’, and mpi_send_buf_type is not present in the argument list,
the subroutine defaults to mpi_send_buf_type = mpi_in_place. The variable associated with the
buffer must be an array of at least rank 1; if you need to send a single scalar element, you need to
equate it to a scratch array of rank 1 and length 1. For example,

integer :: nodrt

call ms_mpi(mpi_command=’bcast’,mpi_send_buf_i = nodrt, . . .

will likely produce a compilation error. The way to do it is

integer :: nodrt, nodrt_temp(1)

nodrt_temp(1)=nodrt

call ms_mpi(mpi_command=’bcast’,mpi_send_buf_i = nodrt_temp, . . .
nodrt=nodrt_temp(1)

mpi_recv_buf_type: Receive buffer for MPI operations. Options for type are the same as above.

mpi_number: Number of buffer elements sent/received. Integer.

mpi_comm: MPI communicator, integer. Default (if not present) is mpi_comm_world.

mpi_group: MPI group, integer.

mpi_rank: MPI rank, integer.

mpi_size: MPI size (number of processors in group and/or communicator), integer.

mpi_new_comm: MPI communicator handle for new group creation, integer. Associated with ’create’ com-
mand.

mpi_new_group: MPI group ID for new group creation, integer. Associated with ’incl’ command

mpi_new_group_list: Listing of processor ranks for new group , integer rank 1 array. Associated with
’incl’ command.

mpi_operation: Operation command for ’reduce’ and ’allreduce’ commands. Options are ms_mpi_max,
ms_mpi_min, and ms_mpi_sum. These three variables are integers and are defined globally once the ’init’
command has been called, so the sum operation would be invoked by mpi_operation = ms_mpi_sum,
as written.

Observe that there is no mpi_type argument to the ms_mpi subroutine. The buffer type is now implicit in
the type of the send and/or receive buffer, i.e., i, r, etc.
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5.3 Code modification and customizing

The user with average fortran knowledge should be able to modify the main program to suit their specialized
computational needs. As an aid to such projects, a modified main program mstm-generic-main.f90 has
been provided in the distribution, and is intended to serve as a template for user customization. The
generic main eliminates the command line retrieval and input file operations, and all calculation variables
and parameters are hardwired (i.e., explicitly defined) in the code. The code employs a simple do - enddo

loop to perform repeated calculations over a set parameter range. The basic form of this main program was
used to generate the animation frames in the examples shown in mstm_gallery.pdf.

6 Revisions

1.2 (21 February 2011)

• The normalization of the phase function S11 was changed to

1

2

∫ π

0

S11(θ) sin θ dθ = 1

• Fixed orientation results now output the efficiency factors for parallel and perpendicular polarization.

• A bug was fixed in the calculation of the fixed orientation scattering matrix. Additional bug fixes for
calling of flush subroutine and opening/closing the input file.

• An appendix was added to the manual, for defining the definitions of the various mathematical quan-
tities. This appendix will expand with time.

2.1 (30 March 2011)

• The formulation was extended to include optically active spheres. This was more of a major than a
minor modification; roughly 1/3 of the subroutines needed alteration to account for the presence of left
and right refractive index values. Optical activity results in a very minor slowdown in performance,
when compared against calculations done using a non-active code; this is due to the added complexity
in iterating Eq. (5) as a result of the TE and TM mode coupling for optically active spheres.

• Miscellaneous input and output options were added, in response to user suggestions.

2.2 (11 November 2011)

• The hybrid CBGM was installed to limit memory use without sacrificing execution time; this modifi-
cation was in response to suggestions receive from a number of users. In addition, a new recurrence
formula was added to calculate the translation matrix elements for axial translation; this is described
in the mathematical section.
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Appendix: Mathematical relations and definitions

The purpose of this section is to identify the various mathematical quantities appearing in the formulation,
and to link the quantities with their coding. Two resources will be used for coding, being 1) the MSTM Fortran-
90 subroutines and functions, and 2) the Mathematica symbolic mathematics package. More often than
not, the definitions of functions presented here will not entirely line up with ”traditional” or ”established”
definitions. In particular, the normalizations used for harmonic functions can be different than reported
elsewhere.

Optically active formulation

The defining characteristic of OA media is that only circularly polarized, homogenous plane waves can
propagate in such media without undergoing a change in polarization state. Following the formulation of
Bohren and Huffman [8], the electric and magnetic fields propagating within OA media can be constructed
from a linear transformation of left and right expansion functions[8], denoted as QL and QR, i.e,(

E
H

)
= A

(
QL

QR

)
(47)

in which the matrix A is

A =

(
1 −i/m

−i m 1

)
(48)

The Q expansion functions satisfy

∇×QL = kL QL (49)

∇×QR = −kR QR (50)

in which kL = 2πmL/λ and kR = 2πmR/λ are the left and right wavenumbers for the medium, with mL

and mR denoting the relative refractive indices for left and right circularly polarized light. The left and right
refractive indices are related to the average (or bulk) refractive index m by

m =
2

1/mL + 1/mR
(51)

In addition, the left and right refractive indices can be specified by the average m and a complex chiral factor
χ by

mL =
m

1− χm
, mR =

m

1 + χm
(52)

The Q expansion functions can be represented in the interior of an OA sphere by expansions of the

regular VSWF N
(1)
mnp(kr), of order n, degree m, and mode p = 1 (TM) or 2 (TE). The VSWFs satisfy the

vector Helmholtz equation
∇2N(1)

mnp(kr) + k2N(1)
mnp(kr) = 0 (53)

as well as
∇×N

(1)
mn1(kr) = kN

(1)
mn2(kr), ∇×N

(1)
mn2(kr) = kN

(1)
mn1(kr) (54)
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With this set of basis functions, formulas for the Q expansion functions will appear as

QL(r) =
∑
n=1

n∑
m=−n

cmnL

(
N

(1)
mn1(kLr) +N

(1)
mn2(kLr)

)
(55)

QR(r) =
∑
n=1

n∑
m=−n

cmnR

(
N

(1)
mn1(kRr)−N

(1)
mn2(kRr)

)
(56)

in which cmnL and cmnR denote the sought expansion coefficients for the internal field.
Exterior to the sphere, the incident and scattered fields will be represented by the usual expansions of

regular and outgoing VSWF, i.e.,

Einc(r) =
∑
n=1

n∑
m=−n

2∑
p=1

fmnp N
(1)
mnp(k r) (57)

Esca(r) =
∑
n=1

n∑
m=−n

2∑
p=1

amnp N
(3)
mnp(k r) (58)

in which the expansion coefficients f for the incident field will depend on the direction and polarization state
of the field. Evaluation of the continuity conditions at the sphere surface will yield a linear relation between
the scattering and incident field coefficients, of the form

amnp =
2∑

q=1

an; pq fmnq (59)

in which the coefficients a will be a function of the sphere size parameter ka and the left and right refractive
indices. These are analogous to the Lorenz–Mie coefficients for non active spheres. Explicit formulas are

an;11 = −Vn(L)An(R) + Vn(R)An(L)

Dn
(60)

an;22 = −Wn(L)Bn(R) +Wn(R)Bn(L)

Dn
(61)

an;12 = an;21 =
Wn(L)An(R) +Wn(R)An(L)

Dn
(62)

Dn =Wn(L)Vn(R) +Wn(R)Vn(L) (63)

Wn(J) = − (ξn(x)ψ
′
n(xmJ )) +mψn(xmJ ) ξ

′
n(x) (64)

Vn(J) = − (m ξn(x)ψ
′
n(xmJ)) + ψn(xmJ) ξ

′
n(x) (65)

An(J) = mψn(xmJ)ψ
′
n(x)− ψn(x)ψ

′
n(xmJ ) (66)

Bn(J) = ψn(xmJ)ψ
′
n(x)−mψn(x)ψ

′
n(xmJ ) (67)

in which ψn and ξn denote the Ricatti–Bessel and Ricatti–Hankel functions. The coefficients for the internal
fields can be related to the scattering coefficients, again by application of the surface continuity conditions.
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The formulas are

cnmL = cn;L1 amn1 + cn;L2 amn2 (68)

cnmR = cn;R1 amn1 + cn;R2 amn2 (69)

cn;L1 = − i mLBn(R)

Fn
(70)

cn;L2 = − i mLAn(R)

Fn
(71)

cn;R1 =
mR mBn(L)

Fn
(72)

cn;R2 = −mR mAn(L)

Fn
(73)

Fn = An(L)Bn(R) +An(R)Bn(L) (74)

The most salient feature of the single–sphere formulation, with respect to the extension of the formulation
to multiple spheres, is that the single–sphere TE and TM modes are coupled for optically active spheres.
That is, a TM mode incident field excitation will produce a TE mode scattering component, and visa–versa.
This is in contrast to Lorenz–Mie scattering, for which the excitation and scattering modes are uncoupled.

Vector Spherical Wave Functions

The VSWF used in the formulation and the code are defined by

N
(ν)
mn2(r) =

(
2

n(n+ 1)

)1/2

∇×
(
rψ(ν)

mn(r)
)

(75)

N
(ν)
mn1(r) =

1

k
∇×N

(ν)
mn2(r) (76)

where ψ denotes the scalar wave function;

ψ(ν)
mn(r) =

{
jn(kr)Ymn(cos θ, ϕ) ν = 1
hn(kr)Ymn(cos θ, ϕ) ν = 3

(77)

with jn and hn = jn + i yn representing the spherical Bessel and Hankel functions and Ymn denoting the
spherical harmonic,

Ymn(cos θ, ϕ) =

(
2n+ 1

4π

(n−m)!

(n+m)!

)1/2

Pm
n (cos θ) eimϕ (78)

where Pm
n is the Associated Legendre function.
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The cartesian components of the VSWF are given as

(x̂+ i ŷ) ·N(ν)
mn1(r) = −

(
2

n(n+ 1)(2n+ 1)

)1/2
[
n

(
(n+m+ 1)(n+m+ 2)

2n+ 3

)1/2

ψ
(ν)
m+1n+1(r)

− (n+ 1)

(
(n−m)(n−m− 1)

2n− 1

)1/2

ψ
(ν)
m+1n−1(r)

]
(79)

(x̂− i ŷ) ·N(ν)
mn1(r) =

(
2

n(n+ 1)(2n+ 1)

)1/2
[
n

(
(n−m+ 1)(n−m+ 2)

2n+ 3

)1/2

ψ
(ν)
m−1n+1(r)

+ (n+ 1)

(
(n+m)(n+m− 1)

2n− 1

)1/2

ψ
(ν)
m−1n−1(r)

]
(80)

ẑ ·N(ν)
mn1(r) =

(
2

n(n+ 1)(2n+ 1)

)1/2
[
n

(
(n+m+ 1)(n−m+ 1)

2n+ 3

)1/2

ψ
(ν)
mn+1(r)

+ (n+ 1)

(
(n+m)(n−m)

2n− 1

)1/2

ψ
(ν)
mn−1(r)

]
(81)

(x̂+ i ŷ) ·N(ν)
mn2(r) = −i

(
2(n−m)(n+m+ 1)

n(n+ 1)

)1/2

ψ
(ν)
m+1n(r) (82)

(x̂− i ŷ) ·N(ν)
mn2(r) = −i

(
2(n+m)(n−m+ 1)

n(n+ 1)

)1/2

ψ
(ν)
m−1n(r) (83)

ẑ ·N(ν)
mn2(r) = −im

(
2

n(n+ 1)

)1/2

ψ(ν)
mn(r) (84)

These functions are calculated in the subroutine

subroutine vwhcalc(rpos,ri,nodr,itype,vwh)

and inspection of the subroutine will reveal the roles of the arguments.

Wigner D functions

The definition of the D(n)
mk functions used in the code is

D(n)
mk(x) = (−1)m+k

[
(n− k)!(n+ k)!

(n−m)!(n+m)!

(
1 + x

2

)m+k (
1− x

2

)k−m
]1/2

P
(k−m,k+m)
n−k (x) (85)

where P
(k−m,k+m)
n−k (x) is the Jacobi Polynomial. The Mathematica function definition for the D(n)

mk function
is

drot[m_, n_, k_, x_] := (-1)^(m + k)((n - k)!(n + k)!/(n - m)!/(n + m)!)^(1/2)

((1 + x)/2)^((m + k)/2)((1 - x)/2)^((k - m)/2)JacobiP[n - k, k - m, k + m, x]

The functions are calculated in MSTM via recurrence relations in the subroutine

43



subroutine rotcoef(cbe,kmax,nmax,dc)

which returns an array for |k| ≤ kmax and n = 0, 1, . . . nmax, |m| ≤ n. The function argument cbe = x. The
addressing convention is

dc(k, n ∗ (n+ 1) + m) = D(n)
km

Translation matrix elements

The explicit formula for the translation matrix elements is

Jmnpklq(r) = −(−1)m [4π(2n+ 1)(2l + 1)]
1/2 in−l

n+l−|p−q|∑
|n−l|+|p−q|,2

iw

(2w + 1)1/2
Cw

−mnkl C
w
−1n 1l ψ

(1)
k−mw(r) (86)

The ”2” appearing in the summation limit denotes that w runs over every other value, starting with the lower
and ending with the upper limit. The formula for H is identical, except that the outgoing wave function is
used. The C quantities are shorthand for the Clebsch–Gordan coefficients,

Cw
mnkl = C((n,m), (l, k), (w,m+ k)) (87)

The Mathematica definition of the CG coefficients is simply

cc[m_, n_, k_, l_, w_] := ClebschGordan[{n, m}, {l, k}, {w, m + k}]

The MSTM code uses a recursive procedure to calculate the CG coefficients, employing both downward and
upwards recursion.

Recurrence formula for axial translation

The regular translation matrix obey the following relations;

eik·r Πmnp(cosβ, α) =
∞∑
l=1

l∑
k=−l

2∑
q=1

Jklq mnp(r)Πklq(cosβ, α) (88)

eik·r Π∗
mnp(cosβ, α) =

∞∑
l=1

l∑
k=−l

2∑
q=1

Jmnpklq(r)Π
∗
klq(cosβ, α) (89)

where Πmnp are the vector spherical harmonic functions, and k is a vector pointed in the β, α direction.
For an axial translation k · r = cosβ kz, and azimuth modes become decoupled. Recurrence formulas can
be obtained by differentiating the axial translation formulas with respect to kz and applying recurrence
formulas for the vector spherical harmonic formulas. This results in the ’diamond’–type recurrence formula;

cmnJmn+1pmlq = amnJmn−1pmlq + i (bml − bmn)Jmnpml 3−q + aml Jmnpml−1 q − cml Jmnpml+1 q (90)
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with

aml =

(
(l − 1)(l + 1)(l −m)(l +m)

(2l − 1)(2l + 1)l2

)1/2

bml =
m

l(l + 1)

cml =

(
l(l + 2)(l + 1−m)(l + 1 +m)

(2l + 1)(2l + 3)(l + 1)2

)1/2

The formula in Eq. (90) applies equally to the outgoing translation matrix H. Terms in Eq. (90) correspond-
ing to elements with order < degree are implicitly zero. The recurrence uses the explicit formula in Eq. (86)
to calculate the boundary elements of Jmnpm|m|q and JmnpmLq for n = |m|, |m|+ 1, . . . L (excluding n = 0,
of course), and the recurrence formula is then applied to calculate the remaining elements. This allows the
matrix elements to be calculated in order L3 operations, as opposed to order L4 required from Eq. (86).

Vector spherical harmonics

The vector spherical harmonic (VSH) functions are defined by

Πmn1(cos θ, ϕ) = (−i)n+1 r

(
1

n(n+ 1)

)1/2

∇Ymn((cos θ, ϕ)) (91)

Πmn2(cos θ, ϕ) = i r̂×Πmn1(cos θ, ϕ) (92)

and are functionally given by

Πmnp(cos θ, ϕ) = (−i)n+1 (τmnp(cos θ) êθ + iτmn3−p(cos θ) êϕ) e
imϕ (93)

τmn1(x) = −
(
1− x2

)1/2( 2n+ 1

4πn(n+ 1)

(n−m)!

(n+m)!

)1/2
dPm

n (x)

dx
(94)

τmn2(x) = m
(
1− x2

)−1/2
(

2n+ 1

4πn(n+ 1)

(n−m)!

(n+m)!

)1/2

Pm
n (x) (95)
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