fibernet.py
6.39 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
# -*- coding: utf-8 -*-
"""
Created on Sat Jan 19 2018
@author: Jiabing
"""
import struct
import numpy as np
import scipy as sp
import networkx as nx
import matplotlib.pyplot as plt
import math
from mpl_toolkits.mplot3d import Axes3D
from itertools import chain
class Node:
def __init__(self, point, outgoing, incoming):
self.p = point
self.o = outgoing
self.i = incoming
class Fiber:
def __init__ (self, indices):
self.indices = indices
class Point:
def __init__(self, x, y, z, r):
self.x = x
self.y = y
self.z = z
self.r = r
class Edge:
def __init__(self, indices_num, pois, radius):
self.indices_num = indices_num
self.points = pois
self.radius = radius
class NWT:
def readVertex(open_file):
points = np.tile(0., 3)
bytes = open_file.read(4)
points[0] = struct.unpack('f', bytes)[0]
bytes = open_file.read(4)
points[1] = struct.unpack('f', bytes)[0]
bytes = open_file.read(4)
points[2] = struct.unpack('f', bytes)[0]
bytes = open_file.read(4)
numO = int.from_bytes(bytes, byteorder='little')
outgoing = np.tile(0, numO)
bts = open_file.read(4)
numI = int.from_bytes(bts, byteorder='little')
incoming = np.tile(0, numI)
for j in range(numO):
bytes = open_file.read(4)
outgoing[j] = int.from_bytes(bytes, byteorder='little')
for j in range(numI):
bytes = open_file.read(4)
incoming[j] = int.from_bytes(bytes, byteorder='little')
node = Node(points, outgoing, incoming)
return node
'''
Reads a single fiber from an open file and returns a Fiber object .
'''
def readFiber(open_file):
bytes = open_file.read(4)
vtx0 = int.from_bytes(bytes, byteorder = 'little')
bytes = open_file.read(4)
vtx1 = int.from_bytes(bytes, byteorder = 'little')
bytes = open_file.read(4)
numVerts = int.from_bytes(bytes, byteorder = 'little')
pts = []
rads = []
for j in range(numVerts):
point = np.tile(0., 3)
bytes = open_file.read(4)
point[0] = struct.unpack('f', bytes)[0]
bytes = open_file.read(4)
point[1] = struct.unpack('f', bytes)[0]
bytes = open_file.read(4)
point[2] = struct.unpack('f', bytes)[0]
bytes = open_file.read(4)
radius = struct.unpack('f', bytes)[0]
pts.append(point)
rads.append(radius)
# F = Fiber(pts)
E = Edge(numVerts, pts, radius)
#E = Edge(pts)
return E
class fibernet:
def __init__(self, filename):
with open(filename, "rb") as file:
header = file.read(72)
bytes = file.read(4)
numVertex = int.from_bytes(bytes, byteorder='little')
bytes = file.read(4)
numEdges = int.from_bytes(bytes, byteorder='little')
#self.P = []
self.F = []
self.N = []
for i in range(numVertex):
node = NWT.readVertex(file)
self.N.append(node)
for i in range( numEdges):
edge = NWT.readFiber(file)
#self.F.append(np.arange(num,num+edge.indices_num,1))
#self.P= chain(self.P, edge.points)
self.F.append(edge.points)
#num += edge.indices_num
def aabb(self):
lower = self.N[0].p.copy()
upper = lower.copy()
for i in self.N:
for c in range(len(lower)):
if lower[c] > i.p[c]:
lower[c] = i.p[c]
if upper[c] < i.p[c]:
upper[c] = i.p[c]
return lower, upper
def distancefield(self, R=(100, 100, 100)):
#generate a meshgrid of the appropriate size and resolution to surround the network
lower, upper = self.aabb() #get the space occupied by the network
x = np.linspace(lower[0], upper[0], R[0]) #get the grid points for uniform sampling of this space
y = np.linspace(lower[1], upper[1], R[1])
z = np.linspace(lower[2], upper[2], R[2])
X, Y, Z = np.meshgrid(x, y, z)
#Z = 150 * numpy.ones(X.shape)
Q = np.stack((X, Y, Z), 3)
d_x = abs(x[1]-x[0]);
d_y = abs(y[1]-y[0]);
d_z = abs(z[1]-z[0]);
dis1 = math.sqrt(pow(d_x,2)+pow(d_y,2)+pow(d_z ,2))
#dx = abs(x[1]-x[0])
#dy = abs(y[1]-y[0])
#dz = abs(z[1]-z[0])
#get a list of all node positions in the network
P = []
for e in self.F[12:13]: #12-17
for p in e:
P.append(p)
for j in range(len(e)-1):
d_t = e[j+1]-e[j]
dis2 = math.sqrt(pow(d_t[0],2)+pow(d_t[1],2)+pow(d_t[2],2))
ins = max(int(d_t[0]/d_x), int(d_t[1]/d_y), int(d_t[2]/d_z))
if( ins>0 ):
ins = ins+1;
for k in range(ins):
p_ins =e[j]+(k+1)*(e[j+1]-e[j])/ins;
P.append(p_ins);
#turn that list into a Numpy array so that we can create a KD tree
P = np.array(P)
#generate a KD-Tree out of the network point array
tree = sp.spatial.cKDTree(P)
#specify the resolution of the ouput grid
# R = (200, 200, 200)
D, I = tree.query(Q)
return D, Q, dis1
'''
##read NWT file
f= fibernet("full_seg.nwt")
#P = tuple(f.P)
plist = f.F
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
xs = []
ys = []
zs = []
for i in range(10):
for j in range(len(F[i])):
xs.append(P[F[i][j]][0])
ys.append(P[F[i][j]][1])
zs.append(P[F[i][j]][2])
#ax.scatter(xs, ys, zs)
#ax = fig.gca(projection='3d')
ax.set_xlabel('X Label')
ax.set_ylabel('Y Label')
ax.set_zlabel('Z Label')
ax.plot(xs, ys, zs, label='center lines')
ax.legend()
plt.savefig('p.png', dpi=100)
plt.show()
'''