TubeCanvas.py 25.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Aug  5 15:56:47 2019

@author: pavel
"""

"""
    Class that extends the vispy SceneCanvas to draw 3D tubes
"""

from vispy import gloo, scene
from vispy.gloo import set_viewport, set_state, clear, set_blend_color, context
from vispy.gloo import gl
from vispy.util.transforms import perspective, translate, rotate, scale
import vispy.gloo.gl as glcore
from vispy.util.quaternion import Quaternion

import numpy as np
import math
import network_dep as nwt


from tube_shaders import FRAG_SHADER, VERT_SHADER



DEBUG = False
if DEBUG:
    from mpl_toolkits.mplot3d import Axes3D
    import matplotlib
    import matplotlib.pyplot as plt
class TubeDraw(scene.SceneCanvas):
    #sigUpdate = QtCore.pyqtSignal(float, float, float)

    #Initiates the canvas.
    def __init__(self, **kwargs):
        #Initialte the class by calling the superclass
        scene.SceneCanvas.__init__(self, size=(512,512), keys='interactive', **kwargs)
        #unfreeze the drawing area to allow for dynamic drawing and interaction
        self.unfreeze()
        self.edge_dict = {}
        self.select = False
        #generate dummy buffers for the meshes
        self.program = gloo.Program(VERT_SHADER, FRAG_SHADER)
        self.cylinder_data = np.zeros(5*5, dtype=[('a_position', np.float32, 3),
                                  ('a_normal', np.float32, 3),
                                  ('a_fg_color', np.float32, 4),
                                  #('a_linewidth', np.float32, 1),
                                  ])
        self.triangle_data = np.random.randint(size=(5, 3), low=0,
                                  high=(4-1)).astype(np.uint32)
        self.vbo = gloo.VertexBuffer(self.cylinder_data)
        self.triangles = gloo.IndexBuffer(self.triangle_data)
        
        #generate an index buffer for the caps.
        self.cap_data = np.random.randint(size=(5, 3), low=0, high=(4-1)).astype(np.uint32)
        self.caps = gloo.IndexBuffer(self.cap_data)
        self.program.bind(self.vbo)
        self.scale = [1,1,1]
        self.r1 = np.eye(4, dtype=np.float32)
        self.r2 = np.eye(4, dtype=np.float32)
        set_viewport(0,0,*self.physical_size)
        #set_state(clear_color='white', depth_test=True, blend=True,
        #          blend_func=('src_alpha', 'one_minus_src_alpha'), depth_func = ('less'), cull_face='back')
        set_state(clear_color='white', depth_test=True, blend=True,
                  blend_func=('src_alpha', 'one_minus_src_alpha'), depth_func = ('lequal'))
        #set_blend_color(color='black')
        #set_state('translucent')
        #self.program['u_LightPos'] = [0., 0., -1000.]
        #self.camera = self.central_widget.add_view()
        #self.camera.camera = 'turntable'
        self.down = False
        self.camera = np.asarray([0.0, 0.0, 200.0], dtype=np.float32)
        self.up = np.asarray([0., 1., 0.], dtype=np.float32)
        #self.init_camera = [0.,0.,1000.]

        ##### prototype #####
        #Set the visualization matrices
        self.program['u_selection'] = 0.0
        self.program['u_eye'] = self.camera
        self.program['u_up'] = self.up
        self.program['u_target'] = np.asarray([0., 0., 0.], dtype=np.float32)



    #Load the data necessary to draw all of the microvessels
    def set_data(self, G, bbu, bbl, num_sides):
        self.G = G
        self.num_sides = num_sides
        self.bbu = bbu
        self.bbl = bbl
        bb = nwt.AABB(G).resample_sides(3)


        #create program
        self.gen_cylinder_vbo(self.G, self.num_sides)
        self.vbo = gloo.VertexBuffer(self.cylinder_data)
        #self.triangle_data = np.append(self.triangle_data, self.cap_data, axis=0)
        self.triangles = gloo.IndexBuffer(self.triangle_data)
        self.caps = gloo.IndexBuffer(self.cap_data)

        #self.view = np.eye(4, dtype=np.float32)
        self.model = np.eye(4, dtype=np.float32)
        self.projection = np.eye(4, dtype=np.float32)
        self.projection = perspective(90.0, self.physical_size[0]/self.physical_size[1], 1.0, 1000.0)
        #self.projection = perspective(90.0, 1.0, -1.0, 1.0)
        self.program['u_model'] = self.model
        #self.program['u_LightPos'] = [0., 0., 1000.]
        #self.program['u_view'] = self.view
        self.program['u_projection'] = self.projection
        self.program.bind(self.vbo)

        gloo.set_clear_color('white')
        self.center = (bbu-bbl)/2.0
        self.translate = [-self.center[0], -self.center[1], -self.center[2]]

        self.bb = np.ones((26, 3), dtype=np.float32)
        for i in range(26):
            for j in range(3):
                self.bb[i,j] = bb[i][j]
        self.program['u_bb'] = self.bb
        if DEBUG:
            print('bb is ', self.bb)
#        for i in range(len(self.translate)):
#            self.camera[i] += self.translate[i]


        ##### prototype #####
        self.camera = self.camera - self.translate
        self.program['u_eye'] = self.camera
        self.up = np.cross((np.asarray(self.center, dtype=np.float32)-np.asarray(self.camera, dtype=np.float32)), np.asarray(self.up))
        self.program['u_up'] = self.up
        self.program['u_target'] = self.translate




        #self.show()

    #Called during resize of the window in order to redraw the same image in the
    #larger/smaller area.
    def on_resize(self, event):
        width, height = event.physical_size
        gloo.set_viewport(0, 0, width, height)
        if DEBUG:
            print(self.physical_size)

    #overloaded function called during the self.update() call to update the current
    #frame using the GLSL frag/vert shaders
    def on_draw(self, event):
        clear(color='white', depth=True)
        gloo.set_clear_color('white')
        if self.select:
            set_state(clear_color='white', depth_test=True, blend=True,
                  blend_func=('src_alpha', 'one_minus_src_alpha'), depth_func = ('always'), cull_face='back')
        else:
            set_state(clear_color='white', depth_test=True, blend=True,
                  blend_func=('src_alpha', 'one_minus_src_alpha'), depth_func = ('lequal'), cull_face='back')
        self.program.draw('triangles', self.triangles)
        if self.select:
            set_state(clear_color='white', depth_test=True, blend=True,
                  blend_func=('src_alpha', 'one_minus_src_alpha'), depth_func = ('always'), cull_face=False)
        else:
            set_state(clear_color='white', depth_test=True, blend=True,
                  blend_func=('src_alpha', 'one_minus_src_alpha'), depth_func = ('lequal'), cull_face=False)
        self.program.draw('triangles', self.caps)

        self.projection = perspective(90.0, self.physical_size[0]/self.physical_size[1], 1.0, 1000.0)
        self.program['u_projection'] = self.projection

    #Creates a cylinder around ever segment in the microvascular network.
    def gen_cylinder_vbo(self, G, num_sides = 32):
        i = 0
        num_pts = 0
        num_tri = 0
        num_tri_caps = 0
        for e in G.edges():
            num_pts += len(self.G.edge_properties["x"][e])
            num_tri += (len(self.G.edge_properties["x"][e])-1)*num_sides*2
            num_tri_caps += (2*(num_sides-2))
            
        self.cylinder_data = np.zeros(num_pts*num_sides, dtype=[('a_position', np.float32, 3),
                                  ('a_normal', np.float32, 3),
                                  ('a_fg_color', np.float32, 4),
                                  ('a_selection', np.float32, 1),
                                  ])
        self.triangle_data = np.random.randint(size=(num_tri, 3), low=0,
                                  high=(G.num_edges()-1)).astype(np.uint32)
        
        self.cap_data = np.random.randint(size = (num_tri_caps, 3),
                                          low = 0, high=(G.num_edges()-2)).astype(np.uint32)
        index = 0
        t_index = 0
        c_index = 0
        #for each edge generate a cylinder.
        for e in G.edges():
            #print("done")
            #for each fiber get all the points and the radii
            X = self.G.edge_properties["x"][e]
            Y = self.G.edge_properties["y"][e]
            Z = self.G.edge_properties["z"][e]
            R = self.G.edge_properties["r"][e]
            color = G.edge_properties["RGBA"][e]
            pts = np.array([X,Y,Z]).T
            circle_pts = np.zeros((pts.shape[0], num_sides, 3), dtype = np.float32)
            step = 2*np.pi/num_sides
#            U = np.zeros(pts.shape, dtype=np.float32)
#            V = np.zeros(pts.shape, dtype=np.float32)
#            direction = np.zeros(pts.shape, dtype=np.float32)

            #for every point in the edge
            for p in range(pts.shape[0]):
                #if first point, generate the circles.
                #In this case we want to generate a cap if we see the first circle or the last.
                if(p == 0):
                    #get the direction
                    direction = (pts[p+1] - pts[p])
                    #normalize direction
                    direction = direction/np.sqrt(direction[0]*direction[0] + direction[1]*direction[1] + direction[2]*direction[2])
                    #generate a vector to use as an element of the cross product
                    Y = np.zeros((3,), dtype = np.float32)
                    Y[0] = 1.
                    #if direction and Y are parallel, change Y
                    if(np.cos(np.dot(Y, direction)) < 0.087):
                        Y[0] = 0.0
                        Y[2] = 1.0
                    #generate first plane vector
                    U = np.cross(direction, Y)
                    U = U/np.sqrt(U[0]*U[0] + U[1]*U[1] + U[2]*U[2])
                    #generate second plane vector
                    V = np.cross(direction, U)
                    V = V/np.sqrt(V[0]*V[0] + V[1]*V[1] + V[2]*V[2])
                    #print(R[p],pts[p])
                    #generate circle.
                    for s in range(num_sides):
                        circle_pts[p][s][0] =  R[p]*np.cos(s*step)*V[0]*0.5 + R[p]*np.sin(s*step)*U[0]*0.5
                        circle_pts[p][s][1] =  R[p]*np.cos(s*step)*V[1]*0.5 + R[p]*np.sin(s*step)*U[1]*0.5
                        circle_pts[p][s][2] =  R[p]*np.cos(s*step)*V[2]*0.5 + R[p]*np.sin(s*step)*U[2]*0.5
                #if last point, copy the previous circle.
                elif(p == pts.shape[0]-1):
                    for s in range(num_sides):
                        circle_pts[p][s] = circle_pts[p-1][s]
                    for v in range(pts.shape[0]):
                        circle_pts[v,:,0] += pts[v][0]
                        circle_pts[v,:,1] += pts[v][1]
                        circle_pts[v,:,2] += pts[v][2]
                #otherwise, rotate the circle
                else:
                    #print(R[p], pts[p])
                    #generate a new direction vector.
                    dir_new = (pts[p+1]-pts[p])
                    dir_new = dir_new/np.sqrt(dir_new[0]*dir_new[0] + dir_new[1]*dir_new[1] + dir_new[2]*dir_new[2])
                    dir_new2 = (pts[p]-pts[p-1])
                    dir_new2 = dir_new2/np.sqrt(dir_new2[0]*dir_new2[0] + dir_new2[1]*dir_new2[1] + dir_new2[2]*dir_new2[2])
                    dir_new = dir_new+dir_new2
                    dir_new = dir_new/np.sqrt(dir_new[0]*dir_new[0] + dir_new[1]*dir_new[1] + dir_new[2]*dir_new[2])
                    #print(dir_new, direction)
                    #generate the quaternion rotation vector for the shortest arc
                    k = 1.0 + np.dot(direction, dir_new)
                    s = 1/np.sqrt(k+k)
                    r = s*np.cross(direction, dir_new)
                    theta = k*s
                    #r = np.cross(direction, dir_new)
                    #r = r/np.sqrt(r[0]*r[0] + r[1]*r[1] + r[2]*r[2])
                    #calculate the degree of quaternion rotation.
                    #cos_theta = np.sqrt(np.sqrt(np.dot(dir_new, dir_new)) * np.sqrt(np.dot(direction, direction))) + np.dot(dir_new, direction)
                    #cos_theta = np.dot(direction, dir_new)
                    #theta = np.arccos(cos_theta)/2.0
                    #print(r, cos_theta, theta)
                    #quat = np.append(theta, r)
                    q = Quaternion(w=theta, x = r[0], y = r[1], z = r[2]).normalize()

                    #print(quat)
                    #q = np.quaternion(quat[0], quat[1], quat[2], quat[3])
                    #rot = Rotation.from_quat(quat, normalized=False)
                    #rot.as_quat()
                    for s in range(num_sides):
                        circle_pts[p][s] = q.rotate_point(circle_pts[p-1][s])
                        #circle_pts[p][s] = rot.apply(circle_pts[p-1][s])
                        #circle_pts[p][s] = q.rotate(circle_pts[p-1][s])
                        #circle_pts[p][s] = np.quaternion.rotate_vectors(q, circle_pts[p][s])
                        #circle_pts[p][s] = q.rotate_vectors(q, circle_pts[p][s])
                        #circle_pts[p][s] = circle_pts[p][s]
                    direction = dir_new
            #generate the triangles
            triangles = np.random.randint(size=((pts.shape[0]-1)*2*(num_sides), 3), low=0,
                                  high=(G.num_edges()-1)).astype(np.uint32)
            cap_triangles = np.random.randint(size=((num_sides-2)*2 , 3), low=0, high=(num_sides-2)).astype(np.uint32)
            t_index_temp = 0
            c_index_temp = 0
            #for every ring in the fiber
            for ring in range(0, pts.shape[0], pts.shape[0]-1):
            #if we have the first ring or the last ring add a cap.
                idx_ori = index+ring*num_sides
                for side in range(0, num_sides-2):
                    idx_current_point = index+ring*num_sides + side
                    if(side < num_sides-2):
                        cap_tri = [idx_ori, idx_current_point+1, idx_current_point+2]
                    else:
                        cap_tri = [idx_ori, idx_current_point+1, idx_ori]
                    cap_triangles[c_index_temp] = cap_tri
                    self.cap_data[c_index] = cap_tri
                    c_index_temp += 1
                    c_index += 1
            
            for ring in range(pts.shape[0]-1):
                #otherwise generate the sides.
                for side in range(num_sides):
                    if(side < num_sides-1):
                        idx_current_point = index+ring*num_sides + side
                        idx_next_ring = index + (ring+1) * num_sides + side
                        triangle1 = [idx_current_point, idx_next_ring, idx_next_ring+1]
                        triangle2 = [idx_next_ring+1, idx_current_point+1, idx_current_point]
                        triangles[t_index_temp] = [idx_current_point, idx_next_ring, idx_next_ring+1]
                        triangles[t_index_temp+1] = [idx_next_ring+1, idx_current_point+1, idx_current_point]
                        self.triangle_data[t_index] = triangle1
                        self.triangle_data[t_index+1] = triangle2
                        t_index += 2
                        t_index_temp += 2
                    else:
                        idx_current_point = index + ring*num_sides + side
                        idx_next_ring = index + (ring+1)*num_sides + side
                        triangle1 = [idx_current_point, idx_next_ring, idx_next_ring-num_sides+1]
                        triangle2 = [idx_next_ring-num_sides+1, idx_current_point-num_sides+1, idx_current_point]
                        triangles[t_index_temp] = [idx_current_point, idx_next_ring-num_sides, idx_next_ring-num_sides+1]
                        triangles[t_index_temp+1] = [idx_next_ring-num_sides+1, idx_current_point-num_sides+1, idx_current_point]
                        self.triangle_data[t_index] = triangle1
                        self.triangle_data[t_index+1] = triangle2
                        t_index += 2
                        t_index_temp += 2

            #generate the points data structure
            circle_pts_data = circle_pts.reshape((pts.shape[0]*num_sides, 3))
            self.cylinder_data['a_position'][index:(pts.shape[0]*num_sides+index)] = circle_pts_data
            self.cylinder_data['a_fg_color'][index:(pts.shape[0]*num_sides+index)] = color
            self.cylinder_data['a_selection'][index:(pts.shape[0]*num_sides+index)] = 0.0
            #generate the normals data structure
            pts_normals = circle_pts.copy()
            for p in range(pts.shape[0]):
                pts_normals[p][:] = pts_normals[p][:] - pts[p]
                for s in range(num_sides):
                    pts_normals[p][s] = pts_normals[p][s]/np.sqrt(pts_normals[p][s][0]*pts_normals[p][s][0] \
                              + pts_normals[p][s][1]*pts_normals[p][s][1] + pts_normals[p][s][2]*pts_normals[p][s][2])
            self.cylinder_data['a_normal'][index:(pts.shape[0]*num_sides+index)] = \
                pts_normals.reshape((pts.shape[0]*num_sides, 3))

            index += pts.shape[0]*num_sides
            self.edge_dict[(int(e.source()), int(e.target()))] = (index-pts.shape[0]*num_sides, index)
            
            #Add the caps for each of the endpoints.


            if DEBUG:
                if(i == 2):
                    fig = plt.figure()
                    ax = fig.add_subplot(111, projection='3d')
                    #ax.scatter(circle_pts[:,:,0], circle_pts[:,:,1], circle_pts[:,:,2])
                    ax.plot(pts[:,0], pts[:,1], pts[:,2])
                    for j in range(pts.shape[0]):
                        ax.plot(circle_pts[j,:,0], circle_pts[j,:,1], circle_pts[j,:,2])
                    for j in range(cap_triangles.shape[0]):
                        tri = np.zeros((3,4))
                        tri[:,0] = self.cylinder_data['a_position'][cap_triangles[j][0]]
                        tri[:,1] = self.cylinder_data['a_position'][cap_triangles[j][1]]
                        tri[:,2] = self.cylinder_data['a_position'][cap_triangles[j][2]]
                        tri[:,3] = self.cylinder_data['a_position'][cap_triangles[j][0]]
                        ax.plot(tri[0,:], tri[1,:], tri[2,:], c='b')
                    for j in range(triangles.shape[0]):
                        tri = np.zeros((3,4))
                        tri[:,0] = self.cylinder_data['a_position'][triangles[j][0]]
                        tri[:,1] = self.cylinder_data['a_position'][triangles[j][1]]
                        tri[:,2] = self.cylinder_data['a_position'][triangles[j][2]]
                        tri[:,3] = self.cylinder_data['a_position'][triangles[j][0]]
                        ax.plot(tri[0,:], tri[1,:], tri[2,:], c='b')
                    for j in range(triangles.shape[0]):
                        tri = np.zeros((3,3))
                        tri[:,0] = self.cylinder_data['a_position'][triangles[j][0]]
                        tri[:,1] = self.cylinder_data['a_position'][triangles[j][1]]
                        tri[:,2] = self.cylinder_data['a_position'][triangles[j][2]]
                        norm = np.zeros((3,3))
                        norm[:,0] = self.cylinder_data['a_normal'][triangles[j][0]]
                        norm[:,1] = self.cylinder_data['a_normal'][triangles[j][1]]
                        norm[:,2] = self.cylinder_data['a_normal'][triangles[j][2]]
                        ax.quiver(tri[0,:], tri[1,:], tri[2,:], norm[0,:], norm[1,:], norm[2,:], colors = 'r')
                    plt.show()
            i+=1
        #create the data.
        
    def select_edges(self, edges):
        #gloo.context.set_current_canvas(gloo.context.get_current_canvas())
        if len(edges) > 0:
            self.select = True
            #gloo.set_depth_func('always')
            #clear(color='white', depth=True)
            #gl.GL_DEPTH_FUNC('always')
            #print(gloo.wrappers.get_gl_configuration())
            self.program['u_selection'] = 1.0
            for e in edges:
                if e in self.edge_dict:
                    idx = self.edge_dict[e]
                    #print(self.canvas.edge_dict[e])
                elif (e[1], e[0]) in self.edge_dict:
                    idx = self.edge_dict[(e[1],e[0])]
                else:
                    print("WHAT THE FUCK HAPPENED")
                self.cylinder_data["a_selection"][idx[0]:idx[1]] = 1.0   
            self.vbo = gloo.VertexBuffer(self.cylinder_data)
            self.program.bind(self.vbo)
            #self.update()
        else:
            self.program['u_selection'] = 0.0
            self.select = False
            #set_state(clear_color='white', depth_test=True, blend=True,
            #      blend_func=('src_alpha', 'one_minus_src_alpha'), depth_func = ('lequal'))
            #gloo.set_depth_func('lequal')
            #clear(color='white', depth=True)
            #print(gloo.wrappers.get_gl_configuration())
        self.update()
                #print(self.canvas.edge_dict[(e[1], e[0])])
    #Handles the mouse wheel event, i.e., zoom
    def on_mouse_wheel(self, event):
#        self.scale[0] = self.scale[0] + self.scale[0]*event.delta[1]*0.05
#        self.scale[1] = self.scale[1] + self.scale[1]*event.delta[1]*0.05
#        self.scale[2] = self.scale[2] + self.scale[2]*event.delta[1]*0.05
##        self.view[0][0] = self.scale[0]
##        self.view[1][1] = self.scale[1]
##        self.view[2][2] = self.scale[2]
#        print("in mouse wheel ", self.r1, self.r2)
#        self.view = np.matmul(translate((self.translate[0], self.translate[1], self.translate[2])), self.r1)
#        self.view = np.matmul(self.view, self.r2)
#        self.view = np.matmul(self.view, scale((self.scale[0], self.scale[1], self.scale[2])))
#        #self.view = np.matmul(self.view, self.r1)
#        #self.view = np.matmul(self.view, self.r2)
#        #self.view = np.matmul(translate((self.translate[0], self.translate[1], self.translate[2])), scale((self.scale[0], self.scale[1], self.scale[2])))
#        #self.rotate = [0., 0.]
#        #self.camera =
#
#        #self.view[1][1] = self.view[1][1]+self.view[1][1]*event.delta[1]*0.05
#        #print(self.view[0][0], " ",self.view[1][1])
#        #print(self.view)
#        self.camera = [0.0, 0.0, -100.0, 1.0]
##        for i in range(len(self.translate)):
##            self.camera[i] += self.translate[i]
#        self.program['u_view'] = self.view

#        if(np.asarray(self.camera).all() == np.asarray([0., 0., 0.]).all()):
#            self.camera = np.asarray([0., 0., 0.])
#        else:
        direction = np.asarray(self.translate) - np.asarray(self.camera)
        direction = direction/np.sqrt(np.dot(direction, direction))
        for i in range(3):
            self.camera[i] = self.camera[i] + direction[i]*event.delta[1]*2.0

        self.program['u_eye'] = self.camera
        #print(self.view)
        #print(event.delta[1])
        self.update()



    #Handles the mouse press event to rotate the camera if the left mouse button
    #if clicked down.
    def on_mouse_press(self, event):
        def update_view():
            self.location = event.pos
            #self.program['u_view'] = self.view
            self.down = True

        if(event.button == 1):
            update_view()


    #Handles the rotation of the camera using a quaternion centered around the
    #focus point.
    def on_mouse_move(self, event):
        if(self.down == True):
            coord = self.transforms.get_transform('canvas', 'render').map(self.location)[:2]
            coord2 = self.transforms.get_transform('canvas', 'render').map(event.pos)[:2]
            #coord[1] = 0
            #coord2[1] = 0

            phi = (coord[0]-coord2[0])*360.0/2.0/np.pi
            theta = (coord[1]-coord2[1])*360.0/2.0/np.pi
            if DEBUG:
                print(theta*360.0/2.0/np.pi, -phi*360.0/2.0/np.pi)
            self.camera = self.camera - self.translate
            q1 = Quaternion.create_from_axis_angle(angle=phi, ax=0.0, ay=1.0, az=0.0, degrees=True)
            q2 = Quaternion.create_from_axis_angle(angle=theta, ax=1.0, ay=0.0, az=0.0, degrees=True)
            #q1 = Quaternion(w=theta, x = 0, y = 1, z = 0).inverse().normalize()
            #q2 = Quaternion(w=-phi, x = 1, y = 0, z = 0).inverse().normalize()

            q = q1*q2

#            #print("Angle in Degrees is ", theta, " ", phi, coord[0] - coord2[0])
#            self.r1 = rotate(theta, (0, 1, 0))
#            self.r2 = rotate(-phi, (1, 0, 0))
#
#            print("in on mouse move ", self.r1, self.r2)
#
#            self.view = np.matmul(self.view, self.r1)
#            #print("r1", self.view)
#            self.view = np.matmul(self.view, self.r2)
#            #print("r2", self.view)
#
##            self.view = np.matmul(self.view, q1.get_matrix().T)
##            self.view = np.matmul(self.view, q2.get_matrix().T)
#
#            self.program['u_view'] = self.view
#
            self.location = event.pos
#            #print("Angle in Degrees is ", theta, " ", phi)
#            #print(self.camera)
            self.camera = np.asarray(q.rotate_point(self.camera), dtype=np.float)
            self.camera = self.camera + self.translate
            self.up = np.asarray(q.rotate_point(self.up), dtype=np.float)
            self.up = self.up/np.sqrt(np.dot(self.up, self.up))
            #self.rotate[0] = self.rotate[0] + theta
            #self.rotate[1] = self.rotate[1] + phi
            #print(self.rotate)f
            #radius = np.sqrt(np.dot(self.center, self.center))*2
            #test = np.linalg.inv(self.view).T
            #print(test)



            #self.camera = sph2cart(self.rotate[0]/360.0*2.0*np.pi+np.pi, self.rotate[1]/360.0*2.0*np.pi+np.pi, 1000.0)
            #self.camera[0] = self.camera[0] + self.center[0]
            #self.camera[1] = self.camera[1] + self.center[1]
            #self.camera[2] = self.camera[2] - self.center[2]
            if DEBUG:
                print("current position ", self.camera, " and up vector ", self.up)
            self.program['u_eye'] = self.camera
            self.program['u_up'] = self.up
            #self.program['u_LightPos'] = [self.camera[0], self.camera[1], self.camera[2]]
            self.update()

    #reverts the mouse state during release.
    def on_mouse_release(self, event):
        self.down = False