Blame view

TubeCanvas.py 21.2 KB
9f9f1788   Pavel Govyadinov   clead up version ...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
  #!/usr/bin/env python3
  # -*- coding: utf-8 -*-
  """
  Created on Mon Aug  5 15:56:47 2019
  
  @author: pavel
  """
  
  """
      Class that extends the vispy SceneCanvas to draw 3D tubes
  """
  
  from vispy import gloo, scene
  from vispy.gloo import set_viewport, set_state, clear, set_blend_color
  from vispy.util.transforms import perspective, translate, rotate, scale
  import vispy.gloo.gl as glcore
  from vispy.util.quaternion import Quaternion
  
  import numpy as np
  import math
  import network_dep as nwt
  
  
  from tube_shaders import FRAG_SHADER, VERT_SHADER
  
6eb102f5   Pavel Govyadinov   Fixed issue cause...
26
27
28
29
30
31
  from mpl_toolkits.mplot3d import Axes3D
  import matplotlib
  import matplotlib.pyplot as plt
  
  DEBUG = False
  
9f9f1788   Pavel Govyadinov   clead up version ...
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
  class TubeDraw(scene.SceneCanvas):
      #sigUpdate = QtCore.pyqtSignal(float, float, float)
  
      #Initiates the canvas.
      def __init__(self, **kwargs):
          #Initialte the class by calling the superclass
          scene.SceneCanvas.__init__(self, size=(512,512), keys='interactive', **kwargs)
          #unfreeze the drawing area to allow for dynamic drawing and interaction
          self.unfreeze()
          
          #generate dummy buffers for the meshes
          self.program = gloo.Program(VERT_SHADER, FRAG_SHADER)
          self.cylinder_data = np.zeros(5*5, dtype=[('a_position', np.float32, 3),
                                    ('a_normal', np.float32, 3),
                                    ('a_fg_color', np.float32, 4),
                                    #('a_linewidth', np.float32, 1),
                                    ])
          self.triangle_data = np.random.randint(size=(5, 3), low=0,
                                    high=(4-1)).astype(np.uint32)
          self.vbo = gloo.VertexBuffer(self.cylinder_data)
          self.triangles = gloo.IndexBuffer(self.triangle_data)
          self.program.bind(self.vbo)
          self.scale = [1,1,1]
          self.r1 = np.eye(4, dtype=np.float32)
          self.r2 = np.eye(4, dtype=np.float32)
          set_viewport(0,0,*self.physical_size)
          #set_state(clear_color='white', depth_test=True, blend=True,
          #          blend_func=('src_alpha', 'one_minus_src_alpha'), depth_func = ('less'), cull_face='back')
          set_state(clear_color='white', depth_test=True, blend=True,
                    blend_func=('src_alpha', 'one_minus_src_alpha'), depth_func = ('lequal'))
          #set_blend_color(color='black')
          #set_state('translucent')
          self.program['u_LightPos'] = [0., 0., -1000.]
          #self.camera = self.central_widget.add_view()
          #self.camera.camera = 'turntable'
          self.down = False
          self.camera = np.asarray([0.0, 0.0, 200.0], dtype=np.float32)
          self.up = np.asarray([0., 1., 0.], dtype=np.float32)
          #self.init_camera = [0.,0.,1000.]
  
          ##### prototype #####
          #Set the visualization matrices
          self.program['u_eye'] = self.camera
          self.program['u_up'] = self.up
          self.program['u_target'] = np.asarray([0., 0., 0.], dtype=np.float32)
  
  
  
      #Load the data necessary to draw all of the microvessels
      def set_data(self, G, bbu, bbl, num_sides):
          self.G = G
          self.num_sides = num_sides
          self.bbu = bbu
          self.bbl = bbl
          bb = nwt.AABB(G).resample_sides(3)
  
  
          #create program
          self.gen_cylinder_vbo(self.G, self.num_sides)
          self.vbo = gloo.VertexBuffer(self.cylinder_data)
          self.triangles = gloo.IndexBuffer(self.triangle_data)
  
          #self.view = np.eye(4, dtype=np.float32)
          self.model = np.eye(4, dtype=np.float32)
          self.projection = np.eye(4, dtype=np.float32)
          self.projection = perspective(90.0, self.physical_size[0]/self.physical_size[1], 1.0, 1000.0)
          #self.projection = perspective(90.0, 1.0, -1.0, 1.0)
          self.program['u_model'] = self.model
          self.program['u_LightPos'] = [0., 0., 1000.]
          #self.program['u_view'] = self.view
          self.program['u_projection'] = self.projection
          self.program.bind(self.vbo)
  
          gloo.set_clear_color('white')
          self.center = (bbu-bbl)/2.0
          self.translate = [-self.center[0], -self.center[1], -self.center[2]]
  
          self.bb = np.ones((26, 3), dtype=np.float32)
          for i in range(26):
              for j in range(3):
                  self.bb[i,j] = bb[i][j]
          self.program['u_bb'] = self.bb
6eb102f5   Pavel Govyadinov   Fixed issue cause...
114
115
          if DEBUG:
              print('bb is ', self.bb)
9f9f1788   Pavel Govyadinov   clead up version ...
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
  #        for i in range(len(self.translate)):
  #            self.camera[i] += self.translate[i]
  
  
          ##### prototype #####
          self.camera = self.camera - self.translate
          self.program['u_eye'] = self.camera
          self.up = np.cross((np.asarray(self.center, dtype=np.float32)-np.asarray(self.camera, dtype=np.float32)), np.asarray(self.up))
          self.program['u_up'] = self.up
          self.program['u_target'] = self.translate
  
  
  
  
          #self.show()
  
      #Called during resize of the window in order to redraw the same image in the
      #larger/smaller area.
      def on_resize(self, event):
          width, height = event.physical_size
          gloo.set_viewport(0, 0, width, height)
6eb102f5   Pavel Govyadinov   Fixed issue cause...
137
138
          if DEBUG:
              print(self.physical_size)
9f9f1788   Pavel Govyadinov   clead up version ...
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
  
      #overloaded function called during the self.update() call to update the current
      #frame using the GLSL frag/vert shaders
      def on_draw(self, event):
          clear(color='white', depth=True)
          gloo.set_clear_color('white')
          self.program.draw('triangles', self.triangles)
          self.projection = perspective(90.0, self.physical_size[0]/self.physical_size[1], 1.0, 1000.0)
          self.program['u_projection'] = self.projection
  
      #Creates a cylinder around ever segment in the microvascular network.
      def gen_cylinder_vbo(self, G, num_sides = 32):
          i = 0
          num_pts = 0
          num_tri = 0
          for e in G.edges():
              num_pts += len(self.G.edge_properties["x"][e])
              num_tri += (len(self.G.edge_properties["x"][e])-1)*num_sides*2
          self.cylinder_data = np.zeros(num_pts*num_sides, dtype=[('a_position', np.float32, 3),
                                    ('a_normal', np.float32, 3),
                                    ('a_fg_color', np.float32, 4),
                                    #('a_linewidth', np.float32, 1),
                                    ])
          self.triangle_data = np.random.randint(size=(num_tri, 3), low=0,
                                    high=(G.num_edges()-1)).astype(np.uint32)
          index = 0
          t_index = 0
          #for each edge generate a cylinder.
          for e in G.edges():
              #print("done")
              #for each fiber get all the points and the radii
              X = self.G.edge_properties["x"][e]
              Y = self.G.edge_properties["y"][e]
              Z = self.G.edge_properties["z"][e]
              R = self.G.edge_properties["r"][e]
              color = G.edge_properties["RGBA"][e]
              pts = np.array([X,Y,Z]).T
              circle_pts = np.zeros((pts.shape[0], num_sides, 3), dtype = np.float32)
              step = 2*np.pi/num_sides
  #            U = np.zeros(pts.shape, dtype=np.float32)
  #            V = np.zeros(pts.shape, dtype=np.float32)
  #            direction = np.zeros(pts.shape, dtype=np.float32)
  
              #for every point in the edge
              for p in range(pts.shape[0]):
                  #if first point, generate the circles.
                  #In this case we want to generate a cap if we see the first circle or the last.
                  if(p == 0):
                      #get the direction
                      direction = (pts[p+1] - pts[p])
                      #normalize direction
                      direction = direction/np.sqrt(direction[0]*direction[0] + direction[1]*direction[1] + direction[2]*direction[2])
                      #generate a vector to use as an element of the cross product
                      Y = np.zeros((3,), dtype = np.float32)
                      Y[0] = 1.
                      #if direction and Y are parallel, change Y
                      if(np.cos(np.dot(Y, direction)) < 0.087):
                          Y[0] = 0.0
                          Y[2] = 1.0
                      #generate first plane vector
                      U = np.cross(direction, Y)
                      U = U/np.sqrt(U[0]*U[0] + U[1]*U[1] + U[2]*U[2])
                      #generate second plane vector
                      V = np.cross(direction, U)
                      V = V/np.sqrt(V[0]*V[0] + V[1]*V[1] + V[2]*V[2])
                      #print(R[p],pts[p])
                      #generate circle.
                      for s in range(num_sides):
                          circle_pts[p][s][0] =  R[p]*np.cos(s*step)*V[0]*0.5 + R[p]*np.sin(s*step)*U[0]*0.5
                          circle_pts[p][s][1] =  R[p]*np.cos(s*step)*V[1]*0.5 + R[p]*np.sin(s*step)*U[1]*0.5
                          circle_pts[p][s][2] =  R[p]*np.cos(s*step)*V[2]*0.5 + R[p]*np.sin(s*step)*U[2]*0.5
                  #if last point, copy the previous circle.
                  elif(p == pts.shape[0]-1):
                      for s in range(num_sides):
                          circle_pts[p][s] = circle_pts[p-1][s]
                      for v in range(pts.shape[0]):
                          circle_pts[v,:,0] += pts[v][0]
                          circle_pts[v,:,1] += pts[v][1]
                          circle_pts[v,:,2] += pts[v][2]
                  #otherwise, rotate the circle
                  else:
                      #print(R[p], pts[p])
                      #generate a new direction vector.
                      dir_new = (pts[p+1]-pts[p])
                      dir_new = dir_new/np.sqrt(dir_new[0]*dir_new[0] + dir_new[1]*dir_new[1] + dir_new[2]*dir_new[2])
                      dir_new2 = (pts[p]-pts[p-1])
                      dir_new2 = dir_new2/np.sqrt(dir_new2[0]*dir_new2[0] + dir_new2[1]*dir_new2[1] + dir_new2[2]*dir_new2[2])
                      dir_new = dir_new+dir_new2
                      dir_new = dir_new/np.sqrt(dir_new[0]*dir_new[0] + dir_new[1]*dir_new[1] + dir_new[2]*dir_new[2])
                      #print(dir_new, direction)
                      #generate the quaternion rotation vector for the shortest arc
                      k = 1.0 + np.dot(direction, dir_new)
                      s = 1/np.sqrt(k+k)
                      r = s*np.cross(direction, dir_new)
                      theta = k*s
                      #r = np.cross(direction, dir_new)
                      #r = r/np.sqrt(r[0]*r[0] + r[1]*r[1] + r[2]*r[2])
                      #calculate the degree of quaternion rotation.
                      #cos_theta = np.sqrt(np.sqrt(np.dot(dir_new, dir_new)) * np.sqrt(np.dot(direction, direction))) + np.dot(dir_new, direction)
                      #cos_theta = np.dot(direction, dir_new)
                      #theta = np.arccos(cos_theta)/2.0
                      #print(r, cos_theta, theta)
                      #quat = np.append(theta, r)
                      q = Quaternion(w=theta, x = r[0], y = r[1], z = r[2]).normalize()
  
                      #print(quat)
                      #q = np.quaternion(quat[0], quat[1], quat[2], quat[3])
                      #rot = Rotation.from_quat(quat, normalized=False)
                      #rot.as_quat()
                      for s in range(num_sides):
                          circle_pts[p][s] = q.rotate_point(circle_pts[p-1][s])
                          #circle_pts[p][s] = rot.apply(circle_pts[p-1][s])
                          #circle_pts[p][s] = q.rotate(circle_pts[p-1][s])
                          #circle_pts[p][s] = np.quaternion.rotate_vectors(q, circle_pts[p][s])
                          #circle_pts[p][s] = q.rotate_vectors(q, circle_pts[p][s])
                          #circle_pts[p][s] = circle_pts[p][s]
                      direction = dir_new
              #generate the triangles
              triangles = np.random.randint(size=((pts.shape[0]-1)*2*(num_sides), 3), low=0,
                                    high=(G.num_edges()-1)).astype(np.uint32)
  
              t_index_temp = 0
              for ring in range(pts.shape[0]-1):
                  for side in range(num_sides):
                      if(side < num_sides-1):
                          idx_current_point = index+ring*num_sides + side
                          idx_next_ring = index + (ring+1) * num_sides + side
                          triangle1 = [idx_current_point, idx_next_ring, idx_next_ring+1]
                          triangle2 = [idx_next_ring+1, idx_current_point+1, idx_current_point]
                          triangles[t_index_temp] = [idx_current_point, idx_next_ring, idx_next_ring+1]
                          triangles[t_index_temp+1] = [idx_next_ring+1, idx_current_point+1, idx_current_point]
                          self.triangle_data[t_index] = triangle1
                          self.triangle_data[t_index+1] = triangle2
                          t_index += 2
                          t_index_temp += 2
                      else:
                          idx_current_point = index + ring*num_sides + side
                          idx_next_ring = index + (ring+1)*num_sides + side
                          triangle1 = [idx_current_point, idx_next_ring, idx_next_ring-num_sides+1]
                          triangle2 = [idx_next_ring-num_sides+1, idx_current_point-num_sides+1, idx_current_point]
                          triangles[t_index_temp] = [idx_current_point, idx_next_ring-num_sides, idx_next_ring-num_sides+1]
                          triangles[t_index_temp+1] = [idx_next_ring-num_sides+1, idx_current_point-num_sides+1, idx_current_point]
                          self.triangle_data[t_index] = triangle1
                          self.triangle_data[t_index+1] = triangle2
                          t_index += 2
                          t_index_temp += 2
  
              #generate the points data structure
              circle_pts_data = circle_pts.reshape((pts.shape[0]*num_sides, 3))
              self.cylinder_data['a_position'][index:(pts.shape[0]*num_sides+index)] = circle_pts_data
              self.cylinder_data['a_fg_color'][index:(pts.shape[0]*num_sides+index)] = color
              #generate the normals data structure
              pts_normals = circle_pts.copy()
              for p in range(pts.shape[0]):
                  pts_normals[p][:] = pts_normals[p][:] - pts[p]
                  for s in range(num_sides):
                      pts_normals[p][s] = pts_normals[p][s]/np.sqrt(pts_normals[p][s][0]*pts_normals[p][s][0] \
                                + pts_normals[p][s][1]*pts_normals[p][s][1] + pts_normals[p][s][2]*pts_normals[p][s][2])
              self.cylinder_data['a_normal'][index:(pts.shape[0]*num_sides+index)] = \
                  pts_normals.reshape((pts.shape[0]*num_sides, 3))
  
              index += pts.shape[0]*num_sides
              
              #Add the caps for each of the endpoints.
  
  
6eb102f5   Pavel Govyadinov   Fixed issue cause...
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
              if DEBUG:
                  if(i == 2):
                      fig = plt.figure()
                      ax = fig.add_subplot(111, projection='3d')
                      #ax.scatter(circle_pts[:,:,0], circle_pts[:,:,1], circle_pts[:,:,2])
                      ax.plot(pts[:,0], pts[:,1], pts[:,2])
                      for j in range(pts.shape[0]):
                          ax.plot(circle_pts[j,:,0], circle_pts[j,:,1], circle_pts[j,:,2])
                      for j in range(triangles.shape[0]):
                          tri = np.zeros((3,4))
                          tri[:,0] = self.cylinder_data['a_position'][triangles[j][0]]
                          tri[:,1] = self.cylinder_data['a_position'][triangles[j][1]]
                          tri[:,2] = self.cylinder_data['a_position'][triangles[j][2]]
                          tri[:,3] = self.cylinder_data['a_position'][triangles[j][0]]
                          ax.plot(tri[0,:], tri[1,:], tri[2,:], c='b')
                      for j in range(triangles.shape[0]):
                          tri = np.zeros((3,3))
                          tri[:,0] = self.cylinder_data['a_position'][triangles[j][0]]
                          tri[:,1] = self.cylinder_data['a_position'][triangles[j][1]]
                          tri[:,2] = self.cylinder_data['a_position'][triangles[j][2]]
                          norm = np.zeros((3,3))
                          norm[:,0] = self.cylinder_data['a_normal'][triangles[j][0]]
                          norm[:,1] = self.cylinder_data['a_normal'][triangles[j][1]]
                          norm[:,2] = self.cylinder_data['a_normal'][triangles[j][2]]
                          ax.quiver(tri[0,:], tri[1,:], tri[2,:], norm[0,:], norm[1,:], norm[2,:], colors = 'r')
                      plt.show()
9f9f1788   Pavel Govyadinov   clead up version ...
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
              i+=1
          #create the data.
          
      #Handles the mouse wheel event, i.e., zoom
      def on_mouse_wheel(self, event):
  #        self.scale[0] = self.scale[0] + self.scale[0]*event.delta[1]*0.05
  #        self.scale[1] = self.scale[1] + self.scale[1]*event.delta[1]*0.05
  #        self.scale[2] = self.scale[2] + self.scale[2]*event.delta[1]*0.05
  ##        self.view[0][0] = self.scale[0]
  ##        self.view[1][1] = self.scale[1]
  ##        self.view[2][2] = self.scale[2]
  #        print("in mouse wheel ", self.r1, self.r2)
  #        self.view = np.matmul(translate((self.translate[0], self.translate[1], self.translate[2])), self.r1)
  #        self.view = np.matmul(self.view, self.r2)
  #        self.view = np.matmul(self.view, scale((self.scale[0], self.scale[1], self.scale[2])))
  #        #self.view = np.matmul(self.view, self.r1)
  #        #self.view = np.matmul(self.view, self.r2)
  #        #self.view = np.matmul(translate((self.translate[0], self.translate[1], self.translate[2])), scale((self.scale[0], self.scale[1], self.scale[2])))
  #        #self.rotate = [0., 0.]
  #        #self.camera =
  #
  #        #self.view[1][1] = self.view[1][1]+self.view[1][1]*event.delta[1]*0.05
  #        #print(self.view[0][0], " ",self.view[1][1])
  #        #print(self.view)
  #        self.camera = [0.0, 0.0, -100.0, 1.0]
  ##        for i in range(len(self.translate)):
  ##            self.camera[i] += self.translate[i]
  #        self.program['u_view'] = self.view
  
  #        if(np.asarray(self.camera).all() == np.asarray([0., 0., 0.]).all()):
  #            self.camera = np.asarray([0., 0., 0.])
  #        else:
          direction = np.asarray(self.translate) - np.asarray(self.camera)
          direction = direction/np.sqrt(np.dot(direction, direction))
          for i in range(3):
              self.camera[i] = self.camera[i] + direction[i]*event.delta[1]*2.0
  
          self.program['u_eye'] = self.camera
          #print(self.view)
          #print(event.delta[1])
          self.update()
  
  
  
      #Handles the mouse press event to rotate the camera if the left mouse button
      #if clicked down.
      def on_mouse_press(self, event):
          def update_view():
              self.location = event.pos
              #self.program['u_view'] = self.view
              self.down = True
  
          if(event.button == 1):
              update_view()
  
  
      #Handles the rotation of the camera using a quaternion centered around the
      #focus point.
      def on_mouse_move(self, event):
          if(self.down == True):
              coord = self.transforms.get_transform('canvas', 'render').map(self.location)[:2]
              coord2 = self.transforms.get_transform('canvas', 'render').map(event.pos)[:2]
              #coord[1] = 0
              #coord2[1] = 0
  
              theta = (coord[0]-coord2[0])*360.0/2.0/np.pi
              phi = (coord[1]-coord2[1])*360.0/2.0/np.pi
6eb102f5   Pavel Govyadinov   Fixed issue cause...
398
399
              if DEBUG:
                  print(theta*360.0/2.0/np.pi, -phi*360.0/2.0/np.pi)
9f9f1788   Pavel Govyadinov   clead up version ...
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
              self.camera = self.camera - self.translate
              q1 = Quaternion.create_from_axis_angle(angle=phi, ax=0.0, ay=1.0, az=0.0, degrees=True)
              q2 = Quaternion.create_from_axis_angle(angle=theta, ax=1.0, ay=0.0, az=0.0, degrees=True)
              #q1 = Quaternion(w=theta, x = 0, y = 1, z = 0).inverse().normalize()
              #q2 = Quaternion(w=-phi, x = 1, y = 0, z = 0).inverse().normalize()
  
              q = q1*q2
  
  #            #print("Angle in Degrees is ", theta, " ", phi, coord[0] - coord2[0])
  #            self.r1 = rotate(theta, (0, 1, 0))
  #            self.r2 = rotate(-phi, (1, 0, 0))
  #
  #            print("in on mouse move ", self.r1, self.r2)
  #
  #            self.view = np.matmul(self.view, self.r1)
  #            #print("r1", self.view)
  #            self.view = np.matmul(self.view, self.r2)
  #            #print("r2", self.view)
  #
  ##            self.view = np.matmul(self.view, q1.get_matrix().T)
  ##            self.view = np.matmul(self.view, q2.get_matrix().T)
  #
  #            self.program['u_view'] = self.view
  #
              self.location = event.pos
  #            #print("Angle in Degrees is ", theta, " ", phi)
  #            #print(self.camera)
              self.camera = np.asarray(q.rotate_point(self.camera), dtype=np.float)
              self.camera = self.camera + self.translate
              self.up = np.asarray(q.rotate_point(self.up), dtype=np.float)
              self.up = self.up/np.sqrt(np.dot(self.up, self.up))
              #self.rotate[0] = self.rotate[0] + theta
              #self.rotate[1] = self.rotate[1] + phi
              #print(self.rotate)f
              #radius = np.sqrt(np.dot(self.center, self.center))*2
              #test = np.linalg.inv(self.view).T
              #print(test)
  
  
  
              #self.camera = sph2cart(self.rotate[0]/360.0*2.0*np.pi+np.pi, self.rotate[1]/360.0*2.0*np.pi+np.pi, 1000.0)
              #self.camera[0] = self.camera[0] + self.center[0]
              #self.camera[1] = self.camera[1] + self.center[1]
              #self.camera[2] = self.camera[2] - self.center[2]
6eb102f5   Pavel Govyadinov   Fixed issue cause...
444
445
              if DEBUG:
                  print("current position ", self.camera, " and up vector ", self.up)
9f9f1788   Pavel Govyadinov   clead up version ...
446
447
448
449
450
451
452
453
              self.program['u_eye'] = self.camera
              self.program['u_up'] = self.up
              self.program['u_LightPos'] = [self.camera[0], self.camera[1], self.camera[2]]
              self.update()
  
      #reverts the mouse state during release.
      def on_mouse_release(self, event):
          self.down = False