Blame view

voronoi_test.py 37.1 KB
193cb4c6   Pavel Govyadinov   need this to test
1
2
3
4
5
6
7
8
9
  #!/usr/bin/env python3
  # -*- coding: utf-8 -*-
  """
  Created on Tue Sep  3 13:15:54 2019
  
  @author: pavel
  """
  
  from scipy.spatial import Voronoi, voronoi_plot_2d
7c54fa21   Pavel Govyadinov   Added meshing to ...
10
11
12
13
  from scipy.spatial import Delaunay, delaunay_plot_2d
  
  from triangle import triangulate
  from triangle import plot as triangle_plot
193cb4c6   Pavel Govyadinov   need this to test
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
  from scipy.interpolate import interp1d
  #import matplotlib._cntr as cntr
  from shapely.geometry import Point
  from shapely.geometry import Polygon
  import numpy as np
  import scipy as sp
  import math
  import matplotlib.pyplot as plt
  import sys
  import copy
  
  from skimage import measure
  
  from collections import defaultdict
  
  import network_dep as nwt
  
  class Polygon_mass:
      def __init__(self, G):
          self.G = G
25fa0bfe   Pavel Govyadinov   Stable, pre-vispy...
34
          print(nwt.gt.graph_tool.topology.is_planar(G))
193cb4c6   Pavel Govyadinov   need this to test
35
36
37
          self.get_aabb()
          self.gen_polygon()
          self.torque = []
25fa0bfe   Pavel Govyadinov   Stable, pre-vispy...
38
39
          self.forces_r = np.zeros(2)
          self.forces_a = np.zeros(2)
7c54fa21   Pavel Govyadinov   Added meshing to ...
40
41
          self.vel = 0.0
          self.aa = 0.0
25fa0bfe   Pavel Govyadinov   Stable, pre-vispy...
42
          self.degree = 0
7c54fa21   Pavel Govyadinov   Added meshing to ...
43
44
45
46
        
          
      def clear_torques(self):
          self.torque = []        
193cb4c6   Pavel Govyadinov   need this to test
47
          
25fa0bfe   Pavel Govyadinov   Stable, pre-vispy...
48
49
50
51
52
53
54
      def clear_forces(self):
          self.forces_r = np.zeros(2)
          self.forces_a = np.zeros(2)
          
      def set_degree(self, degree):
          self.degree = degree
          
193cb4c6   Pavel Govyadinov   need this to test
55
      def add_torque(self, p, f):
7c54fa21   Pavel Govyadinov   Added meshing to ...
56
57
58
          #direction of the torque = cross of (r, f)
          #magnitude = ||r||*||f||*sin(theta)
          #r = level arm vector
193cb4c6   Pavel Govyadinov   need this to test
59
          d = self.CoM - p
25fa0bfe   Pavel Govyadinov   Stable, pre-vispy...
60
61
62
63
64
65
66
67
68
          #r = np.linalg.norm(self.CoM - p)
          value = np.dot(d, f)/np.dot(d, d)/np.dot(f, f)
          if value < 1.0 and value > -1.0:
              theta = math.acos(value)
              torque = math.sin(theta) * np.sqrt(f[0]*f[0]+f[1]*f[1]) * np.sqrt(d[0]*d[0]+d[1]*d[1])
          else:
              #print("value = ", value)
              torque = 0.0
          
7c54fa21   Pavel Govyadinov   Added meshing to ...
69
          #if < 0 then clockwise, else counter
25fa0bfe   Pavel Govyadinov   Stable, pre-vispy...
70
          direction = np.cross(d, f)
7c54fa21   Pavel Govyadinov   Added meshing to ...
71
          if direction < 0:
25fa0bfe   Pavel Govyadinov   Stable, pre-vispy...
72
              self.torque.append([torque, f, p, "counterclock"])
7c54fa21   Pavel Govyadinov   Added meshing to ...
73
          else:
25fa0bfe   Pavel Govyadinov   Stable, pre-vispy...
74
75
              self.torque.append([torque, f, p, "clockwise"])
          
7c54fa21   Pavel Govyadinov   Added meshing to ...
76
              
25fa0bfe   Pavel Govyadinov   Stable, pre-vispy...
77
      def calculate_moment(self, use_graph=False):
7c54fa21   Pavel Govyadinov   Added meshing to ...
78
79
80
81
82
83
84
85
          
          #returns the area of a triangle defined by two points
          def area(t):
              output = 1.0/2.0*abs(t[0,0]*(t[1,1]-t[2,1]) + t[1,0]*(t[2,1]-t[0,1]) + t[2,0]*(t[0,1]-t[1,1]))
              return output
          
          def center(t):
              output = np.asarray([(t[0,0]+t[1,0]+t[2,0])/3.0, (t[0,1]+t[1,1]+t[2,1])/3.0])
25fa0bfe   Pavel Govyadinov   Stable, pre-vispy...
86
              return output
7c54fa21   Pavel Govyadinov   Added meshing to ...
87
88
89
90
91
92
93
          
          segs = []
          pts = np.asarray(self.polygon.exterior.xy).T
          pts = pts[:-1, :]
          for k in range(pts.shape[0]-1):
              segs.append([k, k+1])
          segs.append([pts.shape[0]-1, 0])
25fa0bfe   Pavel Govyadinov   Stable, pre-vispy...
94
95
96
97
98
99
100
101
          if use_graph:
              points = self.G.vertex_properties["pos"].get_2d_array(range(2)).T
              segs2 = []
              n_pts = pts.shape[0]
              for e in self.G.edges():
                  segs2.append([int(e.source())+n_pts, int(e.target())+n_pts])
              pts = np.concatenate((pts, points))
              segs = segs + segs2
7c54fa21   Pavel Govyadinov   Added meshing to ...
102
103
          mesh = dict(vertices=pts, segments=segs)
          #print(self.polygon.area())
25fa0bfe   Pavel Govyadinov   Stable, pre-vispy...
104
105
106
          tri = triangulate(mesh, 'pq20Ds')
          self.mesh = mesh
          self.tri = tri
7c54fa21   Pavel Govyadinov   Added meshing to ...
107
108
109
110
111
112
113
114
115
          moment = 0.0
          #NEED TO ADD MASS maybe?
          for i in range(tri['triangles'].shape[0]):
              t = tri['vertices'][tri['triangles'][i]]
              A = area(t)
              C = center(t)
              Moi = A+A*np.linalg.norm(C-self.CoM)**2
              moment += Moi
              
25fa0bfe   Pavel Govyadinov   Stable, pre-vispy...
116
117
118
          self.MoI = abs(math.log(moment))
          #self.MoI = 10
          print(self.MoI)
7c54fa21   Pavel Govyadinov   Added meshing to ...
119
120
  #        triangle_plot(plt.gca(), **tri)
  #        plt.gca().set_title(str(self.polygon.area))
25fa0bfe   Pavel Govyadinov   Stable, pre-vispy...
121
122
123
124
125
126
127
128
129
130
       
      def translate(self, step):
          d = self.forces_a + self.forces_r
          #print(self.forces_a, self.forces_r)
          d0 = step*d
          self.CoM = self.CoM + d0
          pos = self.G.vertex_properties["pos"].get_2d_array(range(2)).T
          pos = pos + d0
          self.G.vertex_properties["pos"] = self.G.new_vertex_property("vector<double>", vals = pos)
      
193cb4c6   Pavel Govyadinov   need this to test
131
132
      def rotate(self, phi, direction = "counterclock"):
          if("counterclock"):
25fa0bfe   Pavel Govyadinov   Stable, pre-vispy...
133
134
135
136
137
138
139
140
141
142
143
144
              for v in self.G.vertices():
                  p_prime = copy.deepcopy(self.G.vertex_properties["pos"][v])
                  p = copy.deepcopy(self.G.vertex_properties["pos"][v])
                  p_prime[0] = self.CoM[0] + math.cos(phi) * (p[0] - self.CoM[0]) - math.sin(phi) * (p[1] - self.CoM[1])
                  p_prime[1] = self.CoM[1] + math.sin(phi) * (p[0] - self.CoM[0]) + math.cos(phi) * (p[1] - self.CoM[1])
                  self.G.vertex_properties["pos"][v] = p_prime
              #rotate points in mesh
              points = copy.deepcopy(self.mesh['vertices'])
              for v in range(points.shape[0]):
                  points[v][0] = self.CoM[0] + math.cos(phi) * (self.mesh['vertices'][v][0] - self.CoM[0]) - math.sin(phi) * (self.mesh['vertices'][v][1] - self.CoM[1])
                  points[v][1] = self.CoM[1] + math.sin(phi) * (self.mesh['vertices'][v][0] - self.CoM[0]) + math.cos(phi) * (self.mesh['vertices'][v][1] - self.CoM[1])
              self.mesh['vertices'] = points
193cb4c6   Pavel Govyadinov   need this to test
145
          else:
25fa0bfe   Pavel Govyadinov   Stable, pre-vispy...
146
147
148
149
150
151
152
153
154
155
156
157
              for v in self.G.vertices():
                  p_prime = copy.deepcopy(self.G.vertex_properties["pos"][v])
                  p = copy.deepcopy(self.G.vertex_properties["pos"][v])
                  p_prime[0] = self.CoM[0] + math.cos(phi) * (p[0] - self.CoM[0]) + math.sin(phi) * (p[1] - self.CoM[1])
                  p_prime[1] = self.CoM[1] - math.sin(phi) * (p[0] - self.CoM[0]) + math.cos(phi) * (p[1] - self.CoM[1])
                  self.G.vertex_properties["pos"][v] = p_prime
              #rotate points in mesh
              points = copy.deepcopy(self.mesh['vertices'])
              for v in range(points.shape[0]):
                  points[v][0] = self.CoM[0] + math.cos(phi) * (self.mesh['vertices'][v][0] - self.CoM[0]) + math.sin(phi) * (self.mesh['vertices'][v][1] - self.CoM[1])
                  points[v][1] = self.CoM[1] - math.sin(phi) * (self.mesh['vertices'][v][0] - self.CoM[0]) + math.cos(phi) * (self.mesh['vertices'][v][1] - self.CoM[1])
              self.mesh['vertices'] = points
3cc9b7dd   Pavel Govyadinov   finished all the ...
158
                  
25fa0bfe   Pavel Govyadinov   Stable, pre-vispy...
159
          
3cc9b7dd   Pavel Govyadinov   finished all the ...
160
      
193cb4c6   Pavel Govyadinov   need this to test
161
162
163
164
       
      def plot_graph(self, D, x, y):
          plt.figure()
          ext = [self.a[0], self.b[0], self.a[1], self.b[1]]
25fa0bfe   Pavel Govyadinov   Stable, pre-vispy...
165
          #plt.imshow(D, origin = 'lower', extent=ext)
193cb4c6   Pavel Govyadinov   need this to test
166
167
168
169
          p = self.G.vertex_properties["pos"].get_2d_array(range(2)).T
          plt.scatter(p[:,0], p[:,1], color='r')
          plt.scatter(self.CoM[0], self.CoM[1], marker='*')
          
25fa0bfe   Pavel Govyadinov   Stable, pre-vispy...
170
171
172
173
          #mesh = dict(vertices=pts, segments=segs)
          #print(self.polygon.area())
          #tri = triangulate(mesh, 'pq20Ds')
          triangle_plot(plt.gca(), **self.mesh)
7c54fa21   Pavel Govyadinov   Added meshing to ...
174
          
25fa0bfe   Pavel Govyadinov   Stable, pre-vispy...
175
176
          #plot polygon
          #plt.plot(*self.polygon.exterior.xy, color = 'r')
7c54fa21   Pavel Govyadinov   Added meshing to ...
177
178
          
          
25fa0bfe   Pavel Govyadinov   Stable, pre-vispy...
179
180
  #        for i in range(len(segs)):
  #            plt.plot((pts[segs[i][0]][0], pts[segs[i][1]][0]), (pts[segs[i][0]][1], pts[segs[i][1]][1]), color='b')
7c54fa21   Pavel Govyadinov   Added meshing to ...
181
182
          plt.gca().set_title(str(self.polygon.area))
          
25fa0bfe   Pavel Govyadinov   Stable, pre-vispy...
183
184
          for e in self.torque:
              plt.quiver(e[2][0], e[2][1], e[1][0], e[1][1], color='r')
7c54fa21   Pavel Govyadinov   Added meshing to ...
185
186
187
188
          #tri = Delaunay(np.asarray(self.polygon.exterior.coords.xy).T)
          #tri = triangulate(mesh, 'pq20a' + str(self.polygon.area/100.0)+'D')
          #delaunay_plot_2d(tri)
          
193cb4c6   Pavel Govyadinov   need this to test
189
190
191
192
193
194
195
196
197
198
199
  #        for n, contour in enumerate(self.cn):
  #            X = interp1d(np.arange(0, x.shape[0]), x)
  #            Y = interp1d(np.arange(0, y.shape[0]), y)
  #            contour[:, 1] = X(contour[:, 1])
  #            contour[: ,0] = Y(contour[:, 0])
  #            plt.plot(contour[:, 1], contour[:, 0])
  #        mx = np.amax(D)
  #        mn = np.amin(D)
  #        level = (mx-mn)/5.5
  #        cn = plt.contour(x, y, D, levels = [level])
          
7c54fa21   Pavel Govyadinov   Added meshing to ...
200
201
202
203
204
205
206
  #        for e in self.G.edges():
  #            coord = self.G.vertex_properties["pos"][e.source()]
  #            coord2 = self.G.vertex_properties["pos"][e.target()]
  #            X = [coord[0], coord2[0]]
  #            Y = [coord[1], coord2[1]]
  #            #all_plots.plot(x, y, 'go--', linewidth=1, markersize=1)
  #            plt.plot(X, Y, 'go--', linewidth=1, markersize=1)
25fa0bfe   Pavel Govyadinov   Stable, pre-vispy...
207
  #        
193cb4c6   Pavel Govyadinov   need this to test
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
          plt.show()
          
      def get_aabb(self):
          pts = self.G.vertex_properties["pos"].get_2d_array(range(2)).T
          a = np.asarray([100000.0, 100000.0])
          b = np.asarray([-100000.0, -100000.0])
          
          #Find the bounding box based on the vertices.
          for i in pts:
              if(i[0] < a[0]):
                  a[0] = i[0]
              if(i[1] < a[1]):
                  a[1] = i[1]
              if(i[0] > b[0]):
                  b[0] = i[0]
              if(i[1] > b[1]):
                  b[1] = i[1]
          
          #add 50% of the bounding box as padding on each side
          d = 0.5*abs(a-b)
          self.a = a - d
          self.b = b + d
          
      def line(self, p1, p2, step1, step2):
          return list(np.asarray(a) for a in zip(np.linspace(p1[0], p2[0], step1+1), np.linspace(p1[1], p2[1], step2+1)))
      
      def gen_polygon(self):
          D, x, y = self.distancefield()
          mx = np.amax(D)
          mn = np.amin(D)
          level = (mx-mn)/5.5
          cn = measure.find_contours(D, level)
          contour = copy.deepcopy(cn[0])
          X = interp1d(np.arange(0, x.shape[0]), x)
          Y = interp1d(np.arange(0, y.shape[0]), y)
          contour[:, 0] = X(cn[0][:, 1])
          contour[: ,1] = Y(cn[0][:, 0])
          self.polygon = Polygon(contour)
          self.CoM = self.centroid_com(contour)
25fa0bfe   Pavel Govyadinov   Stable, pre-vispy...
247
          self.calculate_moment(True)
193cb4c6   Pavel Govyadinov   need this to test
248
249
250
251
252
253
254
255
256
257
258
259
260
261
          #cn = plt.contour(x, y, D, levels = [level])
          #cn = plt.contour(x, y, D, levels = [level])
  #        plt.close()
          #p = cn.collections[0].get_paths()[0]
  #        for i in range(len(cn.allsegs[0])):
  #            
  #        self.p = p
  #        v = p.vertices
  #        x = v[:, 0]
  #        y = v[:, 1]
  #        pts = np.array(zip(x, y))
  #        #nlist = c.trace(level, level, 0)
  #        #segs = nlist[:len(nlist)//2]
          #self.polygon = Polygon(pts)
25fa0bfe   Pavel Govyadinov   Stable, pre-vispy...
262
          #self.plot_graph(D, x, y)
193cb4c6   Pavel Govyadinov   need this to test
263
264
265
266
          
          
      
      def distancefield(self):      
193cb4c6   Pavel Govyadinov   need this to test
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
          #generate a meshgrid of the appropriate size and resolution to surround the network
          #get the space occupied by the network
          lower = self.a
          upper = self.b
          R = np.asarray(np.floor(abs(lower-upper)), dtype=np.int)
          if(R[0] < 10):
              R[0] = 10
          if(R[1] < 10):
              R[1] = 10
          x = np.linspace(lower[0], upper[0], R[0])   #get the grid points for uniform sampling of this space
          y = np.linspace(lower[1], upper[1], R[1])
          X, Y = np.meshgrid(x, y)
          #Z = 150 * numpy.ones(X.shape)
                 
          Q = np.stack((X, Y), 2)
          d_x = abs(x[1]-x[0]);
          d_y = abs(y[1]-y[0]);
          dis1 = math.sqrt(pow(d_x,2)+pow(d_y,2))
          #dx = abs(x[1]-x[0])
          
          #dy = abs(y[1]-y[0])
          #dz = abs(z[1]-z[0])
           #get a list of all node positions in the network
          P = []
        
          for e in self.G.edges():    #12-17
              start = self.G.vertex_properties["pos"][e.source()]
              end = self.G.vertex_properties["pos"][e.target()]
              l = self.line(start, end, 10, 10)
              P = P + l
                 
              for j in range(len(l)-1):
                  d_t = l[j+1]-l[j]
                  dis2 = math.sqrt(pow(d_t[0],2)+pow(d_t[1],2))
                  ins = max(int(d_t[0]/d_x), int(d_t[1]/d_y))
                  if(ins > 0):  
                      ins = ins+1
                      for k in range(ins):
                          p_ins =l[j]+(k+1)*(l[j+1]-l[j])/ins
                          P.append(p_ins)
          #turn that list into a Numpy array so that we can create a KD tree
          P = np.array(P)
        
          #generate a KD-Tree out of the network point array
          tree = sp.spatial.cKDTree(P)
          
          #specify the resolution of the ouput grid
          # R = (200, 200, 200)
  
          D, I = tree.query(Q)
25fa0bfe   Pavel Govyadinov   Stable, pre-vispy...
317
318
319
          self.D = D
          self.x = x
          self.y = y
193cb4c6   Pavel Govyadinov   need this to test
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
          
          return D, x, y
      
      def centroid_com(self, vertices):
      # Polygon's signed area
          A = 0
          # Centroid's x
          C_x = 0
          # Centroid's y
          C_y = 0
          for i in range(0, len(vertices) - 1):
              s = (vertices[i, 0] * vertices[i + 1, 1] - vertices[i + 1, 0] * vertices[i, 1])
              A = A + s
              C_x = C_x + (vertices[i, 0] + vertices[i + 1, 0]) * s
              C_y = C_y + (vertices[i, 1] + vertices[i + 1, 1]) * s
          A = 0.5 * A
          C_x = (1.0 / (6.0 * A)) * C_x
          C_y = (1.0 / (6.0 * A)) * C_y
          
7c54fa21   Pavel Govyadinov   Added meshing to ...
339
340
341
342
343
344
345
346
347
348
349
          return np.array([C_x, C_y])  
      
  #Graph G
  #List of Polygonmass objects with the same cluster index.
  def get_torques(G, masses):
      for i in masses:
          i.clear_torques()
      for e in G.edges():
          #if the source and target cluster is not equal to each other
          #add an inter subgraph edge.
          if(G.vertex_properties["clusters"][e.source()] != G.vertex_properties["clusters"][e.target()]):
25fa0bfe   Pavel Govyadinov   Stable, pre-vispy...
350
351
352
353
354
355
356
357
358
              #index of the cluster
              t0 = G.vertex_properties["clusters"][e.target()]
              t1 = G.vertex_properties["clusters"][e.source()]
              #index of the vertex outside of the subgraph
              v0_index = G.vertex_properties["idx"][e.target()]
              v1_index = G.vertex_properties["idx"][e.source()]
              #location of torque arm in the subgraph
              p0 = masses[t0].G.vertex_properties["pos"][np.argwhere(masses[t0].G.vertex_properties["idx"].get_array() == v0_index)]
              p1 = masses[t1].G.vertex_properties["pos"][np.argwhere(masses[t1].G.vertex_properties["idx"].get_array() == v1_index)]
7c54fa21   Pavel Govyadinov   Added meshing to ...
359
              
25fa0bfe   Pavel Govyadinov   Stable, pre-vispy...
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
              f0 = np.subtract(p0, p1)
              f1 = np.subtract(p1, p0)
              masses[t0].add_torque(p0, f1)
              masses[t1].add_torque(p1, f0)
  '''
      c1 scales the attractive force before log.
      c2 scales the attractive force inside log.
      c3 scales the repulsive force.
  '''
  def get_forces(G, masses, c1 = 50.0, c2 = 1.0, c3 = 1.0):
      for i in range(len(masses)):
          masses[i].clear_forces()
          f_total = np.zeros(2)
          for j in range(len(masses)):
              if i != j:
                  f0 = np.subtract(masses[i].CoM, masses[j].CoM)
                  f1 = np.power(f0, 3.0)
                  f1[0] = c3/f1[0]*np.sign(f0[0])
                  f1[1] = c3/f1[1]*np.sign(f0[1])
                  f_total = np.add(f_total, f1)
          masses[i].forces_r = f_total
7c54fa21   Pavel Govyadinov   Added meshing to ...
381
              
25fa0bfe   Pavel Govyadinov   Stable, pre-vispy...
382
383
384
385
386
387
388
389
390
391
392
393
394
      for e in G.edges():
                  #if the source and target cluster is not equal to each other
          #add an inter subgraph edge.
          if(G.vertex_properties["clusters"][e.source()] != G.vertex_properties["clusters"][e.target()]):
              #index of the cluster
              t0 = G.vertex_properties["clusters"][e.target()]
              t1 = G.vertex_properties["clusters"][e.source()]
              #index of the vertex outside of the subgraph
              v0_index = G.vertex_properties["idx"][e.target()]
              v1_index = G.vertex_properties["idx"][e.source()]
              #location of torque arm in the subgraph
              p0 = masses[t0].G.vertex_properties["pos"][np.argwhere(masses[t0].G.vertex_properties["idx"].get_array() == v0_index)]
              p1 = masses[t1].G.vertex_properties["pos"][np.argwhere(masses[t1].G.vertex_properties["idx"].get_array() == v1_index)]
7c54fa21   Pavel Govyadinov   Added meshing to ...
395
              
25fa0bfe   Pavel Govyadinov   Stable, pre-vispy...
396
397
398
399
400
401
402
403
404
405
              f0 = np.subtract(p1, p0)
              f0_1 = abs(f0)
              f0_1 = c1*np.log(f0_1/c2)/masses[t0].degree
              f0_1 = f0_1*np.sign(f0)
              f1 = np.subtract(p0, p1)
              f1_1 = abs(f1)
              f1_1 = c1*np.log(f1_1/c2)/masses[t1].degree
              f1_1 = f1_1*np.sign(f1)
              masses[t0].forces_a = np.add(masses[t0].forces_a, f1_1)
              masses[t1].forces_a = np.add(masses[t1].forces_a, f0_1)
7c54fa21   Pavel Govyadinov   Added meshing to ...
406
              
25fa0bfe   Pavel Govyadinov   Stable, pre-vispy...
407
408
409
      
      
          
193cb4c6   Pavel Govyadinov   need this to test
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
  
  def voronoi_polygons(voronoi, diameter):
      """Generate shapely.geometry.Polygon objects corresponding to the
      regions of a scipy.spatial.Voronoi object, in the order of the
      input points. The polygons for the infinite regions are large
      enough that all points within a distance 'diameter' of a Voronoi
      vertex are contained in one of the infinite polygons.
  
      """
      centroid = voronoi.points.mean(axis=0)
  
      # Mapping from (input point index, Voronoi point index) to list of
      # unit vectors in the directions of the infinite ridges starting
      # at the Voronoi point and neighbouring the input point.
      ridge_direction = defaultdict(list)
      for (p, q), rv in zip(voronoi.ridge_points, voronoi.ridge_vertices):
          u, v = sorted(rv)
          if u == -1:
              # Infinite ridge starting at ridge point with index v,
              # equidistant from input points with indexes p and q.
              t = voronoi.points[q] - voronoi.points[p] # tangent
              n = np.array([-t[1], t[0]]) / np.linalg.norm(t) # normal
              midpoint = voronoi.points[[p, q]].mean(axis=0)
              direction = np.sign(np.dot(midpoint - centroid, n)) * n
              ridge_direction[p, v].append(direction)
              ridge_direction[q, v].append(direction)
  
      for i, r in enumerate(voronoi.point_region):
          region = voronoi.regions[r]
          if -1 not in region:
              # Finite region.
              yield Polygon(voronoi.vertices[region])
              continue
          # Infinite region.
          inf = region.index(-1)              # Index of vertex at infinity.
          j = region[(inf - 1) % len(region)] # Index of previous vertex.
          k = region[(inf + 1) % len(region)] # Index of next vertex.
          if j == k:
              # Region has one Voronoi vertex with two ridges.
              dir_j, dir_k = ridge_direction[i, j]
          else:
              # Region has two Voronoi vertices, each with one ridge.
              dir_j, = ridge_direction[i, j]
              dir_k, = ridge_direction[i, k]
  
          # Length of ridges needed for the extra edge to lie at least
          # 'diameter' away from all Voronoi vertices.
          length = 2 * diameter / np.linalg.norm(dir_j + dir_k)
  
          # Polygon consists of finite part plus an extra edge.
          finite_part = voronoi.vertices[region[inf + 1:] + region[:inf]]
          extra_edge = [voronoi.vertices[j] + dir_j * length,
                        voronoi.vertices[k] + dir_k * length]
          yield Polygon(np.concatenate((finite_part, extra_edge)))
  
  
  def load_nwt(filepath):
      net = nwt.Network(filepath)
      G = net.createFullGraph_gt()
      G = net.filterDisconnected(G)
      color = np.zeros(4, dtype = np.double)
      color = [0.0, 1.0, 0.0, 1.0]
      G.edge_properties["RGBA"] = G.new_edge_property("vector<double>", val=color)
      color = [1.0, 0.0, 0.0, 0.9]
      G.vertex_properties["RGBA"] = G.new_vertex_property("vector<double>", val=color)
      bbl, bbu = net.aabb()
  
      return G, bbl, bbu
  
  def gen_cluster_graph(G, num_clusters, cluster_pos):
      #create a graph that stores the edges of between the clusters
      G_cluster = nwt.gt.Graph(directed=False)
      G_cluster.vertex_properties["pos"] = G_cluster.new_vertex_property("vector<double>", val=np.zeros((3,1), dtype=np.float32))
      G_cluster.vertex_properties["RGBA"] = G_cluster.new_vertex_property("vector<double>", val=np.zeros((4,1), dtype=np.float32))
      for v in range(num_clusters):
          G_cluster.add_vertex()
          G_cluster.vertex_properties["pos"][G_cluster.vertex(v)] = np.asarray(cluster_pos[v], dtype=np.float32)
      G_cluster.edge_properties["weight"] = G_cluster.new_edge_property("int", val = 0)
      G_cluster.edge_properties["volume"] = G_cluster.new_edge_property("float", val = 0.0)
      #for each edge in the original graph, generate appropriate subgraph edges without repretiions
      #i.e. controls the thichness of the edges in the subgraph view.
      for e in G.edges():
          #if the source and target cluster is not equal to each other
          #add an inter subgraph edge.
          if(G.vertex_properties["clusters"][e.source()] != G.vertex_properties["clusters"][e.target()]):
              t0 = e.source()
              t1 = e.target()
              ct0 = G_cluster.vertex(G.vertex_properties["clusters"][t0])
              ct1 = G_cluster.vertex(G.vertex_properties["clusters"][t1])
              if(G_cluster.edge(ct0, ct1) == None):
                  if(G_cluster.edge(ct1, ct0) == None):
              #temp_e.append([G.vertex_properties["clusters"][e.source()], G.vertex_properties["clusters"][e.target()]])
                      G_cluster.add_edge(G_cluster.vertex(G.vertex_properties["clusters"][t0]), \
                                               G_cluster.vertex(G.vertex_properties["clusters"][t1]))
                      G_cluster.edge_properties["weight"][G_cluster.edge(G_cluster.vertex(G.vertex_properties["clusters"][t0]), \
                                                     G_cluster.vertex(G.vertex_properties["clusters"][t1]))] += 1
                      G_cluster.edge_properties["volume"][G_cluster.edge(G_cluster.vertex(G.vertex_properties["clusters"][t0]), \
                                                 G_cluster.vertex(G.vertex_properties["clusters"][t1]))] += G.edge_properties["volume"][e]
                      G_cluster.vertex_properties["RGBA"][G_cluster.vertex(G.vertex_properties["clusters"][t0])]    \
                                              = G.vertex_properties["RGBA"][t0]
                      G_cluster.vertex_properties["RGBA"][G_cluster.vertex(G.vertex_properties["clusters"][t1])]    \
                                              = G.vertex_properties["RGBA"][t1]
                  else:
                      G_cluster.edge_properties["weight"][G_cluster.edge(G_cluster.vertex(G.vertex_properties["clusters"][t1]), \
                                                     G_cluster.vertex(G.vertex_properties["clusters"][t0]))] += 1
                      G_cluster.edge_properties["volume"][G_cluster.edge(G_cluster.vertex(G.vertex_properties["clusters"][t1]), \
                                                 G_cluster.vertex(G.vertex_properties["clusters"][t0]))] += G.edge_properties["volume"][e]
                      G_cluster.vertex_properties["RGBA"][G_cluster.vertex(G.vertex_properties["clusters"][t1])]    \
                                              = G.vertex_properties["RGBA"][t1]
                      G_cluster.vertex_properties["RGBA"][G_cluster.vertex(G.vertex_properties["clusters"][t0])]    \
                                              = G.vertex_properties["RGBA"][t0]
              else:
                  G_cluster.edge_properties["weight"][G_cluster.edge(G_cluster.vertex(G.vertex_properties["clusters"][t0]), \
                                           G_cluster.vertex(G.vertex_properties["clusters"][t1]))] += 1
                  G_cluster.edge_properties["volume"][G_cluster.edge(G_cluster.vertex(G.vertex_properties["clusters"][t0]), \
                                             G_cluster.vertex(G.vertex_properties["clusters"][t1]))] += G.edge_properties["volume"][e]
                  G_cluster.vertex_properties["RGBA"][G_cluster.vertex(G.vertex_properties["clusters"][t0])]    \
                                          = G.vertex_properties["RGBA"][t0]
                  G_cluster.vertex_properties["RGBA"][G_cluster.vertex(G.vertex_properties["clusters"][t1])]    \
                                          = G.vertex_properties["RGBA"][t1]
      G_cluster.vertex_properties["degree"] = G_cluster.degree_property_map("total")
      vbetweeness_centrality = G_cluster.new_vertex_property("double")
      ebetweeness_centrality = G_cluster.new_edge_property("double")
      nwt.gt.graph_tool.centrality.betweenness(G_cluster, vprop=vbetweeness_centrality, eprop=ebetweeness_centrality)
      ebc = ebetweeness_centrality.get_array()/0.01
      G_cluster.vertex_properties["bc"] = vbetweeness_centrality
      G_cluster.edge_properties["bc"] = ebetweeness_centrality
      G_cluster.edge_properties["bc_scaled"] = G_cluster.new_edge_property("double", vals=ebc)
25fa0bfe   Pavel Govyadinov   Stable, pre-vispy...
538
      G_cluster.edge_properties["log"] = G_cluster.new_edge_property("double", vals=abs(np.log(G_cluster.edge_properties["volume"].get_array())))    
193cb4c6   Pavel Govyadinov   need this to test
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
      dg = G_cluster.vertex_properties["degree"].get_array()
      dg = 2*max(dg) - dg
      d = G_cluster.new_vertex_property("int", vals=dg)
      G_cluster.vertex_properties["10-degree"] = d
      
      return G_cluster
                                      
                                      
  
  
  def gen_clusters(G, bbl, bbu, n_c = 20, edge_metric = 'volume', vertex_metric = 'degree'):
  
      #Generate the clusters
      labels = nwt.Network.spectral_clustering(G,'length', n_clusters = n_c)
      #self.labels = nwt.Network.spectral_clustering(G,'length')
  
      #Add clusters as a vertex property
      G.vertex_properties["clusters"] = G.new_vertex_property("int", vals=labels)
      G.vertex_properties["idx"] = G.vertex_index
      
      #gen bc metric
      vbetweeness_centrality = G.new_vertex_property("double")
      ebetweeness_centrality = G.new_edge_property("double")
      nwt.gt.graph_tool.centrality.betweenness(G, vprop=vbetweeness_centrality, eprop=ebetweeness_centrality, norm=True)
      G.vertex_properties["bc"] = vbetweeness_centrality
      G.edge_properties["bc"] = ebetweeness_centrality
      
      num_clusters = len(np.unique(labels))
  
      #add colormap
      G.vertex_properties["RGBA"] = nwt.Network.map_property_to_color(G, G.vertex_properties["clusters"])
      temp_pos = []
      for i in range(num_clusters):
          num_v_in_cluster = len(np.argwhere(labels == i))
          vfilt = np.zeros([G.num_vertices(), 1], dtype="bool")
          vfilt[np.argwhere(labels == i)] = 1
          vfilt_prop = G.new_vertex_property("bool", vals = vfilt)
          G.set_vertex_filter(vfilt_prop)
      
          #get the filtered properties
          g = nwt.gt.Graph(G, prune=True, directed=False)
          positions = g.vertex_properties["pos"].get_2d_array(range(3)).T
          position = np.sum(positions, 0)/num_v_in_cluster
          temp_pos.append(position)
          G.clear_filters()
      
      return gen_cluster_graph(G, num_clusters, temp_pos), G
  
  
  def gen_subclusters(G, G_cluster, i, reposition = False):
      vfilt = np.zeros([G.num_vertices(), 1], dtype='bool')
      labels = G.vertex_properties["clusters"].get_array()
      num_v_in_cluster = len(np.argwhere(labels == i))
      vfilt[np.argwhere(labels == i)] = 1
      vfilt_prop = G.new_vertex_property("bool", vals = vfilt)
      G.set_vertex_filter(vfilt_prop)
      
      g = nwt.gt.Graph(G, prune=True, directed=False)
  
      
      if reposition == True:
          vbetweeness_centrality = g.new_vertex_property("double")
          ebetweeness_centrality = g.new_edge_property("double")
          nwt.gt.graph_tool.centrality.betweenness(g, vprop=vbetweeness_centrality, eprop=ebetweeness_centrality, norm=True)
          g.vertex_properties["bc"] = vbetweeness_centrality
          g.edge_properties["bc"] = ebetweeness_centrality
          g.vertex_properties["pos"] = nwt.gt.sfdp_layout(g, eweight = ebetweeness_centrality)
      
      positions = g.vertex_properties["pos"].get_2d_array(range(2)).T
      center = np.sum(positions, 0)/num_v_in_cluster
      G.clear_filters()
      return g, center
  
  #def gen_hierarchical_layout(G, G_cluster):
  
  def gen_polygons(G_c, bb):
      G_c.vertex_properties["region_idx"] = G_c.new_vertex_property("int")
      pts = G_c.vertex_properties["pos"].get_2d_array(range(2)).T
      bl = np.asarray([bb[0], bb[2]])
      lx = bb[1]-bb[0]
      ly = bb[3]-bb[2]
      r = copy.deepcopy(bl)
      t = copy.deepcopy(bl)
      tr = copy.deepcopy(bl)
      r[0] = r[0] + lx
      t[1] = t[1] + ly
      tr[0] = tr[0] + lx
      tr[1] = tr[1] + ly
      
      boundary = np.asarray([bl, t, tr, r, bl])
      diameter = np.linalg.norm(boundary.ptp(axis=0))
      boundary_polygon = Polygon(boundary)
      vor = Voronoi(pts)
      polygons = []
      idx = 0
      for poly in voronoi_polygons(vor, diameter):
          coords = np.array(poly.intersection(boundary_polygon).exterior.coords)
          polygons.append([coords])
          for v in G_c.vertices():
              point = Point(G_c.vertex_properties["pos"][v])
              if poly.contains(point):
                  G_c.vertex_properties["region_idx"][v] = idx
                  idx+=1
                  break
      return G_c, polygons, vor
                                  
  def centroid_region(vertices):
      # Polygon's signed area
      A = 0
      # Centroid's x
      C_x = 0
      # Centroid's y
      C_y = 0
      for i in range(0, len(vertices) - 1):
          s = (vertices[i, 0] * vertices[i + 1, 1] - vertices[i + 1, 0] * vertices[i, 1])
          A = A + s
          C_x = C_x + (vertices[i, 0] + vertices[i + 1, 0]) * s
          C_y = C_y + (vertices[i, 1] + vertices[i + 1, 1]) * s
      A = 0.5 * A
      C_x = (1.0 / (6.0 * A)) * C_x
      C_y = (1.0 / (6.0 * A)) * C_y
      
      return np.array([C_x, C_y])    
25fa0bfe   Pavel Govyadinov   Stable, pre-vispy...
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
   
  def find_equlibrium(masses, t = 0.01):
      for m in masses:
          sum_torque = 0
          for torque in m.torque:
              if torque[3] == "clockwise":
                  sum_torque -= torque[0]
              else:
                  sum_torque += torque[0]
          m.vel = m.aa * t + m.vel
          m.aa = sum_torque/m.MoI
          #print(m.G.vertex_properties["clusters"][0], m.vel)
          if m.vel != 0.0:
              if m.vel < 0.0:
                  m.rotate(abs(m.vel * t),"counterclock")
              else:
                  m.rotate(abs(m.vel * t), "clockwise")
  
  
  def gen_Eades(G, masses, M = 10):
      for i in range(M):
          get_forces(G, masses)
          for j in masses:
              j.translate(0.001)
          
  def onion_springs(G, masses, min_length):
      for v in G.vertices():
          
  
193cb4c6   Pavel Govyadinov   need this to test
691
692
693
694
695
696
697
698
699
      
  def gen_image(G, G_c, itr, bb_flag = False, bb = None, reposition = False):
  #def gen_image(G, G_c, vor, vor_filtered):
      #Draw the layout using graph-tool (for comparison)
      title = "clusters.pdf"
      nwt.gt.graph_draw(G_c, pos=G_c.vertex_properties["pos"], vertex_fill_color=G_c.vertex_index, output=title, bg_color=[0.0, 0.0, 0.0, 1.0], output_size=(1000,1000))
      
      #get points of the centers of every cluster
      #generate voronoi region and plot it.
25fa0bfe   Pavel Govyadinov   Stable, pre-vispy...
700
      fig, ax = plt.subplots(4, 1, sharex='col', sharey='row')
193cb4c6   Pavel Govyadinov   need this to test
701
      fig.tight_layout()
25fa0bfe   Pavel Govyadinov   Stable, pre-vispy...
702
      grid = plt.GridSpec(4,1)
193cb4c6   Pavel Govyadinov   need this to test
703
704
705
706
      grid.update(wspace=0.025, hspace=0.2)
      ax[0].axis('off')
      ax[1].axis('off')
      ax[2].axis('off')
25fa0bfe   Pavel Govyadinov   Stable, pre-vispy...
707
708
      ax[3].axis('off')
      
193cb4c6   Pavel Govyadinov   need this to test
709
      
25fa0bfe   Pavel Govyadinov   Stable, pre-vispy...
710
      #Add plots to the axes and get their handles
193cb4c6   Pavel Govyadinov   need this to test
711
712
713
714
      all_plots = fig.add_subplot(grid[0])
      ax[0].set_title(itr)
      no_links = fig.add_subplot(grid[1], sharey=all_plots, sharex=all_plots)
      voronoi = fig.add_subplot(grid[2], sharey=all_plots, sharex=all_plots)
25fa0bfe   Pavel Govyadinov   Stable, pre-vispy...
715
716
717
      rotated = fig.add_subplot(grid[3], sharey=all_plots, sharex=all_plots)
      
      #Get the points and generate the voronoi region
193cb4c6   Pavel Govyadinov   need this to test
718
719
720
721
722
723
724
725
726
      pts = G_c.vertex_properties["pos"].get_2d_array(range(2)).T
      if bb_flag == False:
          vor = Voronoi(pts)
          voronoi_plot_2d(vor, all_plots)
          voronoi_plot_2d(vor, no_links)
          voronoi_plot_2d(vor, voronoi)
          a = voronoi.get_ylim()
          b = voronoi.get_xlim()
          bb = np.array([b[0], b[1], a[0], a[1]])
25fa0bfe   Pavel Govyadinov   Stable, pre-vispy...
727
728
          
      #generate the polygons based on the voronoi regions
193cb4c6   Pavel Govyadinov   need this to test
729
730
731
732
733
      G_c, regions, vor = gen_polygons(G_c, bb)
      if bb_flag == True:
          voronoi_plot_2d(vor, all_plots)
          voronoi_plot_2d(vor, no_links)
          voronoi_plot_2d(vor, voronoi)
25fa0bfe   Pavel Govyadinov   Stable, pre-vispy...
734
      
193cb4c6   Pavel Govyadinov   need this to test
735
736
737
738
739
      #plot the top-level graph
      pts = G_c.vertex_properties["pos"].get_2d_array(range(2)).T
      all_plots.scatter(pts[:,0], pts[:, 1], s=20*G_c.vertex_properties["degree"].get_array(), marker="*")
      no_links.scatter(pts[:,0], pts[:, 1], s=20*G_c.vertex_properties["degree"].get_array(), marker="*")
      voronoi.scatter(pts[:,0], pts[:, 1], s=20*G_c.vertex_properties["degree"].get_array(), marker="*")
25fa0bfe   Pavel Govyadinov   Stable, pre-vispy...
740
      
193cb4c6   Pavel Govyadinov   need this to test
741
742
743
744
745
746
747
748
749
750
      #plot the connections of the top level graph
      for e in G_c.edges():
          coord = G_c.vertex_properties["pos"][e.source()]
          coord2 = G_c.vertex_properties["pos"][e.target()]
          x = [coord[0], coord2[0]]
          y = [coord[1], coord2[1]]
          #all_plots.plot(x, y, 'go--', linewidth=1, markersize=1)
          no_links.plot(x, y, 'go--', linewidth=1, markersize=1)
          voronoi.plot(x, y, 'go--', linewidth=1, markersize=1)
      
25fa0bfe   Pavel Govyadinov   Stable, pre-vispy...
751
752
753
      #For every subgraph generate a layout and plot the resulting Polygon_mass
      #These polygons are not the same as the voronoi polygons and instead surround
      #graph.
7c54fa21   Pavel Govyadinov   Added meshing to ...
754
      masses = []
193cb4c6   Pavel Govyadinov   need this to test
755
756
757
      for i in range(num_clusters):
          g, center = gen_subclusters(G, G_c, i, reposition)
          d = G_c.vertex_properties["pos"][i] - center
193cb4c6   Pavel Govyadinov   need this to test
758
759
          for v in g.vertices():
              G.vertex_properties["pos"][g.vertex_properties["idx"][v]] = g.vertex_properties["pos"][v] + d
25fa0bfe   Pavel Govyadinov   Stable, pre-vispy...
760
761
762
763
764
              g.vertex_properties["pos"][v] = g.vertex_properties["pos"][v] + d
          t = Polygon_mass(g)
          t.set_degree(G_c.vertex_properties["degree"][i])
          masses.append(t)
          #t.distancefield()
7c54fa21   Pavel Govyadinov   Added meshing to ...
765
              
25fa0bfe   Pavel Govyadinov   Stable, pre-vispy...
766
767
768
769
      #get the torques generated by the positioning of the graphs.
      get_torques(G, masses)
  #    for i in masses:
  #        i.plot_graph(i.D, i.x, i.y)
7c54fa21   Pavel Govyadinov   Added meshing to ...
770
          #g.vertex_properties["pos"][g.vertex_properties["idx"][v]] = g.vertex_properties["pos"][v] + d
193cb4c6   Pavel Govyadinov   need this to test
771
772
773
774
775
776
777
778
          #sub_pts = g.vertex_properties["pos"].get_2d_array(range(2)).T
      #all_plots.scatter(pts[:,0], pts[:, 1], marker="*")
      #    for e in g.edges():
      #        coord = g.vertex_properties["pos"][e.source()]
      #        coord2 = g.vertex_properties["pos"][e.target()]
      #        x = [coord[0], coord2[0]]
      #        y = [coord[1], coord2[1]]
      #        plt.plot(x, y, 'ro--', linewidth=1, markersize=1)
25fa0bfe   Pavel Govyadinov   Stable, pre-vispy...
779
780
781
      
      
      #Plot the cluster level connections and the vertex level connections.
193cb4c6   Pavel Govyadinov   need this to test
782
783
784
785
786
787
788
789
790
791
      for e in G.edges():
          coord = G.vertex_properties["pos"][e.source()]
          coord2 = G.vertex_properties["pos"][e.target()]
          x = [coord[0], coord2[0]]
          y = [coord[1], coord2[1]]
          if (G.vertex_properties["clusters"][e.source()] == G.vertex_properties["clusters"][e.target()]):
              all_plots.plot(x, y, 'ro--', linewidth=1, markersize=1)
              no_links.plot(x, y, 'ro--', linewidth=1, markersize=1)
          else:
              all_plots.plot(x, y, 'bo--', linewidth=1, markersize=1)
25fa0bfe   Pavel Govyadinov   Stable, pre-vispy...
792
793
      
      #Update the centroids based on the voronoi polygons
193cb4c6   Pavel Govyadinov   need this to test
794
795
796
797
798
799
800
      no_links.xaxis.set_visible(False)
      all_plots.xaxis.set_visible(False)
      for v in G_c.vertices():
          region = regions[G_c.vertex_properties["region_idx"][v]]
          centroid = centroid_region(region[0])
          G_c.vertex_properties["pos"][v] = centroid
      
25fa0bfe   Pavel Govyadinov   Stable, pre-vispy...
801
802
803
804
      
      print(G_c.num_vertices(), G_c.num_edges())
      
      #Plots the vertices of the subgraphs
193cb4c6   Pavel Govyadinov   need this to test
805
806
807
808
809
      pts_temp = G_c.vertex_properties["pos"].get_2d_array(range(2)).T
      all_plots.scatter(pts_temp[:,0], pts_temp[:, 1], marker='.', color='r')
      no_links.scatter(pts_temp[:,0], pts_temp[:, 1], marker='.', color='r')
      voronoi.scatter(pts_temp[:,0], pts_temp[:, 1], marker='.', color='r')
      
25fa0bfe   Pavel Govyadinov   Stable, pre-vispy...
810
      #set the limits of the plots.
193cb4c6   Pavel Govyadinov   need this to test
811
812
813
814
815
816
817
818
819
      all_plots.set_xlim([bb[0], bb[1]])
      all_plots.set_ylim([bb[2], bb[3]])
      
      no_links.set_xlim([bb[0], bb[1]])
      no_links.set_ylim([bb[2], bb[3]])
      
      voronoi.set_xlim([bb[0], bb[1]])
      voronoi.set_ylim([bb[2], bb[3]])
      
25fa0bfe   Pavel Govyadinov   Stable, pre-vispy...
820
      #show the plots.
193cb4c6   Pavel Govyadinov   need this to test
821
822
      plt.show()
  
25fa0bfe   Pavel Govyadinov   Stable, pre-vispy...
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
  #    for j in [7, 10, 15]:
  #        masses[j].plot_graph(masses[j].D, masses[j].x, masses[j].y)
  
      for j in range(10):
          for i in range(100):
              get_torques(G, masses)
              find_equlibrium(masses)
          gen_Eades(G, masses)
  #        for j in [7, 10]:
  #            masses[j].plot_graph(masses[j].D, masses[j].x, masses[j].y)
  #    for j in [7, 10, 15]:
  #        masses[j].plot_graph(masses[j].D, masses[j].x, masses[j].y)
          
      for i in masses:
          for v in i.G.vertices():
              G.vertex_properties["pos"][i.G.vertex_properties["idx"][v]] = i.G.vertex_properties["pos"][v]
  
      
      #Plot the cluster level connections and the vertex level connections.
      for e in G.edges():
          coord = G.vertex_properties["pos"][e.source()]
          coord2 = G.vertex_properties["pos"][e.target()]
          x = [coord[0], coord2[0]]
          y = [coord[1], coord2[1]]
          if (G.vertex_properties["clusters"][e.source()] == G.vertex_properties["clusters"][e.target()]):
              rotated.plot(x, y, 'ro--', linewidth=1, markersize=1)
          else:
              rotated.plot(x, y, 'bo--', linewidth=1, markersize=1)
      
      pts_temp = G.vertex_properties["pos"].get_2d_array(range(2)).T
      rotated.scatter(pts_temp[:,0], pts_temp[:, 1], marker='.', color='r')
      
      
193cb4c6   Pavel Govyadinov   need this to test
856
  
25fa0bfe   Pavel Govyadinov   Stable, pre-vispy...
857
      return G, G_c, bb, masses
193cb4c6   Pavel Govyadinov   need this to test
858
859
860
861
862
863
864
865
866
867
868
869
  
              
  
  
          
          
          
              
  #G_c.vertex_properties["pos"] = nwt.gt.fruchterman_reingold_layout(G_c, weight=G_c.edge_properties["weight"], r=G_c.num_vertices()*0.1, a = G_c.num_vertices()*500)
  
  G, bbl, bbu = load_nwt("/home/pavel/Documents/Python/GraphGuiQt/network_4.nwt")
  G_c, G = gen_clusters(G, bbl, bbu)
25fa0bfe   Pavel Govyadinov   Stable, pre-vispy...
870
  
193cb4c6   Pavel Govyadinov   need this to test
871
872
873
874
875
  num_clusters = 20
  
  #G_c.vertex_properties["pos"] = nwt.gt.radial_tree_layout(G_c, root=np.argwhere(G_c.vertex_properties["degree"].get_array() == max(G_c.vertex_properties["degree"].get_array())), node_weight = G_c.vertex_properties["10-degree"], r= 2.0)
  G_c.vertex_properties["pos"] = nwt.gt.sfdp_layout(G_c, eweight=G_c.edge_properties["volume"], vweight=G_c.vertex_properties["degree"], C = 1.0, K = 10)
  
25fa0bfe   Pavel Govyadinov   Stable, pre-vispy...
876
877
878
879
880
881
  
  
  G, G_c, bb, masses = gen_image(G, G_c, "base", reposition = True)
  
  print("Planarity test: G_c, G = " , nwt.gt.graph_tool.topology.is_planar(G_c), nwt.gt.graph_tool.topology.is_planar(G))
  
193cb4c6   Pavel Govyadinov   need this to test
882
883
884
  itr = 0
  
  #for itr in range(5):
25fa0bfe   Pavel Govyadinov   Stable, pre-vispy...
885
  #    G, G_c, bb, masses = gen_image(G, G_c, itr, True, bb)
193cb4c6   Pavel Govyadinov   need this to test
886
887
  #    itr+=1
  
25fa0bfe   Pavel Govyadinov   Stable, pre-vispy...
888
  #g, center = gen_subclusters(G, G_c)
193cb4c6   Pavel Govyadinov   need this to test
889
890
891
892
893
894
  #d = G_c.vertex_properties["pos"][0] - center
  #for v in g.vertices():
  #    g.vertex_properties["pos"][v] = g.vertex_properties["pos"][v] + d
      
  #G_c = nwt.Network.gen_new_fd_layout(G_c)
  #gt.graph_draw(G1, pos=G1.vertex_properties["p"], edge_pen_width = 8.0, output=title, bg_color=[1.0, 1.0,1.0,1.0], vertex_size=60, vertex_fill_color=G1.vertex_properties["bc"], vertex_text=G1.vertex_index, output_size=(3200,3200),vertex_font_size = 32)