Blame view

main.cu 41.9 KB
f6438346   Mahsa Lotfollahi   initial commit af...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
  #include <iostream>
  #include<string>
  #include<cuda.h>
  #include <cuda_runtime.h>
  #include "device_launch_parameters.h"
  #include <fstream>
  #include <curand.h>
  #include <curand_kernel.h>
  #include <time.h>
  #include <chrono>
  #include <stdio.h>
  #include <math.h>
  #include "opencv2/core/core.hpp"
  #include <opencv2/imgproc/imgproc.hpp>
  #include <opencv2/opencv.hpp>
  #include <opencv2/highgui/highgui_c.h>
  
  #define USING_OPENCV
  #include<stim/image/image.h>
  #include <stim/cuda/cudatools/callable.h>
  #include <stim/cuda/cudatools/error.h>
  #include <stim/cuda/cudatools/timer.h>
  #include <stim/math/constants.h>
  #include "stim/parser/arguments.h"
  #include<random>
  #include <numeric>      // std::iota
  //#include<stim/math/random.h>
  #include "hypersnakuscule.h"
  //#include "median2.cuh"
  
  #define deltaR 2.0f
  #define deltar 1.5874f		// deltar=deltaR/cubeRoot2
  #define cubeRoot2 1.2599f
  #define pi 3.14159f
  //#define Energy_th -3
  //----------------------------------------------functions--------------------------------------------------------------
  void stretch(float* I, size_t size, int low, int high) {
  	//size: number of image pixel
  	float max_val = I[0];
  	float min_val = I[0];
  	for (int n = 0; n < size; n++) {
  		if (I[n] > max_val) {
  			max_val = I[n];
  		}
  		if (I[n] < min_val) {
  			min_val = I[n];
  		}
  	}
  	float range = max_val - min_val;
  	float desired_range = (float)high - (float)low;
  	for (size_t n = 0; n < size; n++) {		//for each element in the image
  		I[n] = desired_range * (I[n] - min_val) / range + low;
  	}
  
  }
  
  /// random generator function: generate random numbers in a sphere with radius 1 in the center (0, 0, 0)
  void randGenerator(point<float>* r, int sampleNum, bool debug = false) {
  
  	for (size_t i = 0; i < sampleNum; i++) {
  		double rn = (double)rand() / (double)(RAND_MAX);
  		double theta = (double)rand() / (double)(RAND_MAX)* stim::TAU;
  		double cosphi = 1.0 - 2.0 * ((double)rand() / (double)(RAND_MAX));
  		double phi = std::acos(cosphi);
  		//double phi = std::acos(2.0 * v - 1.0);
  		//double phi = (double)rand() / (double)(RAND_MAX)* stim::PI;
  		//std::cout << "rn=" << rn << "\t theta=" << theta << "\tphi=" << phi << std::endl;
  		r[i].x = (float)(std::cbrt(rn) * cos(theta) * sin(phi));
  		r[i].y = (float)(std::cbrt(rn) * sin(theta) * sin(phi));
  		r[i].z = (float)(std::cbrt(rn) * cos(phi));
  
  
  	}
  	if (debug) {
  		std::ofstream outfile("randomSamples.txt");										//open a file for writing
  		for (size_t i = 0; i < sampleNum; i++) {
  			outfile << r[i].x << " " << r[i].y << " " << r[i].z << std::endl;		//output the center and radius
  		}
  		outfile.close();
  	}
  
  }
  ///create random numbers in a cube and delete the one outside the sphere
  void randGenerator_cube(point<float>* r, int sampleNum, bool debug = false) {
  	size_t counter = 0;
  	while (counter < sampleNum) {
  		double x = ((double)rand() / (double)(RAND_MAX) * 2.0) - 1.0;
  		double y = ((double)rand() / (double)(RAND_MAX) * 2.0) - 1.0;
  		double z = ((double)rand() / (double)(RAND_MAX) * 2.0) - 1.0;
  		double d = sqrt((x * x) + (y * y) + (z * z));
  
  		if (d < 1.1) {
  			r[counter].x = (float)x;
  			r[counter].y = (float)y;
  			r[counter].z = (float)z;
  			counter++;
  		}
  	}
  
  	if (debug) {
  		std::ofstream outfile("randomSamples.txt");										//open a file for writing
  		for (size_t i = 0; i < sampleNum; i++) {
  			outfile << r[i].x << " " << r[i].y << " " << r[i].z << std::endl;		//output the center and radius
  		}
  		outfile.close();
  	}
  
  
  }
  
  /// random generator function: generate random numbers in a sphere with radius 1 in the center (0 , 0, 0)
  //void randGenerator1(point<float>* r, int sampleNum, bool debug = false) {
  //	for (int i = 0; i < sampleNum; i++) {
  //		std::default_random_engine generator1(100 + i);
  //		std::uniform_real_distribution<double> distribution1(0.0f, 1.0f);
  //		double rn = distribution1(generator1);
  //		std::default_random_engine generator2(50.0f + 5.0f * i);
  //		std::uniform_real_distribution<double> distribution2(0.0, 2.0 * stim::PI);
  //		double theta = distribution2(generator2);
  //		std::default_random_engine generator3(30.0f + 3.0f * i);
  //		std::uniform_real_distribution<double> distribution3(0, stim::PI);
  //		double phi = distribution3(generator3);
  //		r[i].x = (float)(std::cbrt(rn) * cos(theta) * sin(phi));
  //		r[i].y = (float)(std::cbrt(rn) * sin(theta) * sin(phi));
  //		r[i].z = (float)(std::cbrt(rn) * cos(phi));
  //	}
  //	if (debug) {
  //		std::ofstream outfile("randomSamples.txt");										//open a file for writing
  //		for (size_t i = 0; i < sampleNum; i++) {
  //			outfile << r[i].x << " " << r[i].y << " " << r[i].z << std::endl;		//output the center and radius
  //		}
  //		outfile.close();
  //	}
  //}
  
  
  
  /// saves the snakes specified by the idx array
  void SaveSnakes(std::string filename, sphere* snakes, std::vector<size_t> idx) {
  	std::ofstream outfile(filename);										//open a file for writing
  	for (size_t i = 0; i < idx.size(); i++) {
  		point<float> center = snakes[idx[i]].c();														//get the centerpoint of the snake
  		outfile << center.x << " " << center.y << " " << center.z << " " << snakes[idx[i]].r() << std::endl;		//output the center and radius
  	}
  	outfile.close();
  
  
  
  }
  void initialSwarmSnake(sphere * snakes, size_t &counter, size_t w, size_t h, size_t d, float radius) {
  	std::cout << "W=" << w << "\t h=" << h << "\td=" << d << std::endl;
  	int D = int(sqrt(1.5)*radius);			//distance between hypersnakes
  	//int D = 30; //for phantom
  	int k1 = 0;
  	counter = 0;
  	float startpoint = 0;
  	for (float k = radius; k < (d - radius); k += D ) {// for phantom D
  		for (float j = radius; j < (h - radius); j += D) {
  			k1++;
  			if (k1 % 2 == 1)
  				startpoint = 0;				//for phantom D
  			else
  				startpoint = (float)D / 2.0f;//for phantom D
  			for (float i = startpoint; i < (w - radius); i += D) {
  				point<float> temp_p(i, j, k);
  				snakes[counter].p = temp_p;
  				point<float> temp_q(i + (2 * radius), j, k);
  				snakes[counter].q = temp_q;
  				counter = counter + 1;
  			}
  		}
  	}
  	std::ofstream outfile("initials.txt");
  	for (int i = 0; i < counter; i++) {
  		outfile << snakes[i].c().x << " " << snakes[i].c().y << " " << snakes[i].c().z << " " << snakes[i].r() << std::endl;
  	}
  	outfile.close();
  }
  
  __host__ __device__ void sum_dE(point<float>& dEdp, point<float>& dEdq, point<float> c, point<float> s, float R, float f) {
  
  	float r = R / cubeRoot2;				// radius of inner snake
  	float dz2 = (s.z - c.z)*(s.z - c.z);
  	float dy2 = (s.y - c.y)*(s.y - c.y);
  	float dx2 = (s.x - c.x)*(s.x - c.x);
  	float d = sqrt(dz2 + dy2 + dx2);											//distance bw given sample and center of contour
  
  	float gx = 2.0f * R;															// gx= snake.q.x - snake.p.x ; 
  	float dx = (c.x - s.x) / d;
  	float dy = (c.y - s.y) / d;
  	float dz = (c.z - s.z) / d;
  
  	if (d < (r - 0.5f*deltar)) {													// mouth of snake
  		dEdp.x -= 3.0f / gx * f;													//calculate the growth/shrinking term for the snake
  		dEdq.x += 3.0f / gx * f;
  	}
  	else if (d < (r + 0.5f*deltar)) {											// throat of snake
  		float S = (2.0f / deltar) *  (d - r);										// weight function value in the given point
  		dEdp.x += f * ((3.0f / gx) * S + (dx + (1.0f / cubeRoot2)) / deltar);
  		dEdp.y += f *(dy / deltar);
  		dEdp.z += f *(dz / deltar);
  
  		dEdq.x += f * ((-3.0f / gx) * S + (dx - (1.0f / cubeRoot2)) / deltar);
  		dEdq.y = dEdp.y;
  		dEdq.z = dEdp.z;
  
  	}
  	else if (d < (R - 0.5f*deltaR)) {											// coil of snake
  		dEdp.x += 3.0f / gx * f;
  		dEdq.x -= 3.0f / gx * f;
  	}
  
  	else if (d < (R + 0.5f*deltaR)) {											// fangs of snake
  		float S = -(1.0f / deltaR) * (d - (R + deltaR / 2.0f));
  
  		dEdp.x += f * ((3.0f * S / gx) - (0.5f * (dx + 1.0f) / deltaR));
  		dEdp.y -= 0.5f *(dy / deltaR) * f;
  		dEdp.z -= 0.5f *(dz / deltaR) * f;
  
  		dEdq.x += f *((-3.0f * S / gx) - (0.5f * (dx - 1.0f) / deltaR));
  		dEdq.y = dEdp.y;
  		dEdq.z = dEdp.z;
  	}
  
  }
  
  //sum_dE in debug mode
  __host__ __device__ void sum_dE_debug(point<float>& dEdp, point<float>& dEdq, int &counter, point<float> c, point<float> s, float R, float f) {
  
  	float r = R / cubeRoot2;				// radius of inner snake
  	float dz2 = (s.z - c.z)*(s.z - c.z);
  	float dy2 = (s.y - c.y)*(s.y - c.y);
  	float dx2 = (s.x - c.x)*(s.x - c.x);
  	float d = sqrt(dz2 + dy2 + dx2);											//distance bw given sample and center of contour
  
  	float gx = 2.0f * R;															// gx= snake.q.x - snake.p.x ; 
  	float dx = (c.x - s.x) / d;
  	float dy = (c.y - s.y) / d;
  	float dz = (c.z - s.z) / d;
  	int trivial = 0;															//to test if any point is out of the contour
  	if (d < (r - 0.5f*deltar)) {													// mouth of snake
  		counter++;
  		dEdp.x -= 3.0f / gx * f;													//calculate the growth/shrinking term for the snake
  		dEdq.x += 3.0f / gx * f;
  	}
  	else if (d < (r + 0.5f*deltar)) {											// throat of snake
  		counter++;
  		float S = (2.0f / deltar) *  (d - r);										// weight function value in the given point
  		dEdp.x += f * ((3.0f / gx) * S + (dx + (1.0f / cubeRoot2)) / deltar);
  		dEdp.y += f *(dy / deltar);
  		dEdp.z += f *(dz / deltar);
  
  		dEdq.x += f * ((-3.0f / gx) * S + (dx - (1.0f / cubeRoot2)) / deltar);
  		dEdq.y = dEdp.y;
  		dEdq.z = dEdp.z;
  
  	}
  	else if (d < (R - 0.5f*deltaR)) {											// coil of snake
  		counter++;
  		dEdp.x += 3.0f / gx * f;
  		dEdq.x -= 3.0f / gx * f;
  	}
  
  	else if (d < (R + 0.5f*deltaR)) {											// fangs of snake
  		counter++;
  		float S = -(1.0f / deltaR) * (d - (R + deltaR / 2.0f));
  
  		dEdp.x += f * ((3.0f * S / gx) - (0.5f * (dx + 1.0f) / deltaR));
  		dEdp.y -= 0.5f *(dy / deltaR) * f;
  		dEdp.z -= 0.5f *(dz / deltaR) * f;
  
  		dEdq.x += f *((-3.0f * S / gx) - (0.5f * (dx - 1.0f) / deltaR));
  		dEdq.y = dEdp.y;
  		dEdq.z = dEdp.z;
  	}
  	else
  		trivial++;
  
  }
  
  // this function calculate gradient of energy with respect to two point p and q
  __host__ __device__ void snake_Engrad(point<float>&dEdp, point<float>&dEdq, sphere snake, float* I, size_t w, size_t h, size_t d, bool debug = false) {
  
  	float radius = snake.r();					// radius of outer snake
  	point<float> c = snake.c();					// center of snake
  	dEdp = point<float>(0, 0, 0);												//initialize dEdp and dEdq to zero
  	dEdq = point<float>(0, 0, 0);
  
  	float threshold = ((1 + cubeRoot2) / (cubeRoot2 - 1))*(deltar / pow(2.0f, (2.0f / 3.0f)));
  	if (radius < threshold) {
  		if (debug) printf("\t RADIUS IS OUT OF RANGE\n");
  		return;
  	}
  
  	float tempXmin = floor(c.x - radius - 1);						//calculate a bounding box around the sphere
  	float tempXmax = ceil(c.x + radius + 1);
  	float tempYmin = floor(c.y - radius - 1);
  	float tempYmax = ceil(c.y + radius + 1);
  	float tempZmin = floor(c.z - radius - 1);
  	float tempZmax = ceil(c.z + radius + 1);
  
  	float xmin = max((float)tempXmin, (float) 0.0);						//clamp the bounding box to the image edges
  	float xmax = min((float)tempXmax, (float)(w - 1));
  	float ymin = max((float)tempYmin, (float)0);
  	float ymax = min((float)tempYmax, (float)(h - 1));
  	float zmin = max((float)tempZmin, (float)0);
  	float zmax = min((float)tempZmax, (float)(d - 1));
  
  	if ((xmax <= xmin) || (ymax <= ymin) || (zmax <= zmin)) {
  		if (debug) printf("(xmax <= xmin) || (ymax <= ymin) || (zmax <= zmin)");
  		return;
  	}
  
  	float R = radius;																//simplify radius to R
  	float R3 = R * R * R;																//calculate R^2 (radius squared)
  	for (unsigned int z = (unsigned int)zmin; z <= (unsigned int)zmax; z++) {				// for each section
  		for (unsigned int x = (unsigned int)xmin; x <= (unsigned int)xmax; x++) {			//for each column of section in the bounding box
  			for (unsigned int y = (unsigned int)ymin; y <= (unsigned int)ymax; y++) {			//for each pixel p in the column
  
  				point<float> s(x, y, z);													// a sample inside the contour
  				float f;																	// image value in given position
  
  				int position = (int)((w * h * z) + (x * h + y));
  				if (position < (w * h * d)) {
  					f = I[position];
  
  
  					if (!f == 0)
  						sum_dE(dEdp, dEdq, c, s, R, f);
  
  				}
  
  			}
  		}
  	}
  
  	dEdp = dEdp / (8 * R3);
  	dEdq = dEdq / (8 * R3);
  
  
  }
  
  //// this function calculate gradient of energy with respect to two point p and q using Monte Carlo
  __host__ __device__ void snake_Engrad_MC(point<float>&dEdp, point<float>&dEdq, sphere snake, float* I, point<float>* samples, size_t sampleNum, size_t w, size_t h, size_t d, bool debug = false) {
  
  	float radius = snake.r();					// radius of outer snake
  	point<float> c = snake.c();					// center of snake
  	dEdp = point<float>(0, 0, 0);				//initialize dEdp and dEdq to zero
  	dEdq = point<float>(0, 0, 0);
  
  	float threshold = ((1 + cubeRoot2) / (cubeRoot2 - 1))*(deltar / pow(2.0f, (2.0f / 3.0f)));
  	if (radius < threshold) {
  		if (debug) printf("\t RADIUS IS OUT OF RANGE\n");
  		return;
  	}
  
  	float tempXmin = floor(c.x - radius - 1);						//calculate a bounding box around the sphere
  	float tempXmax = ceil(c.x + radius + 1);
  	float tempYmin = floor(c.y - radius - 1);
  	float tempYmax = ceil(c.y + radius + 1);
  	float tempZmin = floor(c.z - radius - 1);
  	float tempZmax = ceil(c.z + radius + 1);
  
  	float xmin = max((float)tempXmin, (float) 0.0);						//clsamples(amp the bounding box to the image edges
  	float xmax = min((float)tempXmax, (float)(w - 1.0));
  	float ymin = max((float)tempYmin, (float)0.0);
  	float ymax = min((float)tempYmax, (float)(h - 1.0));
  	float zmin = max((float)tempZmin, (float)0.0);
  	float zmax = min((float)tempZmax, (float)(d - 1.0));
  
  	if ((xmax <= xmin) || (ymax <= ymin) || (zmax <= zmin)) {
  		if (debug) printf("(xmax <= xmin) || (ymax <= ymin) || (zmax <= zmin)");
  		return;
  	}
  
  
  	
  
  	float R = radius;																//simplify radius to R
  	float R3 = R * R * R;																//calculate R^3 (radius cube)
  	int counter = 0;
  	float sumf = 0.0;
  
  	for (int i = 0; i < sampleNum; i++) {
  		float sx = samples[i].x;
  		float sy = samples[i].y;
  		float sz = samples[i].z;
  
  		float x = (R + 1.0f) * sx + c.x;
  		float y = (R + 1.0f) * sy + c.y;
  		float z = (R + 1.0f) * sz + c.z;
  
  		int xi = (int)round(x);
  		int yi = (int)round(y);
  		int zi = (int)round(z);
  
  		point<float> s(xi, yi, zi);													// a sample inside the contour
  		float f;																	// image value in given position	
  
  		int position = (int)((w * h * zi) + (xi * h + yi));
  		if (position < (w * h * d) && xi >= xmin && xi <= xmax && yi >= ymin && yi <= ymax && zi >= zmin && zi <= zmax) {						//  && d1< (R + 1)
  			counter++;
  			f = (float)I[position];
  			sumf += f;
  			//if (debug) 
  			sum_dE_debug(dEdp, dEdq, counter, c, s, R, f);
  			 //sum_dE(dEdp, dEdq, c, s, R, f);
  		}
  	}
  
  
  	
  
  	
  	float volume = pi * (((R + 1.0f) * (R + 1.0f) * (zmax - zmin)) - ((1.0f / 3.0f) * (powf((zmax - c.z), 3.0f) + powf((c.z - zmin), 3.0f))));
  
  	//if (debug) printf("volume_sphere=%f and volume=%f\n", volume_sphere, volume);
  	//if (debug) printf("sampleNum=%u and (float)counter= %f \n", sampleNum, (float)counter);
  	
  	dEdp = dEdp * volume / (float)counter;
  
  	dEdq = dEdq * volume / (float)counter;
  
  
  	dEdp = dEdp / (8.0f * R3);
  	dEdq = dEdq / (8.0f * R3);
  
  }
  
  
  // this function calculate gradient of energy with respect to two point p and q using Monte Carlo
  __host__ __device__ void snake_Engrad_MC_parallel(point<float>&dEdp, point<float>&dEdq, int &counter, sphere snake, float* I, point<float> sample, size_t w, size_t h, size_t d, bool debug = false) {
  
  	float radius = snake.r();					// radius of outer snake
  	point<float> c = snake.c();					// center of snake
  
  	float tempXmin = floor(c.x - radius - 1);						//calculate a bounding box around the sphere
  	float tempXmax = ceil(c.x + radius + 1);
  	float tempYmin = floor(c.y - radius - 1);
  	float tempYmax = ceil(c.y + radius + 1);
  	float tempZmin = floor(c.z - radius - 1);
  	float tempZmax = ceil(c.z + radius + 1);
  
  	float xmin = max((float)tempXmin, (float) 0.0);						//clsamples(amp the bounding box to the image edges
  	float xmax = min((float)tempXmax, (float)(w - 1.0));
  	float ymin = max((float)tempYmin, (float)0.0);
  	float ymax = min((float)tempYmax, (float)(h - 1.0));
  	float zmin = max((float)tempZmin, (float)0.0);
  	float zmax = min((float)tempZmax, (float)(d - 1.0));
  
  	if ((xmax <= xmin) || (ymax <= ymin) || (zmax <= zmin)) {
  		if (debug) printf("(xmax <= xmin) || (ymax <= ymin) || (zmax <= zmin)");
  		return;
  	}
  
  
  
  
  	float R = radius;																//simplify radius to R
  	float sumf = 0.0;
  
  	//for (int i = 0; i < sampleNum; i++) {
  	float sx = sample.x;
  	float sy = sample.y;
  	float sz = sample.z;
  
  	float x = (R + 1.0f) * sx + c.x;
  	float y = (R + 1.0f) * sy + c.y;
  	float z = (R + 1.0f) * sz + c.z;
  
  	int xi = (int)round(x);
  	int yi = (int)round(y);
  	int zi = (int)round(z);
  
  	point<float> s(xi, yi, zi);													// a sample inside the contour
  	float f;																	// image value in given position	
  
  	int position = (int)((w * h * zi) + (xi * h + yi));
  	if (position < (w * h * d) && xi >= xmin && xi <= xmax && yi >= ymin && yi <= ymax && zi >= zmin && zi <= zmax) {						//  && d1< (R + 1)
  
  		f = (float)I[position];
  		sumf += f;
  		sum_dE_debug(dEdp, dEdq, counter, c, s, R, f);
  		//printf("dEdp.x=%f and dEdq.x=%f \t dEdp.y=%f and dEdq.y=%f \t dEdp.z=%f and dEdq.z=%f", dEdp.x, dEdq.x, dEdp.y, dEdq.y, dEdp.z, dEdq.z);
  
  	}
  	
  
  }
  
  
  
  
  
  void snake_evolve(sphere &snakes, float* I, int w, int h, int d, float dt, int itr, point<float>* samples, size_t sampleNum, bool MC, bool debug = false) {
  	point<float> dEdp(0.0, 0.0, 0.0);	    // energy gradient wrt p
  	point<float> dEdq(0.0, 0.0, 0.0);		// energy gradient wrt q
  	for (int numItr = 0; numItr < itr; numItr++) {
  		if (MC)
  			snake_Engrad_MC(dEdp, dEdq, snakes, I, samples, sampleNum, w, h, d, debug);
  		else
  		snake_Engrad(dEdp, dEdq, snakes, I, w, h, d, debug);
  
  		if (debug) printf("dEdp.x=%f \t dEdq.x=%f \n dEdp.y=%f \t dEdp.z=%f \n\n", dEdp.x, dEdq.x, dEdp.y, dEdp.z);
  		float factor = sqrt(float(numItr + 1));											// step size in gradient descent decreasing by number of iterations
  
  		snakes.update(dEdp, dEdq, dt / factor);
  
  	}
  
  
  }
  
  
  
  //-------------------------------------------Kernels--------------------------------------------------------------------------
  
  //__global__ void kernel_snake_evolve_MC(sphere * snakes, float* I, point<float>* samples, int sampleNum, size_t snakeNum, size_t w, size_t h, size_t d, int itr, float dt, bool debug = false) {
  //
  //	int idx = blockDim.x * blockIdx.x + threadIdx.x;
  //
  //	if (idx >= snakeNum)             // return if the number of threads is more than snakes
  //		return;
  //
  //
  //	if (idx == 0)
  //		printf("\n\n \t\t=============>>>>we are in the MC kernel\n\n");
  //	point<float> dEdp(0.0, 0.0, 0.0);	    // energy gradient wrt p
  //	point<float> dEdq(0.0, 0.0, 0.0);		// energy gradient wrt q
  //	sphere s = snakes[idx];
  //
  //	for (int i = 0; i < itr; i++) {
  //		if (debug) printf("\n\n---------------->> iteration %u\n", i);
  //		snake_Engrad_MC(dEdp, dEdq, s, I, samples, sampleNum, w, h, d, debug);
  //		float factor = sqrtf(float(i + 1));
  //		if (debug)
  //			printf("dEdp.x=%f and dEdp.y=%f and dEdp.z=%f and dEdq.x=%f\n", dEdp.x, dEdp.y, dEdp.z, dEdq.x);
  //		s.update(dEdp, dEdq, dt / factor);
  //
  //	}
  //
  //	snakes[idx] = s;
  //
  //
  //}
  
  __global__ void kernel_snake_evolve_MC_parallel(sphere * snakes, float* I, point<float>* samples, int sampleNum, size_t snakeNum, size_t threads, size_t w, size_t h, size_t d, int itr, float dt, bool debug = false) {
  
  	extern __shared__ float sharedPtr[];										// define shared memory to save result of each thread there
  	int n = floorf(sampleNum / threads) ;											//# given sample points to one thread
  	int idx = blockDim.x * blockIdx.x + threadIdx.x;
  
  	if (idx >= (snakeNum * threads))												// return if the number of threads is more than snakes
  		return;
  
  	float threshold = ((1 + cubeRoot2) / (cubeRoot2 - 1))*(deltar / pow(2.0f, (2.0f / 3.0f)));	//snake cannot be smaller than threshold
  	/*if (idx == 0) {
  		printf("\n\n \t\t=============>>>>we are in the MC kernel\n\n");
  		printf("number of samples per thread=%d\n", n);
  		printf("idx=%d\n", (snakeNum * threads));
  		printf("blockdim.x=%d and threads=%u \n", blockDim.x, threads);
  	}*/
  	
  	point<float> thread_sample;													//sample goes to the thread
  																//sum_counter is real number of samples inside the contour averaged. some points of samples may round out of contour and did not contribute in averaging
  	for (int i = 0; i < itr; i++) {
  		//check the snake, if it pass the threshold 
  		
  		if (snakes[blockIdx.x].r() < threshold) {
  			if (debug) printf("\t RADIUS IS OUT OF RANGE\n");
  			return;
  		}
  
  		float radius = snakes[blockIdx.x].r();					// radius of outer snake
  		point<float> c = snakes[blockIdx.x].c();					// center of snake
  		float tempXmin = floor(c.x - radius - 1);						//calculate a bounding box around the sphere
  		float tempXmax = ceil(c.x + radius + 1);
  		float tempYmin = floor(c.y - radius - 1);
  		float tempYmax = ceil(c.y + radius + 1);
  		float tempZmin = floor(c.z - radius - 1);
  		float tempZmax = ceil(c.z + radius + 1);
  
  		float xmin = max((float)tempXmin, (float) 0.0);						//clsamples(amp the bounding box to the image edges
  		float xmax = min((float)tempXmax, (float)(w - 1.0));
  		float ymin = max((float)tempYmin, (float)0.0);
  		float ymax = min((float)tempYmax, (float)(h - 1.0));
  		float zmin = max((float)tempZmin, (float)0.0);
  		float zmax = min((float)tempZmax, (float)(d - 1.0));
  
  		if ((xmax <= xmin) || (ymax <= ymin) || (zmax <= zmin)) {
  			if (debug) printf("(xmax <= xmin) || (ymax <= ymin) || (zmax <= zmin)");
  			return;
  		}
  
  
  
  		if (debug) printf("\n\n---------------->> iteration %u\n", i);
  		int counter = 0;
  		point<float> dEdp(0.0f, 0.0f, 0.0f);	    // energy gradient wrt p
  		point<float> dEdq(0.0f, 0.0f, 0.0f);		// energy gradient wrt q
  		for (int j = 0; j < n; j++) {
  			//sphere single_snake = snakes[blockIdx.x];									// each block is assigned to one snake. all threads in a block are working for that snake
  			thread_sample = samples[threadIdx.x * n + j];
  			snake_Engrad_MC_parallel(dEdp, dEdq, counter, snakes[blockIdx.x], I, thread_sample, w, h, d, debug);
  
  		}
  		/*if (idx == 0) {
  			printf("points in the contour for thread0=%d\n", counter);
  			printf("dEdp.x=%f and dEdq.x=%f \t dEdp.y=%f and dEdq.y=%f \t dEdp.z=%f and dEdq.z=%f", dEdp.x, dEdq.x, dEdp.y, dEdq.y, dEdp.z, dEdq.z);
  		}
  */
  
  		//copy the result of each thread in shared memory
  		sharedPtr[threadIdx.x * 7 + 0] = dEdp.x;
  		sharedPtr[threadIdx.x * 7 + 1] = dEdp.y;
  		sharedPtr[threadIdx.x * 7 + 2] = dEdp.z;
  
  		sharedPtr[threadIdx.x * 7 + 3] = dEdq.x;
  		sharedPtr[threadIdx.x * 7 + 4] = dEdq.y;
  		sharedPtr[threadIdx.x * 7 + 5] = dEdq.z;
  
  		sharedPtr[threadIdx.x * 7 + 6] = counter;
  
  		__syncthreads();
  
  		//combine threads
  		dEdp = point<float>(0.0f, 0.0f, 0.0f);	    // energy gradient wrt p
  		dEdq = point<float>(0.0f, 0.0f, 0.0f);
  		counter = 0;
  		if (threadIdx.x == 0) {
  			float R = snakes[blockIdx.x].r();				     	 // radius of outer snake
  			float R3 = R * R * R;							//calculate R^3 (radius cube)
  			point<float> c = snakes[blockIdx.x].c();			   // center of snake
  
  			for (int i = 0; i < threads; i++) {
  				dEdp.x += sharedPtr[i * 7 + 0];
  				dEdp.y += sharedPtr[i * 7 + 1];
  				dEdp.z += sharedPtr[i * 7 + 2];
  
  				dEdq.x += sharedPtr[i * 7 + 3];
  				dEdq.y += sharedPtr[i * 7 + 4];
  				dEdq.z += sharedPtr[i * 7 + 5];
  
  				counter += sharedPtr[i * 7 + 6];
  
  			}
  
  			float volume = pi * (((R + 1.0f) * (R + 1.0f) * (zmax - zmin)) - ((1.0f / 3.0f) * (powf((zmax - c.z), 3.0f) + powf((c.z - zmin), 3.0f))));
  			//float volume = (4.0f / 3.0f) * pi * (R + 1.0f)*(R + 1.0f)*(R + 1.0f); //(4.0f / 3.0f) * pi * powf((R + 1), 3.0f);
  			dEdp = dEdp * volume / (float)counter;
  			dEdq = dEdq * volume / (float)counter;
  
  
  			dEdp = dEdp / (8.0f * R3);
  			dEdq = dEdq / (8.0f * R3);
  
  			//if (idx == 0)
  				//printf("dEdp.x=%f and dEdq.x=%f \t dEdp.y=%f and dEdq.y=%f \t dEdp.z=%f and dEdq.z=%f", dEdp.x, dEdq.x, dEdp.y, dEdq.y, dEdp.z, dEdq.z);
  
  			float factor = sqrtf(float(i + 1));
  			snakes[blockIdx.x].update(dEdp, dEdq, dt / factor);
  			
  			//printf("snakes[blockIdx.x].p.x=%f and snakes[blockIdx.x].p.y=%f \n snakes[blockIdx.x].q.x=%f and snakes[blockIdx.x].q.y=%f\n\n", snakes[blockIdx.x].p.x, snakes[blockIdx.x].p.y, snakes[blockIdx.x].q.x, snakes[blockIdx.x].q.y);
  		}
  		__syncthreads();
  
  	}
  
  
  
  
  
  
  }
  
  __global__ void kernel_snake_evolve(sphere* snakes, float *I, size_t snakeNum, size_t w, size_t h, size_t d, int itr, float dt, bool debug = false) {
  
  	//__launch_bounds__(1024, 1);
  	int idx = blockDim.x * blockIdx.x + threadIdx.x;
  
  	if (idx >= snakeNum)             // return if the number of threads is more than snakes
  		return;
  
  
  	if (idx == 0)
  		printf("\n\n \t\t=============>>>>we are in the kernel\n\n");
  	point<float> dEdp(0.0, 0.0, 0.0);	    // energy gradient wrt p
  	point<float> dEdq(0.0, 0.0, 0.0);		// energy gradient wrt q
  	sphere s = snakes[idx];
  
  	for (int i = 0; i < itr; i++) {
  
  		snake_Engrad(dEdp, dEdq, s, I, w, h, d, debug);
  		if (debug)
  			printf("dEdp.x=%f and dEdp.y=%f and dEdp.z=%f and dEdq.x=%f\n", dEdp.x, dEdp.y, dEdp.z, dEdq.x);
  		float factor = sqrtf(float(i + 1));
  		s.update(dEdp, dEdq, dt / factor);
  	}
  
  	snakes[idx] = s;
  
  }
  
  
  // -----------------------------------Energy computaion and compare hypersnakes------------------------------------------------------------------------
  __host__ __device__ void sum_E(float& E, point<float> c, point<float> s, float R, float f) {
  
  	float r = R / cubeRoot2;				// radius of inner snake
  	float dz2 = (s.z - c.z)*(s.z - c.z);
  	float dy2 = (s.y - c.y)*(s.y - c.y);
  	float dx2 = (s.x - c.x)*(s.x - c.x);
  	float d = sqrt(dz2 + dy2 + dx2);											//distance bw given sample and center of contour
  
  
  	if (d < (r - 0.5f*deltar)) 													// mouth of snake
  		E -= f;
  
  	else if (d < (r + 0.5f*deltar)) {											// throat of snake
  		float S = (2.0f / deltar) *  (d - r);										// weight function value in the given point
  		E += (S * f);
  	}
  
  	else if (d < (R - 0.5f*deltaR)) 											// coil of snake
  		E += f;
  
  	else if (d < (R + 0.5f*deltaR)) {											// fangs of snake
  		float S = -(1.0f / deltaR) * (d - (R + deltaR / 2.0f));
  		E += (S * f);
  	}
  
  }
  __host__ __device__ void snake_energy(float &energy, sphere snake, float* I, size_t w, size_t h, size_t d) {
  
  	float radius = snake.r();					// radius of outer snake
  	point<float> c = snake.c();					// center of snake
  	float threshold = ((1 + cubeRoot2) / (cubeRoot2 - 1))*(deltar / pow(2.0f, (2.0f / 3.0f)));
  	if (radius < threshold) {
  		//printf("radius is out of range\n");
  		return;
  	}
  
  	float tempXmin = floor(c.x - radius - 1);						//calculate a bounding box around the sphere
  	float tempXmax = ceil(c.x + radius + 1);
  	float tempYmin = floor(c.y - radius - 1);
  	float tempYmax = ceil(c.y + radius + 1);
  	float tempZmin = floor(c.z - radius - 1);
  	float tempZmax = ceil(c.z + radius + 1);
  
  	float xmin = max((float)tempXmin, (float) 0.0);						//clamp the bounding box to the image edges
  	float xmax = min((float)tempXmax, (float)(w - 1));
  	float ymin = max((float)tempYmin, (float)0);
  	float ymax = min((float)tempYmax, (float)(h - 1));
  	float zmin = max((float)tempZmin, (float)0);
  	float zmax = min((float)tempZmax, (float)(d - 1));
  
  	if ((xmax <= xmin) || (ymax <= ymin) || (zmax <= zmin)) {
  		//printf("(xmax <= xmin) || (ymax <= ymin) || (zmax <= zmin)");
  		return;
  	}
  
  	float E = 0.0f;
  	float R = radius;																//simplify radius to R
  	float R3 = R * R * R;																//calculate R^2 (radius squared)
  
  	for (unsigned int z = (unsigned int)zmin; z <= (unsigned int)zmax; z++) {				// for each section
  		for (unsigned int y = (unsigned int)ymin; y <= (unsigned int)ymax; y++) {			//for each row of section in the bounding box
  			for (unsigned int x = (unsigned int)xmin; x <= (unsigned int)xmax; x++) {		//for each pixel p in the row
  
  				point<float> s(x, y, z);													// a sample inside the contour
  				float f;																	// image value in given position
  				int position = (int)((w * h * z) + (x * h + y));
  				if (position < (w * h * d)) {
  					f = I[position];
  					if (!f == 0)
  						sum_E(E, c, s, R, f);
  				}
  
  			}
  		}
  	}
  	energy = E / (8 * R3);
  }
  
  //compute energy of snakes
  __global__ void kernel_snake_energy(float* energy, sphere* snakes, float* I, size_t snakeNum, size_t w, size_t h, size_t d) {
  	size_t i = blockDim.x * blockIdx.x + threadIdx.x;
  
  	if (i >= snakeNum) return;              // return if the number of threads is more than snakes
  
  	if (i == 0) {
  		printf("we are in energy kernel\n");
  	}
  	float energy_temp;
  	snake_energy(energy_temp, snakes[i], I, w, h, d);
  	energy[i] = energy_temp;
  
  }
  
  
  // returns a set of snake indices that meet specific criteria(to be determined and refined by Mahsa)
  std::vector<size_t> DetectValidSnakes_GPU(sphere* snakes, size_t snakeNum, float* I, size_t w, size_t h, size_t d, size_t threads, float energy_th) {
  
  	////calculate energy
  	float *gpu_energy;
  	HANDLE_ERROR(cudaMalloc(&gpu_energy, snakeNum * sizeof(float)));
  	size_t blocks = snakeNum / threads + 1;
  
  	//// allocate memory and copy snakes to the device
  	sphere* gpu_snakes = new sphere[snakeNum];
  	HANDLE_ERROR(cudaMalloc(&gpu_snakes, snakeNum * sizeof(sphere)));
  	HANDLE_ERROR(cudaMemcpy(gpu_snakes, snakes, snakeNum * sizeof(sphere), cudaMemcpyHostToDevice));
  
  	//// allocate memory and copy image to device
  	float  *gpu_I;
  	HANDLE_ERROR(cudaMalloc(&gpu_I, w * h * d * sizeof(float)));
  	HANDLE_ERROR(cudaMemcpy(gpu_I, I, w * h * d * sizeof(float), cudaMemcpyHostToDevice));
  	//create an array to store the snake energies' on cpu
  	float *energy;
  	energy = (float*)malloc(snakeNum * sizeof(float));
  	//memset(energy, 0, snakeNum * sizeof(float));
  	kernel_snake_energy << < (unsigned int)blocks, (unsigned int)threads >> > (gpu_energy, gpu_snakes, gpu_I, snakeNum, w, h, d);
  
  	HANDLE_ERROR(cudaMemcpy(energy, gpu_energy, snakeNum * sizeof(float), cudaMemcpyDeviceToHost));
  	//std::ofstream outfile("energy.txt");										//open a file for writing
  	//for (size_t i = 0; i < snakeNum; i++) {
  	//	outfile << energy[i] << std::endl;		//output the energy
  	//}
  	//outfile.close();
  
  	cudaFree(gpu_energy);
  	cudaFree(gpu_I);
  	cudaFree(gpu_snakes);
  
  
  	// compare snakes in possible overlaps
  	std::vector<size_t> id;														//store indices of snakes which have overlaps with snake i
  	std::vector<size_t> idx;														//create a vector to store indices of snakes which must be deleted. 
  
  	float threshold = ((1 + cubeRoot2) / (cubeRoot2 - 1))*(deltar / pow(2.0f, (2.0f / 3.0f)));
  
  	for (size_t i = 0; i < snakeNum; i++) {
  		if (snakes[i].r() < threshold)
  			idx.push_back(i);
  
  		if (std::find(idx.begin(), idx.end(), i) == idx.end()) {              // check if snake is already deleted
  			id.clear();
  			for (size_t j = 0; j < snakeNum; j++) {
  				if (j != i) {
  					if (snakes[j].c().x > snakes[i].c().x - 2 * snakes[i].r() && snakes[j].c().x < snakes[i].c().x + 2 * snakes[i].r() && snakes[j].c().y > snakes[i].c().y - 2 * snakes[i].r() && snakes[j].c().y < snakes[i].c().y + 2 * snakes[i].r()) {
  						if (snakes[j].r() < threshold)
  							idx.push_back(j);
  						if (std::find(idx.begin(), idx.end(), j) == idx.end()) {
  							float centerDistance_x = snakes[i].c().x - snakes[j].c().x;				// centers distance of snakes i and j- in x direction 
  							float centerDistance_y = snakes[i].c().y - snakes[j].c().y;				// centers distance of snakes i and j- in y direction
  							float centerDistance_z = snakes[i].c().z - snakes[j].c().z;				// centers distance of snakes i and j- in z direction
  							float centerDistance = sqrt((centerDistance_x * centerDistance_x) + (centerDistance_y * centerDistance_y) + 4 * (centerDistance_z * centerDistance_z)); // euclidean  distance bw center snakes i and j
  							float maxRadius = max(snakes[i].r(), snakes[j].r());					// maximum of radius of snake i and snake j
  							if (centerDistance < (maxRadius / cubeRoot2))
  								id.push_back(j);													//  store indices of overlapped snakes with snake i 
  						}
  					}
  				}
  			}
  			if (!id.empty()) {
  				id.push_back(i);
  				float smallest = energy[id[0]];
  				size_t smallest_id = id[0];												// index of snake should be kept
  				for (int k = 0; k < id.size(); k++) {                                  // find snake with smallest energy among id vector
  					if (energy[id[k]] < smallest) {
  						smallest = energy[id[k]];
  						smallest_id = id[k];
  					}
  				}
  				for (int m = 0; m < id.size(); m++) {
  					if (id[m] != smallest_id)									// among snakes with overlaps, the one with smallest energy survies. 
  						idx.push_back(id[m]);									// idx stores snakes which should be deleted
  
  				}
  			}
  		}
  
  	}
  	std::vector<size_t> th_idx;										//create a vector to store final indices exclusive idx (indices of snakes with large energy) and the ones with energy higher than threshold
  	for (size_t c = 0; c < snakeNum; c++) {
  		if (std::find(idx.begin(), idx.end(), c) == idx.end()) {
  			if (energy[c] < energy_th)
  				th_idx.push_back(c);							 //if the snake exceeds the energy threshold, store the index
  		}
  	}
  	free(energy);
  	return th_idx;																					//return the indices of valid snakes
  }
  
  
  
  
  ///..................................................................main function.............................................................................................
  void advertise() {
  	std::cout << "this is Hypersnakuscule implementation" << std::endl;
  	std::cout << "reference papre for 2D is (Snakuscules by Philippe Thévenaz and Michael Unser)" << std::endl;
  	std::cout << "implemented by Mahsa Lotfollahi" << std::endl << std::endl;
  	std::cout << "Usage:  snakuscules input_image [options]" << std::endl;
  }
  
  int main(int argc, char* argv[]) {
  	stim::arglist args; // create an argument list
  
  	args.add("help", "prints this help");
  	args.add("iter", "number of iteration for evolving contour", "400", "positive value");
  	args.add("radius", "initial radius", "15", "real positive value");
  	args.add("size", "specify size of image in 3 dimension", "", "[w h d]");
  	args.add("dt", "gradient descend stepsize", "10", "real positive value");
  	args.add("cuda", "specify the device used for CUDA calculations", "0", "device ID, -1 for CPU");
  	args.add("mc", "specify using Monte Carlo sampling", "", "MC=1 for Monte Carlo sampling and 0 for original integration");
  	args.add("single", "specify a single contour to evolve", "", "[x y z r]");
  	args.add("filter", "specify filter type for preprocessing like log", "", "name of filter");
  	args.add("energy_th", "specify energy threshold, snakes with energies less than that survive", "-1", "small negative value");
  	args.add("debug", "output debugging information");
  	args.parse(argc, argv);
  
  	if (args["help"].is_set()) {						//output help if requested by the user
  		advertise();
  		std::cout << args.str() << std::endl;
  		return 1;
  	}
  
  	if (args.nargs() < 1) {
  		std::cout << "ERROR: no input file specified" << std::endl;
  		return 1;
  	}
  
  	std::string output_file = "output.txt";						//set the default output file name to "output.txt"
  	if (args.nargs() >= 2) output_file = args.arg(1);			//if an output is specified by the user, use that instead
  
  	int itr = args["iter"].as_int();					//get input parameters and set variables
  	float radius = (float)args["radius"].as_float();
  	if (!args["size"]) {								//get size of image
  		std::cout << "you should specify size of image in 3 dimension" << std::endl;
  		return 1;
  	}
  
  	int w = args["size"].as_int(0);
  	int h = args["size"].as_int(1);
  	int d = args["size"].as_int(2);
  
  	float energy_th = (float)args["energy_th"].as_float();
  	float dt = (float)args["dt"].as_float();
  	int cuda_device = args["cuda"].as_int();		//get the desired CUDA device
  	bool MC = false;
  	int sampleNum;
  	if (args["mc"]) MC = true;
  	sampleNum = 20000;
  
  	if (args["mc"].nargs() > 0)
  		sampleNum = args["mc"].as_int();
  
  	bool swarm = true;
  	if (args["single"])	swarm = false;				//if the user specifies a single snake parameter, don't use the swarm algorithm
  
  	bool Filter = false;
  	std::string filter_name;
  	int kernel_size;											// kernel size
  	if (args["filter"]) {
  		Filter = true;
  		filter_name = "log";
  		kernel_size = 5;
  		if (args["filter"].nargs() > 0)
  			filter_name = args["filter"].as_string(0);
  		if (args["filter"].nargs() > 1)
  			kernel_size = args["filter"].as_int(1);
  
  	}
  
  
  	//allocate memory in cpu for input image
  	size_t bytes = w * h * d * sizeof(float);		//number of bytes needed to store image
  	float* I = (float*)malloc(bytes);
  	// load input image+
  	std::ifstream inputfile(args.arg(0), std::ios::in | std::ios::binary);
  	if (!inputfile) {
  		std::cout << "cannot open specified input file" << std::endl;
  		return;
  	}
  	inputfile.read((char*)I, bytes);
  	inputfile.close();
  	size_t N = w * h * d;							// number of pixels (# array elements)
  	float* I_original = (float*)malloc(bytes);		// keep the original image without pre-processing
  	memcpy(I_original, I, bytes);
  	stretch(I_original, N, 0, 255);
  	stretch(I, N, 0, 255);
  
  
  	if (Filter) {									// compute log of image
  		if (filter_name == "log") {
  			for (int i = 0; i < N; i++)
  				I[i] = log(I[i] + 1);
  		}
  		if (filter_name == "median") {								// apply median filter on each section
  			float* I_2D = (float*)malloc(w*h * sizeof(float));		// allocate memory to 2_D sections
  
  			cv::Mat t_I_2D_mat(w, h, CV_32F);								//image is stored column major but open cv read and write row major---matrix is transposed 					
  			cv::Mat I2d_blurred(w, h, CV_32F);								//allocate memory for blured image	
  
  			for (int zz = 0; zz < d; zz++) {
  				memcpy(I_2D, I_original + (zz * w *h), w * h * sizeof(float));	// copy each section of 3D image(I) in an array		
  				cv::Mat I_2D_mat(h, w, CV_32F, I_2D);							// create a Mat to copy data to that and be able to use open cv median filter
  				cv::transpose(I_2D_mat, t_I_2D_mat);
  				cv::medianBlur(t_I_2D_mat, I2d_blurred, kernel_size);						// apply median filter
  				cv::transpose(I2d_blurred, I_2D_mat);							// transpose to be transfered to array
  				I_2D = (float *)I_2D_mat.data;
  				memcpy(I + (zz * w *h), I_2D, w * h * sizeof(float));
  
  			}
  			free(I_2D);
  			t_I_2D_mat.release();
  			I2d_blurred.release();
  		}
  
  	}
  
  	stretch(I, N, 0, 255);
  	size_t snakeNum;
  	if (swarm) {
  		int D = int(sqrt(1.5)*radius);			//distance between hypersnakes
  		snakeNum = w * h * d / (D * D * D );		// approximate number of hypersnakes lying on image
  	}
  	else
  		snakeNum = 1;
  	sphere* snakes = new sphere[snakeNum];		//create an array of spheres.(one for each snake)
  	memset(snakes, 0, snakeNum * sizeof(sphere));
  
  	if (swarm) {
  		initialSwarmSnake(snakes, snakeNum, w, h, d, radius);
  		std::cout << "number of snakes=" << snakeNum << std::endl;
  	}
  
  
  	else {
  		point<float> center;
  		center.x = (float)args["single"].as_float(0);
  		center.y = (float)args["single"].as_float(1);
  		center.z = (float)args["single"].as_float(2);
  		//cout << "number of args" << args["single"].nargs() << endl;
  		if (args["single"].nargs() >= 4)
  			radius = (float)args["single"].as_float(3);
  
  		snakes[0].p.x = center.x - radius;					// define p and q 
  		snakes[0].q.x = center.x + radius;
  		snakes[0].p.y = snakes[0].q.y = center.y;
  		snakes[0].p.z = snakes[0].q.z = center.z;
  
  	}
  
  	point<float>* samples = (point<float>*)malloc(sampleNum * sizeof(point<float>));
  	memset(samples, 0, sampleNum * sizeof(point<float>));
  	if (MC) {
  		if (args["debug"]) {
  			randGenerator_cube(samples, sampleNum, true);
  
  		}
  		else randGenerator_cube(samples, sampleNum);
  	}
  
  	std::cout << "energy_th=" << energy_th << std::endl;
  	std::cout << "initial radius=" << radius << std::endl;
  	//-----------------------------------GPU implementation----------------------------------------------------------------------------
  	if (cuda_device >= 0) {
  
  		cudaDeviceProp prop;
  		HANDLE_ERROR(cudaGetDeviceProperties(&prop, 0));
  		size_t threads = (size_t)prop.maxThreadsPerBlock;
  		size_t blocks = snakeNum;
  		size_t nbyte_shared = 7 * 4 * threads;
  		// allocate memory to snakes and copy them to device
  		sphere* gpu_snakes;
  		HANDLE_ERROR(cudaMalloc(&gpu_snakes, snakeNum * sizeof(sphere)));
  		HANDLE_ERROR(cudaMemcpy(gpu_snakes, snakes, snakeNum * sizeof(sphere), cudaMemcpyHostToDevice));
  
  		//allocate memory to image in device and copy from cpu to device
  		float* gpu_I;
  		HANDLE_ERROR(cudaMalloc(&gpu_I, bytes));
  		HANDLE_ERROR(cudaMemcpy(gpu_I, I, bytes, cudaMemcpyHostToDevice));
  		stim::gpuStartTimer();
  		if (MC) {
  			// allocate memory to random samples on device
  			point<float>* G_samples;
  			HANDLE_ERROR(cudaMalloc(&G_samples, sampleNum * sizeof(point<float>)));
  			HANDLE_ERROR(cudaMemset(G_samples, 0, sampleNum * sizeof(point<float>)));
  			HANDLE_ERROR(cudaMemcpy(G_samples, samples, sampleNum * sizeof(point<float>), cudaMemcpyHostToDevice));
  
  			if (args["debug"])
  				kernel_snake_evolve_MC_parallel << < blocks, threads, nbyte_shared >> > (gpu_snakes, gpu_I, G_samples, sampleNum, snakeNum, threads, w, h, d, itr, dt, true);
  			else
  				kernel_snake_evolve_MC_parallel << < blocks, threads, nbyte_shared >> > (gpu_snakes, gpu_I, G_samples, sampleNum, snakeNum, threads, w, h, d, itr, dt);
  
  		}
  		else {
  			if (args["debug"])
  				kernel_snake_evolve << <blocks, threads >> > (gpu_snakes, gpu_I, snakeNum, w, h, d, itr, dt, true);
  			else
  				kernel_snake_evolve << <blocks, threads >> > (gpu_snakes, gpu_I, snakeNum, w, h, d, itr, dt);
  		}
  
  		std::cout << "gpuruntime = " << stim::gpuStopTimer() << " ms" << std::endl;
  		HANDLE_ERROR(cudaMemcpy(snakes, gpu_snakes, snakeNum * sizeof(sphere), cudaMemcpyDeviceToHost));
  		cudaFree(gpu_I);
  		cudaFree(gpu_snakes);
  
  		std::vector<size_t> idx = DetectValidSnakes_GPU(snakes, snakeNum, I_original, w, h, d, threads, energy_th);
  		SaveSnakes(output_file, snakes, idx);
  
  
  
  	}
  
  	//--------------------------------------------CPU implementation----------------------------------------------------------------------------
  	else {
  		unsigned int start = time(NULL);
  		std::cout << "it is running on CPU" << std::endl;
  		for (int i = 0; i < snakeNum; i++) {
  			//printf("\n\n---------------->> iteration %u", numItr);
  			if (args["debug"])
  				snake_evolve(snakes[i], I, w, h, d, dt, itr, samples, sampleNum, MC, true);
  			else
  				snake_evolve(snakes[i], I, w, h, d, dt, itr, samples, sampleNum, MC);
  
  			std::cout << "Output Snakes------------------" << std::endl;
  			std::cout << snakes[i].str() << std::endl;
  
  		}
  		unsigned int end = time(NULL);
  		std::cout << "cpuRunTime=" << end - start << "s" << std::endl;
  
  
  		std::vector<size_t> idx = DetectValidSnakes_GPU(snakes, snakeNum, I_original, w, h, d, 512, energy_th);
  		SaveSnakes(output_file, snakes, idx);
  
  	}
  
  	free(I);
  	free(I_original);
  	if (args["debug"]) {
  		std::vector<size_t> idx(snakeNum);
  		std::iota(idx.begin(), idx.end(), 0);
  		//SaveSnakes(debug_file, snakes, idx);										//saves the snakes to an output file
  		std::cout << "Output Snakes------------------" << std::endl;
  		for (size_t i = 0; i < idx.size(); i++) {									//for each snake
  			std::cout << snakes[idx[i]].str() << std::endl;
  		}
  	}
  
  	std::vector<size_t> idx(snakeNum);
  	std::iota(idx.begin(), idx.end(), 0);
  	SaveSnakes("no-delete.txt", snakes, idx);										//saves the snakes to an output file
  	return 0;
  
  }