ga_gpu.h
25.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
#ifndef GA_GPU_H
#define GA_GPU_H
#include <iostream>
#include <thread>
#include <complex>
//#include <cv.h>
#include <stdio.h>
#include <stdlib.h>
#include <iostream>
#include "timer.h"
#include "basic_functions.h"
//LAPACKE support for Visual Studio
#ifndef LAPACK_COMPLEX_CUSTOM
#define LAPACK_COMPLEX_CUSTOM
#define lapack_complex_float std::complex<float>
#define lapack_complex_double std::complex<double>
#include "lapacke.h"
#endif
#define LAPACK_ROW_MAJOR 101
#define LAPACK_COL_MAJOR 102
//CUDA functions
void gpuIntialization(unsigned int** gpuP, size_t p, size_t f, //variables required for the population allocation
float** gpuCM, float* cpuCM, size_t nC, unsigned int ub,
float** gpuM, float* cpuM, unsigned int** gpu_nPxInCls,
float** gpuSb, float** gpuSw,
float** gpuF, float* cpuF,
unsigned int** gpuT, unsigned int* cpuT, size_t tP, unsigned int* cpu_nPxInCls);
void gpucomputeSbSw(unsigned int* gpuP, unsigned int* cpuP, size_t p, size_t f,
float* gpuSb, float* cpuSb,
float* gpuSw, float* cpuSw,
float* gpuF, unsigned int* T, float* gpuM, float* gpuCM,
size_t nC, size_t tP, cudaDeviceProp props, size_t gen, size_t gnrtn, size_t ub, unsigned int* gpu_nPxInCls, std::ofstream& profilefile);
void gpuDestroy(unsigned int* gpuP, float* gpuCM, float* gpuM, unsigned int* gpu_nPxInCls, float* gpuSb, float* gpuSw, float* gpuF, unsigned int* gpuT);
struct _fcomplex { float re, im; };
typedef struct _fcomplex fcomplex;
Timer timer;
class ga_gpu {
public:
float* F; //pointer to the raw data in host memory
unsigned int* T; //pointer to the class labels in host memory
size_t gnrtn; //total number of generations
size_t p; //population size
size_t f; // number of features to be selected
unsigned int* P; //pointer to population of current generation genotype matrix (p x f)
float* S; //pointer to score(fitness value) of each gnome from current population matric P
unsigned int* i_guess; //initial guess of features if mentioined in args add to initial population
unsigned int ub; //upper bound for gnome value (maximum feature index from raw feature matrix F)
unsigned int lb; //lower bound for gnome value (minimum feature index from raw feature matrix F = 0)
float uniformRate;
float mutationRate;
size_t tournamentSize; //number of potential gnomes to select parent for crossover
bool elitism; //if true then passes best gnome to next generation
//declare gpu pointers
float* gpuF; //Feature matrix
unsigned int* gpuT; //target responses of entire feature matrix
unsigned int* gpuP; //population matrix
unsigned int* gpu_nPxInCls;
float* gpuCM; //class mean of entire feature matrix
float* gpuM; //total mean of entire feature matrix
float* gpuSb; //between class scatter for all individuals of current population
float* gpuSw; //within class scatter for all individuals of current population
//constructor
ga_gpu() {}
//==============================generate initial population
void initialize_population(std::vector<unsigned int> i_guess, bool debug) {
if (debug) {
std::cout << std::endl;
std::cout << "initial populatyion is: " << std::endl;
}
lb = 0;
P = (unsigned int*)calloc(p * f, sizeof(unsigned int)); //allcate memory for genetic population(indices of features from F), p number of gnomes of size f
S = (float*)calloc(p, sizeof(float)); //allcate memory for scores(fitness value) of each gnome from P
srand(1);
//add intial guess to the population if specified by user as a output of other algorithm or by default just random guess
std::memcpy(P, i_guess.data(), f * sizeof(unsigned int));
//generate random initial population
for (size_t i1 = 1; i1 < p; i1++) {
for (size_t i2 = 0; i2 < f; i2++) {
P[i1 * f + i2] = rand() % ub + lb; //select element of gnome as random feature index within lower bound(0) and upper bound(B)
if (debug) std::cout << P[i1 * f + i2] << "\t";
}
if (debug) std::cout << std::endl;
}
}
//===================generation of new population==========================================
size_t evolvePopulation(unsigned int* newPop, float* M, bool debug) {
//gget index of best gnome in the current population
size_t bestG_Indx = gIdxbestGnome();
//-------------(reproduction)-------
if (elitism) {
saveGnomeIdx(0, bestG_Indx, newPop); //keep best gnome from previous generation to new generation
}
// ------------Crossover population---------------
int elitismOffset;
if (elitism) {
elitismOffset = 1;
}
else {
elitismOffset = 0;
}
//Do crossover for rest of population size
for (int i = elitismOffset; i <p; i++) {
// std::cout<<"crossover of gnome "<<i<<std::endl;
std::vector<unsigned int>gnome1;
gnome1.reserve(f);
gnome1 = tournamentSelection(5); //select first parent for crossover from tournament selection of 5 gnomes
// displaygnome(gnome1);
std::vector<unsigned int>gnome2;
gnome2.reserve(f);
gnome2 = tournamentSelection(5); //select first parent for crossover from tournament selection of 5 gnomes
// displaygnome(gnome2);
std::vector<unsigned int>gnome;
gnome.reserve(f);
gnome = crossover(gnome1, gnome2, M); //Do crossover of above parent gnomes to produce new gnome
// displaygnome(gnome);
saveGnome(i, gnome, newPop); //save crosseover result to new population
}
//--------------Mutate population------------
// introduce some mutation in new population
for (int i = elitismOffset; i <p; i++) {
//std::cout<<"mutation of gnome"<<std::endl;
std::vector<unsigned int>gnome;
gnome.reserve(f);
for (size_t n = 0; n < f; n++)
gnome.push_back(newPop[i*f + n]);
//std::cout<<"\n starting address "<<(&newPop[0] + i*f)<<"\t end address is "<<(&newPop[0] + i*f + f-1) <<std::endl;
//std::copy((&newPop[0] + i*f), (&newPop[0] + i*f +f-1), gnome.begin());
// displaygnome(gnome);
mutate(gnome);
// displaygnome(gnome);
saveGnome(i, gnome, newPop); //save new gnome to new population at position i
}
return bestG_Indx;
}
//============================== functions for population evolution ===========================================================================
std::vector<unsigned int> tournamentSelection(size_t tSize) {
// Create a tournament population
unsigned int* tournamentP = (unsigned int*)malloc(tSize * f * sizeof(unsigned int));
std::vector<float>tournamentS;
// For each place in the tournament get a random individual
for (size_t i = 0; i < tSize; i++) {
size_t rndmIdx = rand() % p + lb;
tournamentS.push_back(S[rndmIdx]);
//for (size_t n = 0; n <f; n++)
//tournamentP[i * f + n] = (getGnome(rndmIdx)).at(n);
std::vector<unsigned int> temp_g(getGnome(rndmIdx));
std::copy(temp_g.begin(), temp_g.end(), tournamentP + i*f);
}
// Get the fittest
std::vector<unsigned int>fittestgnome;
fittestgnome.reserve(f);
//select index of best gnome from fitness score
size_t bestSIdx = 0;
for (size_t i = 0; i < tSize; i++) {
if (tournamentS[i] < tournamentS[bestSIdx])
bestSIdx = i; //float check : it was like this b(&idx[i], &idx[j]) but gave me error
}
for (size_t n = 0; n < f; n++)
fittestgnome.push_back(tournamentP[bestSIdx * f + n]);
return fittestgnome;
} //end of tournament selection
std::vector<unsigned int> crossover(std::vector<unsigned int> gnome1, std::vector<unsigned int> gnome2, float* M) {
std::vector<unsigned int> gnome;
for (size_t i = 0; i < f; i++) {
// Crossover
float r = static_cast <float> (rand()) / static_cast <float> (RAND_MAX);
if (r <= uniformRate) {
gnome.push_back(gnome1.at(i));
}
else {
gnome.push_back(gnome2.at(i));
}
}
//check new gnome for all zero bands and duplicated values
std::vector<unsigned int> gnomeunique;
int flag = 0;
std::sort(gnome.begin(), gnome.end()); // 1 1 2 2 3 3 3 4 4 5 5 6 7
std::unique_copy(gnome.begin(), gnome.end(), std::back_inserter(gnomeunique));
/* if(gnomeunique.size()< gnome.size()){
flag = 1;
std::cout<<"gnome:["<<g<<"] "<<"\t duplications are "<< (gnome.size() - gnomeunique.size())<<std::endl;
}*/
unsigned int featureband, featureband1, featureband2;
if (gnomeunique.size() < f) {
for (size_t k = gnomeunique.size(); k < f; k++) {
featureband = rand() % ub + lb;
for (size_t i = 0; i < f; i++) {
featureband1 = gnome1.at(i);
featureband2 = gnome2.at(i);
for (size_t j = 0; j < gnomeunique.size(); j++) {
if (gnomeunique.at(j) != featureband1) {
featureband = featureband1;
}
else if (gnomeunique.at(j) != featureband2) {
featureband = featureband2;
}
else if (gnomeunique.at(j) == featureband) {
featureband = rand() % ub + lb;
while (M[featureband] == 0) {
featureband = rand() % ub + lb;
}
}
}
}
gnomeunique.push_back(featureband);
}
}
//if(flag ==1){
// std::cout<<"\n original gnome "<<g<<" are "<<std::endl;
// for(int k = 0; k < gnome.size(); k++)
// std::cout<<gnome[k]<<"\t";
// std::cout<<"\n unique results in cpp for gnome "<<g<<" are "<<std::endl;
// for(int k = 0; k < gnomeunique.size(); k++)
// std::cout<<gnomeunique[k]<<"\t";
//}
return gnomeunique;
}
void mutate(std::vector<unsigned int> gnome) {
for (size_t i = 0; i < f; i++) {
float LO = (float)0.01;
float HI = 1;
float r3 = LO + static_cast <float> (rand()) / (static_cast <float> (RAND_MAX / (HI - LO)));
//if random value is less than mutationRate then mutate this gnome
if (r3 <= mutationRate) {
gnome.at(i) = (rand() % ub + lb);
gnome.push_back(rand() % ub + lb);
}
}
}
///returns gnome of given index
std::vector<unsigned int> getGnome(size_t idx) {
std::vector<unsigned int> gnome;
gnome.reserve(f);
//pulling gnome idx from population P
for (size_t n = 0; n < f; n++)
gnome.push_back(P[idx * f + n]);
//memcpy(&gnome[0], P+idx*f, f*sizeof(size_t));
return gnome;
}
//save gnome of index gIdx from previous population at position i in the new population
void saveGnomeIdx(size_t i, size_t gIdx, unsigned int* newPop) {
for (size_t n = 0; n < f; n++)
newPop[i * f + n] = P[gIdx * f + n];
}
void saveGnome(size_t idx, std::vector<unsigned int>gnome, unsigned int* newPop) {
std::copy(gnome.begin(), gnome.end(), newPop + idx*f);
}
size_t gIdxbestGnome() {
//std::cout<<"best gnome indes is: "<<sortSIndx()[0];
return sortSIndx()[0];
}
void displaygnome(std::vector<unsigned int> gnome) {
std::cout << "\t gnome: ";
for (int i = 0; i<gnome.size(); ++i)
std::cout << gnome[i] << ' ';
std::cout << std::endl;
}
//---------------------post processing of score-------------------------------------
void Snorm() { //normalize gnome scores
double s;
for (size_t i = 0; i < p; i++) {
s += S[i]; //sum of all gnome score in population
}
//std::cout<<"mean Score is: "<<(double) s/p;
for (size_t i = 0; i <p; i++)
S[i] = S[i] / s;
}
size_t* sortSIndx() { //sort gnome index according to gnome scores
//sort indices of score in ascending order (fitness value)
size_t *idx = (size_t*)malloc(p * sizeof(size_t)); //array to hold sorted gnome index
for (size_t i = 0; i < p; i++) { //initialize index array from 1 to p(population size) in an ascending order
idx[i] = i;
}
for (size_t i = 0; i<p; i++) { //sort gnome indices according to score values using bubble sort
for (size_t j = i + 1; j<p; j++) {
if (S[idx[i]] > S[idx[j]]) {
std::swap(idx[i], idx[j]); //float check : it was like this b(&idx[i], &idx[j]) but gave me error
}
}
}
//display best gnome
//std::cout << "best fitness value: " << S[idx[0]] << std::endl;
/*if (S[idx[0]] < 0) {
std::cout << "best gnome is " << std::endl;
for (size_t i = 0; i < f; i++)
std::cout << P[f * idx[0] + i] << ", ";
std::cout << std::endl;
}*/
return idx; //use as sortSIdx in selection
}
//size_t* sortIndx(float* input, size_t size) {
// //sort indices of score in ascending order (fitness value)
// size_t *idx;
// idx = (size_t*)malloc(size * sizeof(size_t));
// for (size_t i = 0; i < size; i++)
// idx[i] = i;
// for (size_t i = 0; i<size; i++) {
// for (size_t j = i + 1; j<size; j++) {
// if (input[idx[i]] < input[idx[j]]) {
// std::swap(idx[i], idx[j]); //float check : it was like this b(&idx[i], &idx[j]) but gave me error
// }
// }
// }
// return idx; //use as sortSIdx in selection
//}
void generateNewP(unsigned int* newPop) {
//std::memcpy(P, 0 , p * f *sizeof(unsigned int)); //copy sb of gnome 'g' into bufferarray tempg_s
std::memcpy(P, newPop, p * f * sizeof(unsigned int)); //copy sb of gnome 'g' into bufferarray tempg_s
}
//============================== functions for fitness function ===========================================================================
//compute total mean M (1 X B) of all features (tP X B)
void ttlMean(float* M, size_t tP, size_t B) {
//std::cout<<"total number of pixels are "<<tP<<std::endl;
for (int k = 0; k < tP; k++) { //total number of pixel in feature matrix
for (size_t n = 0; n < B; n++) { // index of feature in ith gnome
M[n] += F[k * B + n];
}
}
for (size_t n = 0; n < B; n++) //take an avarage of above summation
M[n] = M[n] / (float)tP;
}
void dispalymean(float* M) { //display mean
std::cout << std::endl;
std::cout << "Total mean of gnome 1 features are is " << std::endl;
for (size_t i = 0; i < 1; i++) {
for (size_t j = 0; j < f; j++) {
size_t index = P[i*f + j];
std::cout << "feature index " << index << "\t total mean" << M[index] << std::endl;
}
}
std::cout << std::endl;
}
//Compute class means cM (p x nC x f) of all gnome features phe(tP x f)
void classMean(float* cM, size_t tP, size_t nC, size_t B, std::vector<unsigned int> nPxInCls) {
for (size_t c = 0; c < nC; c++) { //index of class feature matrix responses
float* tempcM = (float*)calloc(B, sizeof(float)); //tempcM holds classmean vector for current gnome 'i', class 'c'
for (size_t k = 0; k < tP; k++) { //total number of pixel in feature matrix
if (T[k] == c + 1) { //class numbers start from 1 not 0
for (size_t n = 0; n < B; n++) { //total number of features in a gnome
tempcM[n] += F[k * B + n]; //add phe value for feature n of class 'c' in ith gnome
}
}
}
for (size_t n = 0; n < B; n++)
cM[c * B + n] = tempcM[n] / (float)nPxInCls[c]; //divide by number of pixels from class 'c'
}
}
//display class mean
void dispalyClassmean(float* cM, size_t nC) {
std::cout << std::endl;
std::cout << "class mean of gnome 1 with total classes " << nC << " is :" << std::endl;
for (size_t i = 0; i < 1; i++) {
for (size_t c = 0; c < nC; c++) {
for (size_t j = 0; j < f; j++) {
size_t index = P[i*f + j];
std::cout << "class index: " << c << "\t feature index " << index << "\t class mean " << cM[c * ub + index] << std::endl;
}
}
}
std::cout << std::endl;
}
//-----------------------------------------between and within class Scattering computation---------------------------------------------------------------
//computation on CPU
void cpu_computeSbSw(float* sb, float* sw, float* M, float* cM, size_t nC, size_t tP, std::vector<unsigned int> nPxInCls) {
timer.start();
computeSb(sb, M, cM, nC, nPxInCls); //compute between class scatter on CPU
const auto elapsed = timer.time_elapsed();
std::cout << "Sb CPU time " << std::chrono::duration_cast<std::chrono::microseconds>(elapsed).count() << "us" << std::endl;
timer.start();
computeSw(sw, cM, nC, tP); //compute within class scatter on CPU
const auto elapsed1 = timer.time_elapsed();
std::cout << "Sw CPU time " << std::chrono::duration_cast<std::chrono::microseconds>(elapsed1).count() << "us" << std::endl;
}
//display between class scatter
void displaySb(float* sb) {
std::cout << "between scatter is " << std::endl;
for (size_t g = 0; g<1; g++) {
std::cout << std::endl;
for (size_t j = 0; j < f; j++) { //total number of features in a gnome
for (size_t k = 0; k < f; k++) { //total number of features in a gnome
std::cout << sb[g * f * f + j * f + k] << " ";
}
std::cout << std::endl;
}
}
std::cout << std::endl;
}
//Compute between class scatter sb (p x f x f) of all gnome features phe(tP x f)
void computeSb(float* sb, float* M, float* cM, size_t nC, std::vector<unsigned int> nPxInCls) {
float tempsbval;
size_t n1;
size_t n2;
size_t classIndx; //class index in class mean matrix
/*std::cout <<"population of computation of cpusb "<< std::endl;
for (size_t i2 = 0; i2 < f; i2++) {
std::cout << P[i2] << "\t";
}*/
for (size_t gnomeIndx = 0; gnomeIndx < p; gnomeIndx++) {
for (size_t c = 0; c < nC; c++) {
for (size_t i = 0; i < f; i++) {
for (size_t j = 0; j < f; j++) {
tempsbval = 0;
classIndx = c * ub;
n1 = P[gnomeIndx * f + i]; //actual feature index in original feature matrix
n2 = P[gnomeIndx * f + j]; //actual feature index in original feature matrix
// std::cout << "i: " << i << " j: " <<j<< " n1: " << n1 << " n2:" << n2 << std::endl;
tempsbval = ((cM[classIndx + n1] - M[n1]) *(cM[classIndx + n2] - M[n2]));
sb[gnomeIndx * f * f + i * f + j] += tempsbval * (float)nPxInCls[c]; // compute tempsb[j][k] element of class 'c' of gnome 'i'
}
}
}
}
}
//Compute within class scatter sw (p x f x f) of all gnome features phe(tP x f)
void computeSw(float* sw, float* cM, size_t nC, size_t tP) {
float tempswval;
size_t n1;
size_t n2;
size_t cMclass; //class index in class mean matrix
size_t Pg;
size_t swg;
size_t pheg;
for (size_t gnomeIndx = 0; gnomeIndx < p; gnomeIndx++) {
Pg = gnomeIndx * f;
swg = gnomeIndx * f * f;
pheg = gnomeIndx * tP * f;;
for (size_t c = 0; c < nC; c++) {
cMclass = c * ub;
for (size_t k = 0; k < tP; k++) {
if (T[k] == (c + 1)) {
for (size_t i = 0; i < f; i++) {
for (size_t j = 0; j < f; j++) {
n1 = P[Pg + i]; //actual feature index in original feature matrix
n2 = P[Pg + j]; //actual feature index in original feature matrix
tempswval = 0;
tempswval = ((F[k * ub + n1] - cM[cMclass + n1]) * (F[k * ub + n2] - cM[cMclass + n2]));
//tempswval = ((phe[gnomeIndx * tP * f + k * f + i] - cM[c * ub + P[gnomeIndx * f + i]]) * (phe[gnomeIndx * tP *f + k * f + j] - cM[c * ub + P[gnomeIndx * f + j]]));
sw[gnomeIndx * f * f + i * f + j] += tempswval;
}
}
}
}
}
}
}
//checking bands with all zeros and replacing duplicated bands in gnome but this function is only for initial population
//void zerobandcheck(float* M, bool initial) {
// for (size_t g = 0; g < p; g++) { // for each gnome
// for (size_t i = 0; i < f; i++) { //check each band (feature) index in that gnome
// while (M[P[g * f + i]] == 0) { //if mean of band is zero then replace band index in population
// P[g * f + i] = rand() % ub + lb;
// }
// }
// //checking for duplicats in a gnome
// std::vector<unsigned int> gnome = getGnome(g);
// std::vector<unsigned int> gnomeunique;
// int flag = 0; //flag will be set if gnome has duplicated band (feature) index
// std::sort(gnome.begin(), gnome.end()); // 1 1 2 2 3 3 3 4 4 5 5 6 7
// std::unique_copy(gnome.begin(), gnome.end(), std::back_inserter(gnomeunique)); //keep only unique copies of indices and remove duplicate copies
// if (gnomeunique.size()< gnome.size()) {
// flag = 1; //set flag for those if there are duplicated indices
// //std::cout<<"gnome:["<<g<<"] "<<"\t duplications are "<< (gnome.size() - gnomeunique.size())<<std::endl;
// }
// //adding extra random feature indices to unique copy of gnome to achive gnome size = f
// if (gnomeunique.size() < f) {
// for (size_t k = gnomeunique.size(); k < f; k++) {
// unsigned int rnumber = rand() % ub + lb;
// //check if this randomaly generated number is already present in that gnome or not
// for (size_t j = 0; j < gnomeunique.size(); j++) {
// if (gnomeunique.at(j) == rnumber) { //if new index is duplicated copy of any of previous gnome element replace it with another random number
// rnumber = rand() % ub + lb;
// j = 0; //set j = 0 to start checking of duplication of feature index from the first element of gnome
// }
// }
// gnomeunique.push_back(rnumber); //add feature index to gnomeunique
// }
// }
// std::copy(gnomeunique.begin(), gnomeunique.end(), P + g * f);
// }
//}
//checking bands with all zeros and replacing duplicated bands in gnome
void zerobandcheck(float* M, bool initialPop) {
size_t startgnome;
if (initialPop) {
startgnome = 0; //for initial population check all gnomes
}
else {
startgnome = 1; //for next generations start gnome check after elite children offset
}
for (size_t g = startgnome; g < p; g++) { // for each gnome except
for (size_t i = 0; i < f; i++) { //check each band (feature) index in that gnome
while (M[P[g * f + i]] == 0) { //if mean of band is zero then replace band index in population
P[g * f + i] = rand() % ub + lb;
}
}
//checking for duplicats in a gnome
std::vector<unsigned int> gnome = getGnome(g); //get current gnome g from population matrix P
std::vector<unsigned int> gnomeunique; //array to store only unique band indicies in a genome
int flag = 0; //flag will be set if gnome has duplicated band (feature) index
std::sort(gnome.begin(), gnome.end()); //sort current gnome
std::unique_copy(gnome.begin(), gnome.end(), std::back_inserter(gnomeunique)); //remove duplicat copies of band indices and keep only unique in a gnome
if (gnomeunique.size()< gnome.size()) {
flag = 1; //set flag for those if there are duplicated indices
//std::cout<<"gnome:["<<g<<"] "<<"\t duplications are "<< (gnome.size() - gnomeunique.size())<<std::endl;
}
//adding extra random feature indices to unique copy of gnome to achive gnome size = f
if (gnomeunique.size() < f) {
for (size_t k = gnomeunique.size(); k < f; k++) {
unsigned int rnumber = rand() % ub + lb;
//check if this randomaly generated number is already present in that gnome or not
for (size_t j = 0; j < gnomeunique.size(); j++) {
if (gnomeunique.at(j) == rnumber) { //if new index is duplicated copy of any of previous gnome element replace it with another random number
rnumber = rand() % ub + lb; //generate random number between upper bound and lower bound (ub. lb)
j = 0; //set j = 0 to start checking of duplication of feature index from the first element of gnome
}
}
gnomeunique.push_back(rnumber); //add feature index to gnomeunique
}
}
//diplay loop only if gnome has duplicated indices
//if(flag ==1){
// std::cout<<"\n original gnome "<<g<<" are "<<std::endl;
// for(int k = 0; k < gnome.size(); k++)
// std::cout<<gnome[k]<<"\t";
// std::cout<<"\n unique results in cpp for gnome "<<g<<" are "<<std::endl;
// for(int k = 0; k < gnomeunique.size(); k++)
// std::cout<<gnomeunique[k]<<"\t";
//}
std::copy(gnomeunique.begin(), gnomeunique.end(), P + g * f); //copy new gnome without any duplicate band index at current gnome location
}
}
//gpu calling functions
//gpu initialization (allocating space for all array on GPU)
void gpuInitializationfrommain(float* cpuM, float* cpuCM, std::vector<unsigned int>cpu_nPxInCls, size_t tP, size_t nC) {
// call gpuInitialization(......) with all of the necessary parameters
gpuIntialization(&gpuP, p, f, &gpuCM, cpuCM, nC, ub, &gpuM, cpuM, &gpu_nPxInCls, &gpuSb, &gpuSw, &gpuF, F, &gpuT, T, tP, &cpu_nPxInCls[0]);
}
//Computation of between class scatter and within class scatter in GPU
void gpu_computeSbSw(float* cpuSb, float* cpuSw, size_t nC, size_t tP, cudaDeviceProp props, size_t gen, bool debug, std::ofstream& profilefile) {
//calling function for SW and Sb computation and passing necessary arrays for computation
// std::cout<<"gpu function calling"<<std::endl;
gpucomputeSbSw(gpuP, P, p, f, gpuSb, cpuSb, gpuSw, cpuSw, gpuF, gpuT, gpuM, gpuCM, nC, tP, props, gen, gnrtn, ub, gpu_nPxInCls, profilefile);
//display computed Sb and Sw if debug is set
if (debug) {
std::cout << "From GA-GPU class: gpu results of Sb sn Sw" << std::endl;
displayS(cpuSb, f); //display Sb
displayS(cpuSw, f); //display Sw
std::cout << std::endl;
}
}
//call function to free gpu pointers
//free all gpu pointers
void gpu_Destroy() {
gpuDestroy(gpuP, gpuCM, gpuM, gpu_nPxInCls, gpuSb, gpuSw, gpuF, gpuT);
}
//Write a destructor here
~ga_gpu() {
if (F != NULL) std::free(F); //not sure about this as it is only for 2nd constructor
if (T != NULL) std::free(T); //same as above
if (P != NULL) std::free(P); //not sure about this as it is only for 2nd constructor
if (S != NULL) std::free(S); //same as above
//if(i_guess!=NULL) std::free(i_guess); //same as above
//HANDLE_ERROR(cudaDeviceReset());
}
};
#endif