rtsFiberNetwork.h 73 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667
#include <string>
#include <fstream>
#include <algorithm>
//#include "PerformanceData.h"
#include "rts/objJedi.h"
#include "rts/rtsPoint3d.h"
#include "rts/rtsFilename.h"
#include <ANN/ANN.h>
//#include <exception>

#include <boost/graph/graph_traits.hpp>
#include <boost/graph/adjacency_list.hpp>
#include <boost/graph/breadth_first_search.hpp>
using namespace boost;


//Performance
//PerformanceData PD;

#ifndef RTS_FIBER_NETWORK_H
#define RTS_FIBER_NETWORK_H

//definitions for topologyNode labels
#define RTS_TOPOLOGY_NODE_NOEXIST	0
#define RTS_TOPOLOGY_NODE_INVALID	1
#define RTS_TOPOLOGY_NODE_VALID		2

#define RTS_TOPOLOGY_EDGE_NOEXIST	0
#define RTS_TOPOLOGY_EDGE_EXIST		1

//Properties for the topology graph
struct vertex_position_t
{
	typedef vertex_property_tag kind;
};
typedef property<vertex_position_t, point3D<float>, property<vertex_color_t, int> > VertexProperties;
typedef list<int> EdgeSequence;
typedef pair<EdgeSequence, EdgeSequence> EdgeMapping;
typedef vector<EdgeMapping> CoreGraphList;
typedef property<edge_weight_t, float, property<edge_color_t, EdgeSequence> > EdgeProperties;
typedef adjacency_list<listS, vecS, undirectedS, VertexProperties, EdgeProperties> TopologyGraph;
typedef graph_traits<TopologyGraph>::edge_descriptor TopologyEdge;
typedef graph_traits<TopologyGraph>::vertex_descriptor TopologyVertex;


EdgeSequence global_EdgeSequence;
float global_Weight;
list<float> global_NeighborWeights;
list<TopologyEdge> global_EdgeDescriptorSequence;
vector<TopologyVertex> global_Predecessors;
TopologyVertex global_Source;
pair<TopologyEdge, bool> BOOST_SmallestEdge(int v0, int v1, const TopologyGraph& G)
{
	pair<TopologyEdge, bool> edge_pair = edge(v0, v1, G);
	//if the edge doesn't exist, return the false pair
	if(!edge_pair.second)
		return edge_pair;

	//cout<<"Smallest edge: "<<endl;
	//BOOST_PrintGraph(G);

	//otherwise, make sure it is the edge with the least weight
	graph_traits<TopologyGraph>::out_edge_iterator oi, oi_end;
	TopologyEdge min_e = edge_pair.first;
	float min_weight = get(edge_weight_t(), G, min_e);

	for(boost::tuples::tie(oi, oi_end) = out_edges(v0, G); oi!=oi_end; oi++)
	{
		if(target(*oi, G) == v1)
		{
			//cout<<"Edge weight for "<<v0<<": "<<get(edge_weight_t(), G, *oi)<<endl;
			if(get(edge_weight_t(), G, *oi) < min_weight)
			{
				min_weight = get(edge_weight_t(), G, *oi);
				min_e = *oi;
			}
		}
	}
	edge_pair.first = min_e;
	edge_pair.second = true;
	return edge_pair;
}
class boundary_bfs_visitor : public default_bfs_visitor
{
public:
	void discover_vertex(TopologyVertex v, const TopologyGraph& G) const throw(TopologyVertex)
	{
		//cout<<"discovered: "<<v<<endl;
		//global_EdgeSequence.push_back(get(vertex_color_t(), G, v));
		if(get(vertex_color_t(), G, v) >= 0 && v != global_Source)
		{
			TopologyVertex v0, v1;
			v0 = v1 = v;
			pair<TopologyEdge, bool> e;
			global_Weight = 0.0;
			while(v1 != global_Source)
			{
				v1 = global_Predecessors[v0];
				e = BOOST_SmallestEdge(v0, v1, G);
				global_EdgeSequence.push_back(get(edge_color_t(), G, e.first).front());
				global_EdgeDescriptorSequence.push_back(e.first);
				global_Weight += get(edge_weight_t(), G, e.first);
				v0 = v1;
			}
			//cout<<"Weight test: "<<global_Weight<<endl;
			throw v;
		}

	}
	void tree_edge(TopologyEdge e, const TopologyGraph& G) const
	{
		global_Predecessors[target(e, G)] = source(e, G);
	}
};



bool compare_edges(pair<TopologyEdge, float> e0, pair<TopologyEdge, float> e1)
{
	if(e0.second < e1.second)
		return true;
	else return false;
}


struct Fiber
{
	vector<point3D<float> > pointList;
	vector<float> errorList;
	int n0;
	int n1;
	float length;
	float error;
	int mapped_to;		//edge in another graph that maps to this one (-1 if a mapping doesn't exist)
	void* FiberData;

	Fiber()
	{
		error = 1.0;
		FiberData = NULL;
	}
};

struct Node
{
	point3D<float> p;
	void* NodeData;
	float error;
	int color;
	int incident;

	Node()
	{
		error = 1.0;
		NodeData = NULL;
		incident = 0;
	}
};

struct geometryPoint
{
	point3D<float> p;
	unsigned int fiberIdx;
	unsigned int pointIdx;
	float dist;
	int fiberID;
};

struct topologyEdge
{
	int label;
	unsigned int n0;
	unsigned int n1;
	float error;
};
struct topologyNode
{
	point3D<float> p;
	int label;
	list<unsigned int> connections;
	unsigned int compatible;
};




#define MAX_DIST	9999.0;

class rtsFiberNetwork
{
private:
	bool fiber_started;
	unsigned int num_points;
	float cull_value;	//used to cull fibers based on geometric error

	vector<geometryPoint> getNetPointSamples(float subdiv)
	{
		vector<geometryPoint> result;

		unsigned int f;
		list<point3D<float> > fiberPoints;
		list<point3D<float> >::iterator p;
		for(f = 0; f<FiberList.size(); f++)
		{
			fiberPoints.clear();
			fiberPoints = SubdivideFiber(f, subdiv);

			for(p=fiberPoints.begin(); p!=fiberPoints.end(); p++)
			{
				geometryPoint fp;
				fp.p = (*p);
				fp.fiberID = f;
				fp.dist = MAX_DIST;
				result.push_back(fp);
			}
		}
		return result;


	}

	void BF_ComputeL1Distance(vector<geometryPoint>* N0, vector<geometryPoint>* N1);
	void KD_ComputeEnvelopeDistance(rtsFiberNetwork* network, vector<geometryPoint>* Samples, float sigma)
	{
		//build the point arrays
		ANNpointArray dataPts0 = annAllocPts(Samples->size(), 3);
		for(unsigned int i=0; i<Samples->size(); i++)
		{
			dataPts0[i][0] = (*Samples)[i].p.x;
			dataPts0[i][1] = (*Samples)[i].p.y;
			dataPts0[i][2] = (*Samples)[i].p.z;
		}

		//create ANN variables
		ANNkd_tree* kdTree;
		ANNpoint queryPt = annAllocPt(3);
		ANNidxArray nearestIdx = new ANNidx[1];
		ANNdistArray nearestDist = new ANNdist[1];

		//compare network 0 to network 1
		//PD.StartTimer(LOG_N_DIST_BUILD0);
		kdTree = new ANNkd_tree(dataPts0, Samples->size(), 3);
		//PD.EndTimer(LOG_N_DIST_BUILD0);
		//PD.StartTimer(LOG_N_DIST_SEARCH0);

		//test each point in the network to the Samples list
		unsigned int f, p;
		int nodenum;
		float gauss_dist;
		for(f=0; f<network->FiberList.size(); f++)
		{
			//clear the error list
			network->FiberList[f].errorList.clear();

			//compute the distance at the nodes
			nodenum = network->FiberList[f].n0;
			queryPt[0] = network->NodeList[nodenum].p.x;
			queryPt[1] = network->NodeList[nodenum].p.y;
			queryPt[2] = network->NodeList[nodenum].p.z;
			kdTree->annkSearch(queryPt, 1, nearestIdx, nearestDist);
			gauss_dist = 1.0f - GaussianEnvelope(sqrtf((float)nearestDist[0]), sigma);
			network->NodeList[nodenum].error = gauss_dist;

			nodenum = network->FiberList[f].n1;
			queryPt[0] = network->NodeList[nodenum].p.x;
			queryPt[1] = network->NodeList[nodenum].p.y;
			queryPt[2] = network->NodeList[nodenum].p.z;
			kdTree->annkSearch(queryPt, 1, nearestIdx, nearestDist);
			gauss_dist = 1.0f - GaussianEnvelope(sqrtf((float)nearestDist[0]), sigma);
			network->NodeList[nodenum].error = gauss_dist;

			//compute the distance at each point along the fiber
			for(p=0; p<network->FiberList[f].pointList.size(); p++)
			{
				queryPt[0] = network->FiberList[f].pointList[p].x;
				queryPt[1] = network->FiberList[f].pointList[p].y;
				queryPt[2] = network->FiberList[f].pointList[p].z;
				kdTree->annkSearch(queryPt, 1, nearestIdx, nearestDist);
				gauss_dist = 1.0f - GaussianEnvelope(sqrtf((float)nearestDist[0]), sigma);
				network->FiberList[f].errorList.push_back(gauss_dist);
			}
		}
		/*for(int i=0; i<N1->size(); i++)
		{
			queryPt[0] = (*N1)[i].p.x;
			queryPt[1] = (*N1)[i].p.y;
			queryPt[2] = (*N1)[i].p.z;
			kdTree->annkSearch(queryPt, 1, nearestIdx, nearestDist);
			(*N1)[i].dist = sqrt(nearestDist[0]);
		}	*/
		//delete kdTree;
		//PD.EndTimer(LOG_N_DIST_SEARCH0);

		/*
		//compare network 1 to network 0
		PD.StartTimer(LOG_N_DIST_BUILD1);
		kdTree = new ANNkd_tree(dataPts1, N1->size(), 3);
		PD.EndTimer(LOG_N_DIST_BUILD1);
		PD.StartTimer(LOG_N_DIST_SEARCH1);
		for(int i=0; i<N0->size(); i++)
		{
			queryPt[0] = (*N0)[i].p.x;
			queryPt[1] = (*N0)[i].p.y;
			queryPt[2] = (*N0)[i].p.z;
			kdTree->annkSearch(queryPt, 1, nearestIdx, nearestDist);
			(*N0)[i].dist = sqrt(nearestDist[0]);
		}
		PD.EndTimer(LOG_N_DIST_SEARCH1);
		//delete kdTree;
		*/
		annClose();
		//delete kdTree;
	}

	void BD_ComputeL1Distance(vector<geometryPoint>* N0, vector<geometryPoint>* N1);
	list<point3D<float> > SubdivideSegment(point3D<float> p0, point3D<float> p1, float spacing)
	{

		//find the direction of travel
		vector3D<float> v = p1 - p0;

		//set the step size to the voxel size
		float length = v.Length();
		v.Normalize();

		float l;
		list<point3D<float> > result;
		point3D<float> p;
		for(l=0.0; l<length; l+=spacing)
		{
			p = p0 + v*l;
			result.push_back(p);
		}
		return result;


	}

	list<point3D<float> > SubdivideFiber(unsigned int f, float spacing)
	{
		list<point3D<float> > result;
		list<point3D<float> > segment;

		point3D<float> p0;
		point3D<float> p1;

		int node = FiberList[f].n0;
		p0 = NodeList[node].p;

		for(unsigned int p=0; p<FiberList[f].pointList.size(); p++)
		{
			segment.clear();
			//p0 = getFiberPoint(f, p-1);
			//p1 = getFiberPoint(f, p);
			p1 = FiberList[f].pointList[p];
			segment = SubdivideSegment(p0, p1, spacing);

			//result.push_back(p0);
			result.insert(result.end(), segment.begin(), segment.end());
			//result.push_back(p1);
			p0 = p1;
		}

		//subdivide the last segment
		node = FiberList[f].n1;
		p1 = NodeList[node].p;
		segment.clear();
		segment = SubdivideSegment(p0, p1, spacing);
		result.insert(result.end(), segment.begin(), segment.end());


		return result;
	}

	float GaussianEnvelope(float x, float std){return exp(-(x*x)/(2*std*std));}
	//vector<topologyNode> initNodeList(rtsFiberNetwork* network);
	void initTopologyGraph(vector<topologyNode>* Nodes, vector<topologyEdge>* Edges, rtsFiberNetwork* Network);
	void MapDeviationToNetwork(vector<geometryPoint>* source);
	void topLabelNodes(vector<topologyNode>* N0, vector<topologyNode>* N1, float epsilon);
	bool topMergeNode(vector<topologyNode>* NodeList, vector<topologyEdge>* EdgeList, unsigned int node);
	int topCollapse(vector<topologyNode>* Nodelist, vector<topologyEdge>* EdgeList);
	void topComputeMergePoints(vector<topologyNode>* NodeList);
	bool topDetectEdge(vector<topologyNode>* NodeList, vector<topologyEdge>* EdgeList, unsigned int node0, unsigned int node1);
	bool topDeleteEdge(vector<topologyNode>* NodeList, vector<topologyEdge>* EdgeList, unsigned int node0, unsigned int node1);
	unsigned int topGetNearestConnected(vector<topologyNode>* NodeList, unsigned int node, bool must_be_compatible);
	void ComputeBoundingVolume();
	float GeometryMetric(rtsFiberNetwork* network, float std)
	{
		//At this point each vertex in the network has an error in the range of [0 1]
		//This function computes the average error of each fiber and the entire network based
		//on the error at each vertex.
		unsigned int f, p;
		float fiber_length;
		float fiber_metric;
		float total_metric = 0.0;
		float total_length = 0.0;
		point3D<float> p0, p1;
		float e0, e1;
		int node;

		//compute the metric for every fiber in the network
		for(f=0; f<network->FiberList.size(); f++)
		{
			fiber_metric = 0.0;
			fiber_length = 0.0;

			//start at the first node
			node = network->FiberList[f].n0;
			p0 = network->NodeList[node].p;
			e0 = network->NodeList[node].error;

			//iterate through every intermediary node
			for(p=0; p<network->FiberList[f].errorList.size(); p++)
			{
				p1 = network->FiberList[f].pointList[p];
				e1 = network->FiberList[f].errorList[p];
				//keep a running sum of both the fiber length and the average error
				fiber_length += (p0 - p1).Length();
				fiber_metric += (e0+e1)/2 * (p0 - p1).Length();

				//shift
				p0 = p1;
				e0 = e1;

			}

			//end at the last fiber node
			node = network->FiberList[f].n1;
			p1 = network->NodeList[node].p;
			e1 = network->NodeList[node].error;
			fiber_length += (p0 - p1).Length();
			fiber_metric += (e0+e1)/2 * (p0 - p1).Length();

			//compute and store the average fiber error
			network->FiberList[f].error = fiber_metric/fiber_length;

			//keep a running total of the network error
			//do not include if the fiber is culled
			if(network->FiberList[f].error <= network->cull_value)
			{
				total_length += fiber_length;
				total_metric += fiber_metric;
			}
		}

		//compute the final error for the entire network
		return total_metric / total_length;
	}

	void MY_ComputeTopology(rtsFiberNetwork* testNetwork, float std);
	void BOOST_MapEdgesToFibers(rtsFiberNetwork* network, TopologyGraph& G)
	{
		/*
		//initialize the fiber mapping to -1
		for(int f=0; f<network->FiberList.size(); f++)
			network->FiberList[f].mapped_to = -1;

		//for each edge in the graph, set the mapping
		graph_traits<TopologyGraph>::edge_iterator ei, ei_end;
		int map;
		for(tie(ei, ei_end) = edges(G); ei != ei_end; ei++)
		{
			map = get(edge_color_t(), G, *ei);
			network->FiberList[map].mapped_to = 1;
		}
		*/

	}
	void BOOST_InvalidateValence2Vertices(TopologyGraph& G)
	{
		graph_traits<TopologyGraph>::vertex_iterator vi, vi_end;
		for(boost::tuples::tie(vi, vi_end) = vertices(G); vi!= vi_end; vi++)
		{
			if(degree(*vi, G) == 2)
			{
				put(vertex_color_t(), G, *vi, -1);
				cout<<"invalidated"<<endl;
			}

		}
	}
	CoreGraphList BOOST_ComputeTopology(rtsFiberNetwork* testNetwork, float sigma)
	{
		//construct a graph representation of each network
		TopologyGraph GT = BOOST_BuildGraph(this);
		TopologyGraph T = BOOST_BuildGraph(testNetwork);

		cout<<"BEFORE CLEANING"<<endl;
		cout<<"GT****************************"<<endl;
		//BOOST_PrintGraph(GT);
		cout<<"T*****************************"<<endl;
		//BOOST_PrintGraph(T);

		//clean up degeneracies in the graphs
		BOOST_CleanGraph(GT, sigma);
		BOOST_CleanGraph(T, sigma);

		//color the vertices
		BOOST_KD_ColorGraph(GT, T, sigma);
		BOOST_KD_ColorGraph(T, GT, sigma);

		//color the vertices in GT based on the GT indices
		//the colors now match those in T
		BOOST_SaveGTIndices(GT);

		//apply the colors to the network
		BOOST_ApplyColorsToNetwork(GT, this);
		BOOST_ApplyColorsToNetwork(T, testNetwork);

		int false_positives = 0;
		int false_negatives = 0;

		//merge spurs
		//BOOST_PrintGraph(T);
		int false_positive_spines = BOOST_RemoveSpines(T);
		int false_negative_spines =  BOOST_RemoveSpines(GT);
		cout<<"False Positive Spines: "<<false_positive_spines<<endl;
		cout<<"False Negative Spines: "<<false_negative_spines<<endl;
		//BOOST_PrintGraph(T);


		false_positives += false_positive_spines;
		false_negatives += false_negative_spines;

		//merge invalid vertices together
		//this function also merges invalid vertices with valid vertices if their degree = 2

		//BOOST_PrintGraph(T);
		BOOST_MergeInvalidVertices(GT);
		BOOST_MergeInvalidVertices(T);
		//BOOST_PrintGraph(T);

		//merge the compatible vertices
		int compatible_spines = BOOST_MergeCompatibleVertices(T);
		cout<<"Compatibility errors in T: "<<compatible_spines<<endl;
		false_positives += compatible_spines;


		CoreGraphList core = BOOST_FindCore(GT, T);

		//BOOST_PrintGraph(GT);
		//BOOST_InvalidateValence2Vertices(GT);
		//BOOST_InvalidateValence2Vertices(T);
		//BOOST_PrintGraph(GT);
		//BOOST_MergeInvalidVertices(GT);
		//BOOST_MergeInvalidVertices(T);

		//core = BOOST_FindCore(GT, T);




		int T_topology_errors = num_edges(T) - core.size();
		int GT_topology_errors = num_edges(T) - core.size();

		false_positives += T_topology_errors;
		false_negatives += GT_topology_errors;

		cout<<"False Positive Edges: "<<false_positives<<endl;
		cout<<"False Negative Edges: "<<false_negatives<<endl;

		return core;
	}
	list<pair<TopologyVertex, EdgeSequence> > BOOST_FindNeighbors(TopologyGraph G, TopologyVertex node)
	{
		//Finds all colored vertices that can be reached from "node"
		pair<TopologyVertex, EdgeSequence> edge_map;
		list<pair<TopologyVertex, EdgeSequence> > result;

		do{
			global_Predecessors.clear();
			global_Predecessors.resize(num_vertices(G));
			global_Source = node;
			global_EdgeSequence.clear();
			global_EdgeDescriptorSequence.clear();
			global_Weight = 0.0;
			boundary_bfs_visitor vis;
			try{
				breadth_first_search(G, global_Source, visitor(vis));
			}
			catch(TopologyVertex& vert_id)
			{
				edge_map.first = vert_id;
				edge_map.second = global_EdgeSequence;
				result.push_back(edge_map);
				global_NeighborWeights.push_back(global_Weight);
				//clear_vertex(vert_id, G);
				remove_edge(global_EdgeDescriptorSequence.front(), G);
			}
		}while(!global_EdgeSequence.empty());
		return result;
	}

	TopologyGraph BOOST_FindCoreGraph(TopologyGraph G)
	{
		TopologyGraph result;
		//first insert all vertices
		graph_traits<TopologyGraph>::vertex_iterator vi, vi_end;
		graph_traits<TopologyGraph>::vertex_descriptor v;
		for(boost::tuples::tie(vi, vi_end) = vertices(G); vi!=vi_end; vi++)
		{
			v = add_vertex(result);
			put(vertex_color_t(), result, v, get(vertex_color_t(), G, *vi));
			put(vertex_position_t(), result, v, get(vertex_position_t(), G, *vi));
		}

		//for each vertex in the graph, find all of the neighbors
		list<pair<TopologyVertex, EdgeSequence> > neighborhood;
		list<pair<TopologyVertex, EdgeSequence> >::iterator ni;
		list<float>::iterator wi;
		pair<TopologyEdge, bool> e;
		for(boost::tuples::tie(vi, vi_end) = vertices(G); vi!=vi_end; vi++)
		{
			//only look for neighbors if the vertex has a color
			if(get(vertex_color_t(), G, *vi) >= 0)
			{
				global_NeighborWeights.clear();
				neighborhood = BOOST_FindNeighbors(G, *vi);
				for(ni = neighborhood.begin(), wi = global_NeighborWeights.begin(); ni != neighborhood.end(); ni++, wi++)
				{
					e = add_edge(*vi, (*ni).first, result);
					put(edge_color_t(), result, e.first, (*ni).second);
					//cout<<"Inserting weight: "<<*wi<<endl;
					put(edge_weight_t(), result, e.first, (*wi));

				}
				clear_vertex(*vi, G);
			}
		}
		//BOOST_PrintGraph(G);
		//BOOST_PrintGraph(result);
		return result;
	}

	CoreGraphList BOOST_CompareCoreGraphs(TopologyGraph GTc, TopologyGraph Tc)
	{
		//cout<<"Core Before:"<<endl;
		//BOOST_PrintGraph(GTc);

		CoreGraphList result;
		EdgeMapping TtoGT;
		pair<TopologyEdge, bool> e_Tc, e_GTc;
		graph_traits<TopologyGraph>::edge_iterator ei, ei_end, ei_temp;
		graph_traits<TopologyGraph>::vertex_descriptor v0, v1;

		//cout<<"Tc"<<endl;
		//BOOST_PrintGraph(Tc);
		//test each edge in T
		boost::tuples::tie(ei, ei_end) = edges(Tc);
		while(ei!=ei_end)
		{
			//see if there is a corresponding edge in GT
			v0 = get(vertex_color_t(), Tc, source(*ei, Tc));
			v1 = get(vertex_color_t(), Tc, target(*ei, Tc));
			//e = edge(v0, v1, GTc);
			e_GTc = BOOST_SmallestEdge(v0, v1, GTc);
			//if(v0 == 1 || v1 == 1)
			//	cout<<"test"<<endl;

			if(e_GTc.second)
			{
				e_Tc = BOOST_SmallestEdge(source(*ei, Tc), target(*ei, Tc), Tc);

				//create the mapping
				TtoGT.first = get(edge_color_t(), Tc, e_Tc.first);
				TtoGT.second = get(edge_color_t(), GTc, e_GTc.first);
				result.push_back(TtoGT);

				//remove the edge
				remove_edge(e_GTc.first, GTc);
				remove_edge(e_Tc.first, Tc);
				boost::tuples::tie(ei, ei_end) = edges(Tc);
			}
			else
				ei++;
		}



		//cout<<"Core after comparison: "<<endl;
		//cout<<"GTc"<<endl;
		//BOOST_PrintGraph(GTc);
		//cout<<"Tc"<<endl;
		//BOOST_PrintGraph(Tc);
		return result;
	}

	CoreGraphList NEW_ComputeTopology(rtsFiberNetwork* testNetwork, float sigma)
	{
		//cout<<"Number of Ground-Truth Nodes: "<<NodeList.size()<<endl;
		//cout<<"Number of Test-Case Nodes: "<<testNetwork->NodeList.size()<<endl;

		//construct a graph representation of each network
		TopologyGraph GT = BOOST_BuildGraph(this);
		TopologyGraph T = BOOST_BuildGraph(testNetwork);

		//color the vertices
		BOOST_KD_ColorGraphs(T, GT, sigma);

		//apply the colors to the network
		BOOST_ApplyColorsToNetwork(GT, this);
		BOOST_ApplyColorsToNetwork(T, testNetwork);

		//remove spurs
		//cout<<"Removing Spines...";
		//int false_positive_spines = BOOST_RemoveSpines(T);
		//int false_negative_spines =  BOOST_RemoveSpines(GT);
		//cout<<"done"<<endl;
		//cout<<"False Positive Spines: "<<false_positive_spines<<endl;
		//cout<<"False Negative Spines: "<<false_negative_spines<<endl;

		//initialize the global predecessor list
		//cout<<"Computing Core Connectivity for T...";
		TopologyGraph Tc = BOOST_FindCoreGraph(T);
		//cout<<"done"<<endl;
		//cout<<"Computing Core Connectivity for GT...";
		TopologyGraph GTc = BOOST_FindCoreGraph(GT);
		//cout<<"done"<<endl;
		//cout<<"Comparing Graphs...";
		return BOOST_CompareCoreGraphs(GTc, Tc);
		//cout<<"done"<<endl;
	}
	TopologyGraph BOOST_BuildGraph(rtsFiberNetwork* network)
	{
		//create the graph
		TopologyGraph g(network->NodeList.size());

		//for each fiber in the graph, create an edge
		int n0, n1;
		typedef std::pair<int, int> Edge;
		typedef std::pair<boost::graph_traits<TopologyGraph>::edge_descriptor, bool> EdgeIDType;
		EdgeIDType edge_id;
		Edge new_edge;
		EdgeProperties ep;
		EdgeSequence edge_sequence;
		for(unsigned int f=0; f<network->FiberList.size(); f++)
		{
			if(!network->isCulled(f))
			{
				n0 = network->FiberList[f].n0;
				n1 = network->FiberList[f].n1;
				new_edge = Edge(n0, n1);
				edge_id = add_edge(new_edge.first, new_edge.second, network->FiberList[f].error*network->FiberList[f].length, g);

				//add the starting edge color
				edge_sequence.clear();
				edge_sequence.push_back(f);
				put(edge_color_t(), g, edge_id.first, edge_sequence);
			}
			else
				cout<<"culled"<<endl;
		}

		//for each vertex in the graph, assign the position
		typedef property_map<TopologyGraph, vertex_position_t>::type PositionMap;
		PositionMap positions = get(vertex_position_t(), g);

		for(unsigned int v=0; v<network->NodeList.size(); v++)
			positions[v] = network->NodeList[v].p;

		return g;
	}
	void BOOST_KD_ColorGraph(TopologyGraph& G, TopologyGraph& compareTo, float sigma)
	{
		//get the number of vertices in compareTo
		int verts = num_vertices(compareTo);
		//allocate enough space in an ANN array
		ANNpointArray dataPts = annAllocPts(verts, 3);

		//get the vertex positions
		typedef property_map<TopologyGraph, vertex_position_t>::type PositionMap;
		PositionMap positions = get(vertex_position_t(), compareTo);
		//insert the positions into the ANN list
		for(int v=0; v<verts; v++)
		{
			dataPts[v][0] = positions[v].x;
			dataPts[v][1] = positions[v].y;
			dataPts[v][2] = positions[v].z;
		}
		//build the KD tree
		ANNkd_tree* kdTree;
		kdTree = new ANNkd_tree(dataPts, verts, 3);

		//PERFORM THE NEAREST NEIGHBOR SEARCH
		//allocate variables
		ANNpoint queryPt = annAllocPt(3);
		ANNidxArray nearestIdx = new ANNidx[1];
		ANNdistArray nearestDist = new ANNdist[1];

		//get the position map for G
		positions = get(vertex_position_t(), G);
		//get the vertex color map (valid/invalid)
		typedef property_map<TopologyGraph, vertex_color_t>::type ColorMap;
		ColorMap colors = get(vertex_color_t(), G);
		//get the vertex compatibility map
		//typedef property_map<TopologyGraph, vertex_compatibility_t>::type CompatibilityMap;
		//CompatibilityMap compatibility = get(vertex_compatibility_t(), G);
		//get the index property map
		//typedef property_map<TopologyGraph, vertex_index_t>::type IndexMap;
		//IndexMap index = get(vertex_index, G);

		//query each vertex in G
		typedef graph_traits<TopologyGraph>::vertex_iterator vertex_iter;
		std::pair<vertex_iter, vertex_iter> vp;
		point3D<float> pos;
		for (vp = vertices(G); vp.first != vp.second; ++vp.first)
		{
			pos = positions[*vp.first];
			queryPt[0] = pos.x;
			queryPt[1] = pos.y;
			queryPt[2] = pos.z;
			//perform the 1-NN search
			kdTree->annkSearch(queryPt, 1, nearestIdx, nearestDist);
			//if the distance is less than sigma, label as valid
			if(sqrt(nearestDist[0]) < sigma)
			{
				colors[*vp.first] = nearestIdx[0];
				//compatibility[*vp.first] = nearestIdx[0];
			}
			else
			{
				colors[*vp.first] = -1;
				//compatibility[*vp.first] = -1;
			}
		}
	}
	void BOOST_KD_ColorGraphs(TopologyGraph& T, TopologyGraph& GT, float sigma)
	{
		/*Colors both graphs for the connectivity metric:
		1) Create a kd-tree using the vertices in GT
		2) Find a vertex in GT near each vertex in T
			a) If a vertex in GT isn't found, the vertex in T is assigned a color of -1
			b) If a vertex in GT is found, the vertex in T is assigned the corresponding index
		3) Vertices in GT are assigned their own index if they are found (-1 if they aren't)
		*/

		//initialize each vertex in T with a color of -1
		graph_traits<TopologyGraph>::vertex_iterator vi, vi_end;
		for (boost::tuples::tie(vi, vi_end) = vertices(T); vi != vi_end; vi++)
		{
			put(vertex_color_t(), T, *vi, -1);
		}

		//initialize each vertex in GT with -1
		for (boost::tuples::tie(vi, vi_end) = vertices(GT); vi != vi_end; vi++)
		{
			put(vertex_color_t(), GT, *vi, -1);
		}
		//BOOST_PrintGraph(T);

		//CREATE THE KD TREE REPRESENTING GT
		//get the number of vertices in GT
		int verts = num_vertices(T);
		//allocate enough space in an ANN array
		ANNpointArray dataPts = annAllocPts(verts, 3);

		//get the vertex positions
		typedef property_map<TopologyGraph, vertex_position_t>::type PositionMap;
		PositionMap positions = get(vertex_position_t(), T);
		//insert the positions into the ANN list
		for(int v=0; v<verts; v++)
		{
			dataPts[v][0] = positions[v].x;
			dataPts[v][1] = positions[v].y;
			dataPts[v][2] = positions[v].z;
			//set the color for each vertex in GT to -1
			//put(vertex_color_t(), T, v, -1);
		}
		//build the KD tree
		ANNkd_tree* kdTree;
		kdTree = new ANNkd_tree(dataPts, verts, 3);

		//PERFORM THE NEAREST NEIGHBOR SEARCH
		//allocate variables
		ANNpoint queryPt = annAllocPt(3);
		ANNidxArray nearestIdx = new ANNidx[1];
		ANNdistArray nearestDist = new ANNdist[1];

		//get the position map for T
		//positions = get(vertex_position_t(), G);
		//get the vertex color map
		//typedef property_map<TopologyGraph, vertex_color_t>::type ColorMap;
		//ColorMap colors = get(vertex_color_t(), G);

		//query each vertex in T
		//std::pair<vertex_iter, vertex_iter> vp;
		point3D<float> pos;
		int num_undetected = 0;
		for (boost::tuples::tie(vi, vi_end) = vertices(GT); vi != vi_end; vi++)
		{
			//pos = positions[*vp.first];
			pos = get(vertex_position_t(), GT, *vi);
			queryPt[0] = pos.x;
			queryPt[1] = pos.y;
			queryPt[2] = pos.z;
			//perform the 1-NN search
			kdTree->annkSearch(queryPt, 1, nearestIdx, nearestDist);
			//if the distance is less than sigma, label as valid
			if(sqrt(nearestDist[0]) < sigma)
			{
				//colors[*vp.first] = nearestIdx[0];
				//color T
				put(vertex_color_t(), T, nearestIdx[0], (int)*vi);
				//color GT
				put(vertex_color_t(), GT, *vi, (int)*vi);
				//compatibility[*vp.first] = nearestIdx[0];
			}
			else
			{
				//put(vertex_color_t(), T, *vi, -1);
				num_undetected++;
				//compatibility[*vp.first] = -1;
			}
		}

		//find undetected and falsely detected nodes
		//cout<<"Number of Undetected Nodes: "<<num_undetected<<endl;
		int false_positive = 0;
		int true_positive = 0;
		for (boost::tuples::tie(vi, vi_end) = vertices(T); vi != vi_end; vi++)
		{
			if(get(vertex_color_t(), T, *vi) == -1)
				false_positive++;
			else
				true_positive++;
		}
		//cout<<"Number of False Positive Nodes: "<<false_positive<<endl;
		//cout<<"Number of True Positive Nodes: "<<true_positive<<endl;



	}
	void BOOST_CleanGraph(TopologyGraph& G, float sigma)
	{
		//This function cleans up degenerate cases in the ground truth and warns the user about them
		//These include:
		//		Ground truth nodes that are within sigma of other ground truth nodes

		//we do a 1-NN search across all vertices, looking for distance values < sigma

		bool error_detected = false;
		bool vertex_error;

		int merged_edges = 0;

		//go through each vertex
		graph_traits<TopologyGraph>::vertex_iterator vi, vtmp, vi_end;
		boost::tuples::tie(vi, vi_end) = vertices(G);
		pair<graph_traits<TopologyGraph>::edge_descriptor, bool> e_remove;
		graph_traits<TopologyGraph>::adjacency_iterator ai, ai_end;
		graph_traits<TopologyGraph>::vertex_descriptor v_remove;
		point3D<float> vp, ap;
		vector3D<float> v_dist;
		float dist;
		while(vi != vi_end)
		{
			//get the color of the vertex
			vp = get(vertex_position_t(), G, *vi);

			//check every adjacent vertex
			vertex_error = false;
			for(boost::tuples::tie(ai, ai_end) = adjacent_vertices(*vi, G); ai != ai_end; ai++)
			{
				//get the position of the adjacent vertex
				ap = get(vertex_position_t(), G, *ai);
				//find the distance between the two points
				v_dist = vp - ap;
				dist = v_dist.Length();

				if(dist <= sigma)
				{
					error_detected = true;
					vertex_error = true;
					v_remove = *vi;
					e_remove = edge(*vi, *ai, G);
				}
			}
			if(vertex_error)
			{
				//merge the vertices along edge "e_remove"
				BOOST_MergeVertices(G, e_remove.first, v_remove);

				//refresh the vertex iterator
				boost::tuples::tie(vtmp, vi_end) = vertices(G);
			}
			else
				vi++;
		}


	}
	void BOOST_SaveGTIndices(TopologyGraph& G)
	{
		//changes the ground truth colors to vertex indices
		graph_traits<TopologyGraph>::vertex_iterator vi, vi_end;
		int index;
		for(boost::tuples::tie(vi, vi_end) = vertices(G); vi != vi_end; vi++)
		{
			//only change the color if the vertex is valid
			if(get(vertex_color_t(), G, *vi) >= 0)
			{
				index = get(vertex_index_t(), G, *vi);
				put(vertex_color_t(), G, *vi, index);
			}
		}
	}
	void BOOST_ApplyColorsToNetwork(TopologyGraph& from, rtsFiberNetwork* to)
	{
		//get the index property
		typedef property_map<TopologyGraph, vertex_index_t>::type IndexMap;
		IndexMap index = get(vertex_index, from);
		//get the vertex color (valid/invalid)
		typedef property_map<TopologyGraph, vertex_color_t>::type ColorMap;
		ColorMap colors = get(vertex_color_t(), from);

		//go through each vertex and apply the appropriate color to the associated fiber node
		typedef graph_traits<TopologyGraph>::vertex_iterator vertex_iter;
		std::pair<vertex_iter, vertex_iter> vp;
		int idx;
		for (vp = vertices(from); vp.first != vp.second; ++vp.first)
		{
			idx = index[*vp.first];
			to->NodeList[idx].color = colors[*vp.first];
		}
		//cout << index[*vp.first] <<":"<<colors[*vp.first]<<"("<<compatibility[*vp.first]<<")= "<<positions[*vp.first]<<endl;

	}
	void BOOST_MergeVertices(TopologyGraph& G, graph_traits<TopologyGraph>::edge_descriptor e, graph_traits<TopologyGraph>::vertex_descriptor v)
	{
		//cout<<"MERGE VERTEX TEST-------------------------------"<<endl;
		//get the vertex descriptor for v0 and v1
		graph_traits<TopologyGraph>::vertex_descriptor v0, v1;
		v0 = v;
		v1 = target(e, G);
		if(v1 == v) v1 = source(e, G);

		//we will merge v0 to v1 (although the order doesn't matter)
		//well, okay, it does matter as far as the vertex position is concerned...maybe I'll fix that

		//get the current edge's colors
		EdgeSequence removed_colors = get(edge_color_t(), G, e);
		float removed_weight = get(edge_weight_t(), G, e);

		//first delete the current edge
		remove_edge(e, G);

		//for each edge coming into v0, create a corresponding edge into v1
		pair<graph_traits<TopologyGraph>::edge_descriptor, bool> new_edge;
		graph_traits<TopologyGraph>::in_edge_iterator ei, ei_end;
		EdgeSequence new_colors;
		float weight;
		for(boost::tuples::tie(ei, ei_end) = in_edges(v0, G); ei != ei_end; ei++)
		{
			//create a new edge for each edge coming in to v0
			new_edge = add_edge(source(*ei, G), v1, G);
			new_colors = get(edge_color_t(), G, *ei);

			//add the removed colors to the new edge
			new_colors.insert(new_colors.end(), removed_colors.begin(), removed_colors.end());

			weight = get(edge_weight_t(), G, *ei) + removed_weight;
			put(edge_weight_t(), G, new_edge.first, weight);
			put(edge_color_t(), G, new_edge.first, new_colors);
		}

		//now remove v0 from the graph
		clear_vertex(v0, G);
		//remove_vertex(v0, G);

		//cout<<"END MERGE VERTEX TEST-------------------------------"<<endl;

	}
	void BOOST_MergeInvalidVertices(TopologyGraph& G)
	{
		//merges vertices that have color < 0

		//go through each vertex
		graph_traits<TopologyGraph>::vertex_iterator vi, vtmp, vi_end;
		boost::tuples::tie(vi, vi_end) = vertices(G);
		int color;
		float min_weight;
		float weight;
		graph_traits<TopologyGraph>::edge_descriptor e_remove;
		graph_traits<TopologyGraph>::in_edge_iterator ei, ei_end;
		//graph_traits<TopologyGraph>::vertex_descriptor v_remove;
		bool vertex_removal;

		//merge neighbors that are both invalid
		//for each vertex
		for(boost::tuples::tie(vi, vi_end) = vertices(G); vi!=vi_end; vi++)
		{
			vertex_removal = false;
			color = get(vertex_color_t(), G, *vi);

			//if the vertex is invalid
			if(color < 0)
			{

				//get the incident edge with the lowest weight
				min_weight = 99999.0;
				for(boost::tuples::tie(ei, ei_end) = in_edges(*vi, G); ei != ei_end; ei++)
				{
					if(get(vertex_color_t(), G, source(*ei, G)) == get(vertex_color_t(), G, target(*ei, G)))
					{
						vertex_removal = true;
						weight = get(edge_weight_t(), G, *ei);
						cout<<"weight: "<<weight<<" source color: "<<color<<endl;
						if(weight <= min_weight)
						{
							min_weight = get(edge_weight_t(), G, *ei);
							e_remove = *ei;
						}
					}
				}
				//if a vertex is to be removed, remove it
				if(vertex_removal)
				{
					cout<<"Min Weight: "<<min_weight<<endl;
					//merge the vertices along edge "max_edge"
					BOOST_MergeVertices(G, e_remove, *vi);
				}

			}

		}

		//merge a vertex with its neighbor if it is invalid and degree=2
		for(boost::tuples::tie(vi, vi_end) = vertices(G); vi!=vi_end; vi++)
		{
			//if the vertex is invalid
			if(color < 0 && degree(*vi, G) == 2)
			{
				boost::tuples::tie(ei, ei_end) = in_edges(*vi, G);
				e_remove = *ei;
				BOOST_MergeVertices(G, e_remove, *vi);
			}
		}

	}
	int BOOST_RemoveSpines(TopologyGraph& G)
	{
		//merges vertices that have color < 0
		int merged_spines = 0;

		//go through each vertex
		graph_traits<TopologyGraph>::vertex_iterator vi, vtmp, vi_end;
		boost::tuples::tie(vi, vi_end) = vertices(G);
		graph_traits<TopologyGraph>::edge_descriptor max_edge;
		graph_traits<TopologyGraph>::in_edge_iterator ei, ei_end;
		graph_traits<TopologyGraph>::vertex_descriptor v_next, v_this;
		graph_traits<TopologyGraph>::adjacency_iterator ai, ai_end;
		int v_degree;

		//for each vertex
		for(boost::tuples::tie(vi, vi_end) = vertices(G); vi!=vi_end; vi++)
		{
			//if the vertex is invalid AND degree=1
			v_degree = degree(*vi, G);
			if(get(vertex_color_t(), G, *vi) < 0 && v_degree == 1)
			{
				//delete the entire spur
				v_this = *vi;
				do{
					//get the adjacent vertex
					boost::tuples::tie(ai, ai_end) = adjacent_vertices(v_this, G);
					//cout<<*ai<<endl;
					v_next = *ai;
					//clear the current vertex (there should only be one edge)
					clear_vertex(v_this, G);
					v_this = v_next;
				}while(degree(v_this, G) == 1 && get(vertex_color_t(), G, v_this) < 0);
				merged_spines++;
			}
		}


		return merged_spines;
	}
	int BOOST_MergeCompatibleVertices(TopologyGraph& G)
	{
		int merged_edges = 0;

		//go through each vertex
		graph_traits<TopologyGraph>::vertex_iterator vi, vtmp, vi_end;
		boost::tuples::tie(vi, vi_end) = vertices(G);
		int color;
		pair<graph_traits<TopologyGraph>::edge_descriptor, bool> e_remove;
		graph_traits<TopologyGraph>::adjacency_iterator ai, ai_end;
		graph_traits<TopologyGraph>::vertex_descriptor v_remove;
		int num_incident;
		bool merge_found;
		while(vi != vi_end)
		{
			//get the color of the vertex
			color = get(vertex_color_t(), G, *vi);
			//if the vertex is valid
			if(color >= 0)
			{
				//run through each adjacent vertex
				merge_found = false;
				for(boost::tuples::tie(ai, ai_end) = adjacent_vertices(*vi, G); ai != ai_end; ai++)
				{
					//if the two vertices are compatible
					if(color == get(vertex_color_t(), G, *ai) && (*vi != *ai))
					{
						v_remove = *vi;
						e_remove = edge(*vi, *ai, G);
						merge_found = true;
					}
				}
				if(merge_found)
				{
					num_incident = degree(v_remove, G);
					BOOST_MergeVertices(G, e_remove.first, v_remove);
					if(num_incident == 1) merged_edges++;
					boost::tuples::tie(vtmp, vi_end) = vertices(G);
				}
				else vi++;
			}
			else
				vi++;
		}

		return merged_edges;
	}

	EdgeSequence BOOST_RemoveEdge(int v0, int v1, TopologyGraph& G)
	{
		//look for a direct edge
		pair<graph_traits<TopologyGraph>::edge_descriptor, bool> e0, e1;
		e0 = BOOST_SmallestEdge(v0, v1, G);

		//if it exists, remove it and return the edge sequence
		EdgeSequence sequence0, sequence1;
		sequence0.clear();
		if(e0.second)
		{
			sequence0 = get(edge_color_t(), G, e0.first);
			remove_edge(e0.first, G);
		}
		//otherwise look for an indirect edge

		else
		{
			graph_traits<TopologyGraph>::adjacency_iterator ai, ai_end;
			//for each vertex adjacent to v0
			for(boost::tuples::tie(ai, ai_end) = adjacent_vertices(v0, G); ai!=ai_end; ai++)
			{
				//if the adjacent vertex is invalid
				if(get(vertex_color_t(), G, *ai) < 0)
				{
					//see if v1 is also connected
					e1 = BOOST_SmallestEdge(v1, *ai, G);
					//if it is
					if(e1.second)
					{
						sequence0 = get(edge_color_t(), G, e1.first);
						e0 = BOOST_SmallestEdge(v0, *ai, G);
						sequence1 = get(edge_color_t(), G, e0.first);
						sequence0.insert(sequence0.end(), sequence1.begin(), sequence1.end());
						remove_edge(e0.first, G);
						remove_edge(e1.first, G);
						return sequence0;
					}
				}
			}
		}
		return sequence0;

	}
	CoreGraphList BOOST_FindCore(TopologyGraph& GT, TopologyGraph& T)
	{
		CoreGraphList Gc;

		int FP = 0;
		int FN = 0;

		//Find edges that exist in both GT and T
		EdgeSequence T_Path, GT_Path;
		EdgeMapping path_pair;

		//create iterators for the edges in T
		graph_traits<TopologyGraph>::edge_iterator ei, ei_end;

		//for each edge in T, remove the corresponding edge in GT (if it exists) and put the details in the core garph list
		int v0, v1;
		pair<graph_traits<TopologyGraph>::edge_descriptor, bool> e;
		pair<graph_traits<TopologyGraph>::edge_descriptor, bool> e_T, e_GT;

		graph_traits<TopologyGraph>::vertex_descriptor s, t;
		list<graph_traits<TopologyGraph>::edge_descriptor> to_remove;
		list<graph_traits<TopologyGraph>::edge_descriptor>::iterator remove_iter;

		/*//add all edges to a list
		list<pair<TopologyEdge, float>> EdgeList;
		for(tie(ei, ei_end) = edges(T); ei!=ei_end; ei++)
		{
			pair<TopologyEdge, float> edge_data;
			edge_data.first = *ei;
			edge_data.second = get(edge_weight_t(), T, *ei);
			EdgeList.push_back(edge_data);
		}
		EdgeList.sort(compare_edges);*/

		//find direct connections
		for(boost::tuples::tie(ei, ei_end) = edges(T); ei!=ei_end; ei++)
		{
			//get the ID for the corresponding vertices in GT
			s = source(*ei, T);
			t = target(*ei, T);
			v0 = get(vertex_color_t(), T, s);
			v1 = get(vertex_color_t(), T, t);

			//if both vertices are valid
			if(v0 >= 0 && v1 >= 0)
			{
				GT_Path = BOOST_RemoveEdge(v0, v1, GT);
				//if there was a corresponding edge in GT
				if(GT_Path.size() > 0)
				{
					//get the edge path from T
					T_Path = get(edge_color_t(), T, *ei);
					//create the path pair and add it to the core graph list
					path_pair.first = T_Path;
					path_pair.second = GT_Path;
					Gc.push_back(path_pair);
				}
				else
					FP++;
				//mark the edge for removal from T
				to_remove.push_back(*ei);

			}
		}
		for(remove_iter = to_remove.begin(); remove_iter != to_remove.end(); remove_iter++)
			remove_edge(*remove_iter, T);


		//find indirect connections (these are connections that use one invalid point)
		graph_traits<TopologyGraph>::adjacency_iterator ai, ai_end;
		bool match_found;
		while(num_edges(T) > 0)
		{
			boost::tuples::tie(ei, ei_end) = edges(T);

			//s = valid point, t = invalid
			s = source(*ei, T);
			if(get(vertex_color_t(), T, s) < 0)
			{
				t = s;
				s = target(*ei, T);
			}
			else
				t = target(*ei, T);
			//for each point adjacent to the invalid point
			match_found = false;
			v0 = get(vertex_color_t(), T, s);
			for(boost::tuples::tie(ai, ai_end) = adjacent_vertices(t, T); ai!=ai_end; ai++)
			{
				//get the edge path from T
				e = edge(t, *ai, T);
				//make sure that the first and second edges are not the same
				if(e.first != *ei)
				{
					v1 = get(vertex_color_t(), T, *ai);
					GT_Path = BOOST_RemoveEdge(v0, v1, GT);
					//if there was a corresponding edge in GT
					if(GT_Path.size() > 0)
					{
						match_found = true;
						T_Path = get(edge_color_t(), T, e.first);
						EdgeSequence temp = get(edge_color_t(), T, *ei);
						T_Path.insert(T_Path.end(), temp.begin(), temp.end());

						//create the path pair and add it to the core graph list
						path_pair.first = T_Path;
						path_pair.second = GT_Path;
						Gc.push_back(path_pair);

						//remove both edges and break
						remove_edge(e.first, T);
						remove_edge(*ei, T);
						break;
					}
				}
			}
			if(!match_found)
			{
				FP++;
				remove_edge(*ei, T);
			}
		}

		cout<<"False Positive Edges in Core: "<<FP<<endl;



		return Gc;
	}

	TopologyGraph BOOST_RemapGraph(TopologyGraph& G, rtsFiberNetwork* network);
	void BOOST_PrintGraph(TopologyGraph G)
	{
		//get the index property
		typedef property_map<TopologyGraph, vertex_index_t>::type IndexMap;
		IndexMap index = get(vertex_index, G);

		//get the position property
		typedef property_map<TopologyGraph, vertex_position_t>::type PositionMap;
		PositionMap positions = get(vertex_position_t(), G);
		//get the vertex color (valid/invalid)
		typedef property_map<TopologyGraph, vertex_color_t>::type ColorMap;
		ColorMap colors = get(vertex_color_t(), G);
		//get vertex compatibility
		//typedef property_map<TopologyGraph, vertex_compatibility_t>::type CompatibilityMap;
		//CompatibilityMap compatibility = get(vertex_compatibility_t(), G);

		std::cout << "vertices(g) = "<<endl;
		typedef graph_traits<TopologyGraph>::vertex_iterator vertex_iter;
		std::pair<vertex_iter, vertex_iter> vp;
		for (vp = vertices(G); vp.first != vp.second; ++vp.first)
			cout << index[*vp.first] <<"("<<colors[*vp.first]<<") = "<<positions[*vp.first]<<endl;
		cout << endl;

		//get the edge weight property
		typedef property_map<TopologyGraph, edge_weight_t>::type WeightMap;
		WeightMap weights = get(edge_weight_t(), G);

		std::cout << "edges(source, dest): weight to_fiber"<<endl;
		graph_traits<TopologyGraph>::edge_iterator ei, ei_end;
		EdgeSequence edge_sequence;
		for (boost::tuples::tie(ei, ei_end) = edges(G); ei != ei_end; ++ei)
		{
			std::cout << "(" << index[source(*ei, G)] << "," << index[target(*ei, G)] << "): "<<weights[*ei]<<" {";
			edge_sequence = get(edge_color_t(), G, *ei);
			for(EdgeSequence::iterator i = edge_sequence.begin(); i != edge_sequence.end(); i++)
				cout<<*i<<" ";
			cout<<"}"<<endl;
		}

		std::cout << std::endl;


	}

	//network geometry functions
	double computeFiberLength(int f)
	{
		//return the length of the fiber f
		point3D<float> p0 = NodeList[FiberList[f].n0].p;
		point3D<float> p1;

		double length = 0.0;
		int num_points = FiberList[f].pointList.size();
		int p;
		for(p=0; p<num_points; p++)
		{
			p1 = FiberList[f].pointList[p];
			length += (p1 - p0).Length();
			p0 = p1;
		}
		p1 = NodeList[FiberList[f].n1].p;
		length += (p1 - p0).Length();
		return length;

	}
	void refreshFiberLengths()
	{
		for(unsigned int f=0; f<FiberList.size(); f++)
			FiberList[f].length = (float)computeFiberLength(f);
	}

	void refreshIncidence()
	{
		for(unsigned int n=0; n<NodeList.size(); n++)
			NodeList[n].incident = 0;

		for(unsigned int f=0; f<FiberList.size(); f++)
		{
			NodeList[FiberList[f].n0].incident++;
			NodeList[FiberList[f].n1].incident++;
		}
	}

public:
	vector<Fiber> FiberList;
	vector<Node> NodeList;
	point3D<float> min_pos;
	point3D<float> max_pos;

	//constructors
	rtsFiberNetwork()
	{
		fiber_started = false;
		num_points = false;
		cull_value = 1.0;
		min_pos = point3D<float>(9999, 9999, 9999);
		max_pos = point3D<float>(-9999, -9999, -9999);
	}

	//get functions
	point3D<float> getNodeCoord(int node){return NodeList[node].p;}
	point3D<float> getNodeCoord(int fiber, bool node);
	point3D<float> getFiberPoint(unsigned int fiber, unsigned int point);

	//network culling
	float getCullValue(){return cull_value;}
	void setCullValue(float cull){cull_value = cull;}
	bool isCulled(int f)
	{
		if(FiberList[f].error <= cull_value)
			return false;
		else return true;
	}

	//statistics functions
	double getTotalLength();
	double getFiberLength(int f)
	{
		return FiberList[f].length;
	}



	//drawing functions
	void StartFiber(float x, float y, float z)
	{
		fiber_started = true;
		num_points = 1;

		//create a start node and an end node
		Node n;
		n.p = point3D<float>(x, y, z);
		NodeList.push_back(n);
		NodeList.push_back(n);

		//create a fiber
		Fiber f;
		f.n0 = NodeList.size()-2;
		f.n1 = NodeList.size()-1;
		FiberList.push_back(f);

	}
	void StartFiber(int node)
	{
		fiber_started = true;
		num_points = 1;

		//the start node is specified
		//specify the end node
		Node n = NodeList[node];
		NodeList.push_back(n);

		//create a fiber
		Fiber f;
		f.n0 = node;
		f.n1 = NodeList.size()-1;
		FiberList.push_back(f);
	}

	void ContinueFiber(float x, float y, float z)
	{
 		if(!fiber_started)
		{
			StartFiber(x, y, z);
			return;
		}
		num_points++;

		//store the last node coordinate in the fiber list
		int f = FiberList.size() - 1;
		int n = NodeList.size() - 1;

		if(num_points > 2)
			FiberList[f].pointList.push_back(NodeList[n].p);
		NodeList[n].p = point3D<float>(x, y, z);
		//NodeList[n].p.print();
		//cout<<endl;
	}

	void EndFiber()
	{
		fiber_started = false;
	}
	void StartBranch(int node)
	{

		num_points = 1;
		fiber_started = true;

		//create an end node only
		Fiber f;
		f.n0 = node;

		Node n = NodeList[node];
		NodeList.push_back(n);


		f.n1 = NodeList.size()-1;
		FiberList.push_back(f);

	}

	void EndBranch(int node)
	{
		int n = NodeList.size() - 1;
		int f = FiberList.size() - 1;

		//store the current node position in the fiber list
		FiberList[f].pointList.push_back(NodeList[n].p);

		//set the picked node as the fiber destination
		FiberList[f].n1 = node;

		//remove the final node (now not used)
		NodeList.pop_back();

		fiber_started = false;
	}

	void ConnectFiber(unsigned int node)
	{
		if(!fiber_started)
		{
			StartFiber(node);
			return;
		}
		if(node >= NodeList.size() - 1)
			return;

		int f = FiberList.size() - 1;

		//add the last point
		FiberList[f].pointList.push_back(NodeList[FiberList[f].n1].p);

		//attach to the specified node
		FiberList[f].n1 = node;
		NodeList.pop_back();
		fiber_started = false;
	}
	void StartFiber(point3D<float> p){StartFiber(p.x, p.y, p.z);}
	void ContinueFiber(point3D<float> p){ContinueFiber(p.x, p.y, p.z);}

	void Clear()
	{
		FiberList.clear();
		NodeList.clear();
		fiber_started = false;
	}

	//loading functions
	void MergeNodes(float sigma)
	{
		//create a KD tree for all nodes in the network
		//get the number of vertices in GT
		int verts = NodeList.size();
		//allocate enough space in an ANN array
		ANNpointArray dataPts = annAllocPts(verts, 3);

		//insert the positions into the ANN list
		for(int v=0; v<verts; v++)
		{
			dataPts[v][0] = NodeList[v].p.x;
			dataPts[v][1] = NodeList[v].p.y;
			dataPts[v][2] = NodeList[v].p.z;
		}
		//build the KD tree
		ANNkd_tree* kdTree;
		kdTree = new ANNkd_tree(dataPts, verts, 3);

		//create a map
		vector<int> NodeMap;
		NodeMap.resize(NodeList.size(), -1);

		ANNpoint queryPt = annAllocPt(3);
		ANNidxArray nearestIdx = new ANNidx[1];
		ANNdistArray nearestDist = new ANNdist[1];

		for(unsigned int n=0; n<NodeList.size(); n++)
		{
			queryPt[0] = NodeList[n].p.x;
			queryPt[1] = NodeList[n].p.y;
			queryPt[2] = NodeList[n].p.z;
			//perform the 1-NN search
			kdTree->annkSearch(queryPt, 1, nearestIdx, nearestDist);

			NodeMap[n] = nearestIdx[0];
		}

		//set the nodes for each fiber to those mapped
		for(unsigned int f=0; f<FiberList.size(); f++)
		{
			FiberList[f].n0 = NodeMap[FiberList[f].n0];
			FiberList[f].n1 = NodeMap[FiberList[f].n1];
		}

		RemoveExcessNodes();
		refreshIncidence();
	}
	void RemoveExcessNodes()
	{
		vector<int> NodeMap;
		NodeMap.resize(NodeList.size(), -1);
		vector<int> FiberNum;
		FiberNum.resize(NodeList.size(), 0);

		vector<Node> newNodeList;

		//run through each fiber
		int node;
		for(unsigned int f=0; f<FiberList.size(); f++)
		{
			node = FiberList[f].n0;
			//if this node has not been encountered
			if(NodeMap[node] == -1)
			{
				NodeMap[node] = newNodeList.size();
				FiberList[f].n0 = NodeMap[node];
				newNodeList.push_back(NodeList[node]);

				FiberNum[node]++;
			}
			else
			{
				FiberList[f].n0 = NodeMap[node];

				FiberNum[node]++;
			}

			node = FiberList[f].n1;
			if(NodeMap[node] == -1)
			{
				NodeMap[node] = newNodeList.size();
				FiberList[f].n1 = NodeMap[node];
				newNodeList.push_back(NodeList[node]);

				FiberNum[node]++;
			}
			else
			{
				FiberList[f].n1 = NodeMap[node];

				FiberNum[node]++;
			}
		}

		NodeList = newNodeList;
	}
	void LoadSWC(string filename)
	{
		//open the file
		ifstream infile;
		infile.open(filename.c_str());
		if(!infile)
			exit(1);

		//variables to read
		int id, type, parent;
		int prev_id = 0;
		float x, y, z, r;

		vector<int> branchIDList;
		vector<int> correspondingNodeList;

		vector<int>::iterator iter;
		int index;

		char c;
		//first pass, get branch points and find bounds
		while(!infile.eof())
		{
			c = infile.peek();
			if((c <'0' || c > '9') && c != 32)
				infile.ignore(9999, '\n');
			else
			{
				infile>>id;
				infile>>type;
				infile>>x;
				infile>>y;
				infile>>z;
				infile>>r;
				infile>>parent;


				//root nodes and branch nodes
				if(parent != id-1 && parent != -1)
					branchIDList.push_back(parent);
				if(x < min_pos.x) min_pos.x = x;
				if(y < min_pos.y) min_pos.y = y;
				if(z < min_pos.z) min_pos.z = z;
				if(x > max_pos.x) max_pos.x = x;
				if(y > max_pos.y) max_pos.y = y;
				if(z > max_pos.z) max_pos.z = z;
			}
		}//end while
		//sort the branch points
		sort(branchIDList.begin(), branchIDList.end());
		//set the number of corresponding nodes
		correspondingNodeList.resize(branchIDList.size());

		//second pass, build the tree
		infile.close();
		infile.clear();
		infile.open(filename.c_str());
		while(!infile.eof())
		{
			c = infile.peek();
			if((c <'0' || c > '9') && c != 32)
				infile.ignore(9999, '\n');
			else
			{
				infile>>id;
				infile>>type;
				infile>>x;
				infile>>y;
				infile>>z;
				infile>>r;
				infile>>parent;


				//if we are starting a new fiber
				if(parent == -1)
					StartFiber(x, y, z);
				else
				{
					//see if the parent is in the branch list
					iter = find(branchIDList.begin(), branchIDList.end(), parent);
					//if the parent point is a branch point
					if(iter != branchIDList.end())
					{
						index = iter - branchIDList.begin();
						StartBranch(correspondingNodeList[index]);
						ContinueFiber(x, y, z);
					}
					else
						ContinueFiber(x, y, z);
				}
				//if the current node is in the branch list
				iter = find(branchIDList.begin(), branchIDList.end(), id);
				if(iter != branchIDList.end())
				{
					//get the id and store the corresponding node value
					index = iter - branchIDList.begin();
					correspondingNodeList[index] = NodeList.size()-1;
				}
			}
		}//end while
		refreshFiberLengths();
		refreshIncidence();

	}

	void LoadOBJ(string filename)
	{
		//first load the OBJ file
		rtsOBJ objFile;
		objFile.LoadFile(filename.c_str());

		/*Create two lists. Each element represents a point in the OBJ file.  We will
		first go through each fiber (line) and find the vertex associated with the two ends of the fiber.
		The validList value is "true" if the associated point in the OBJ file is a junction.  It is "false"
		if the point is just an intermediate point on a fiber. The pointList value stores the new value of the junction
		in the NodeList of this FiberNetwork structure.*/

		vector<bool> validList;
		validList.assign(objFile.v_list.size(), false);
		vector<unsigned int> pointList;
		pointList.assign(objFile.v_list.size(), 0);

		/*Run through each fiber:
		1) See if each fiber node has already been created by looking at validList (true = created)
		2) If the node has not been created, create it and set validList to true and pointList to the node index in this structure.
		3) Create an empty fiber with the appropriate node values assigned.*/
		unsigned int f;
		unsigned int line_verts;
		unsigned int v0, vn;
		Node node_new;
		for(f=0; f<objFile.getNumLines(); f++)
		{
			//find out how many vertices there are in the line
			line_verts = objFile.getNumLineVertices(f);
			v0 = objFile.getLineVertex(f, 0);
			vn = objFile.getLineVertex(f, line_verts - 1);

			//if the nodes don't exist, create them
			if(!validList[v0])
			{
				node_new.p = objFile.getVertex3d(v0);
				pointList[v0] = NodeList.size();
				NodeList.push_back(node_new);
				validList[v0] = true;
			}
			if(!validList[vn])
			{
				node_new.p = objFile.getVertex3d(vn);
				pointList[vn] = NodeList.size();
				NodeList.push_back(node_new);
				validList[vn] = true;
			}
			//create the new fiber
			Fiber fiber_new;
			fiber_new.n0 = pointList[v0];
			fiber_new.n1 = pointList[vn];

			//get all of the intermediate line vertices and insert them in the fiber
			for(unsigned int i=1; i<line_verts-1; i++)
			{
				fiber_new.pointList.push_back(objFile.getVertex3d(objFile.getLineVertex(f, i)));
				//fiber_new.pointList.push_back(objFile.get
			}
			FiberList.push_back(fiber_new);
		}

		RemoveExcessNodes();

		ComputeBoundingVolume();
		refreshFiberLengths();
		refreshIncidence();

	}
	void LoadFile(string filename)
	{
		rtsFilename file = filename;
		string extension = file.getExtension();
		if(extension.compare("obj") == 0)
			LoadOBJ(filename);
		else if(extension.compare("swc") == 0)
			LoadSWC(filename);

	}


	//saving functions
	void SaveOBJ(string filename)
	{
		ofstream outfile;
		outfile.open(filename.c_str());

		//output all vertices

		//first output all nodes
		for(unsigned int n=0; n<NodeList.size(); n++)
			outfile<<"v "<<NodeList[n].p.x<<" "<<NodeList[n].p.y<<" "<<NodeList[n].p.z<<endl;
		//then output all fiber points
		for(unsigned int f=0; f<FiberList.size(); f++)
			for(unsigned int p=0; p<FiberList[f].pointList.size(); p++)
				outfile<<"v "<<FiberList[f].pointList[p].x<<" "<<FiberList[f].pointList[p].y<<" "<<FiberList[f].pointList[p].z<<endl;

		//now output each of the fibers
		int i = NodeList.size() + 1;
		for(unsigned int f=0; f<FiberList.size(); f++)
		{
			outfile<<"l ";
			outfile<<FiberList[f].n0+1<<" ";
			for(unsigned int p=0; p<FiberList[f].pointList.size(); p++)
			{
				outfile<<i<<" ";
				i++;
			}
			outfile<<FiberList[f].n1+1;
			outfile<<endl;
		}

		outfile.close();

	}

	//transform functions
	void Translate(float x, float y, float z);
	void Translate(point3D<float> p){Translate(p.x, p.y, p.z);}

	void Oscillate(float frequency, float magnitude)
	{
		//impliment a sinusoidal oscillation along each fiber
		vector3D<float> side(0.0, 0.0, 1.0);
		vector3D<float> dir, normal;
		point3D<float> p0, p1;
		float t;

		//for each fiber
		for(unsigned int f=0; f<FiberList.size(); f++)
		{
			p0 = NodeList[FiberList[f].n0].p;
			t=0.0;

			num_points = FiberList[f].pointList.size();
			for(unsigned int p = 0; p<num_points; p++)
			{
				p1 = FiberList[f].pointList[p];
				dir = p0 - p1;
				t+= dir.Length();
				normal = dir.X(side);
				normal.Normalize();
				FiberList[f].pointList[p] = FiberList[f].pointList[p] + magnitude*sin(t*frequency)*normal;

				p0 = p1;
			}


		}

	}

	void Crop(float px, float py, float pz, float sx, float sy, float sz)
	{
		vector<Fiber> newFiberList;
		for(unsigned int f=0; f<FiberList.size(); f++)
		{
			int n0 = FiberList[f].n0;
			int n1 = FiberList[f].n1;
			point3D<float> p0 = NodeList[n0].p;
			point3D<float> p1 = NodeList[n1].p;

			if(p0.x > px && p0.y > py && p0.z > pz &&
			   p1.x > px && p1.y > py && p1.z > pz &&
			   p0.x < px+sx && p0.y < py+sy && p0.z < pz+sz &&
			   p1.x < px+sx && p1.y < py+sy && p1.z < pz+sz)
			{
				newFiberList.push_back(FiberList[f]);
			}
		}
		FiberList.clear();
		FiberList = newFiberList;
		RemoveExcessNodes();
		ComputeBoundingVolume();
	}
	void ThresholdLength(float min_length, float max_length = 99999)
	{
		vector<Fiber> newFiberList;
		refreshFiberLengths();
		for(unsigned int f=0; f<FiberList.size(); f++)
		{
			if(FiberList[f].length > min_length && FiberList[f].length < max_length)
			{
				newFiberList.push_back(FiberList[f]);
			}
		}
		FiberList.clear();
		FiberList = newFiberList;
		RemoveExcessNodes();
		ComputeBoundingVolume();
	}
	void ThresholdSpines(float min_length)
	{
		vector<Fiber> newFiberList;
		refreshIncidence();
		refreshFiberLengths();
		for(unsigned int f=0; f<FiberList.size(); f++)
		{
			if(FiberList[f].length > min_length || (NodeList[FiberList[f].n0].incident > 1 && NodeList[FiberList[f].n1].incident > 1))
			{
				newFiberList.push_back(FiberList[f]);
			}
		}
		FiberList.clear();
		FiberList = newFiberList;
		RemoveExcessNodes();
		ComputeBoundingVolume();

	}
	//subdivision
	void SubdivideNetwork(float spacing)
	{
		list<point3D<float> > subdivided;
		list<point3D<float> >::iterator p;
		for(unsigned int f=0; f<FiberList.size(); f++)
		{
			//get the subdivided fiber
			subdivided.clear();
			subdivided = SubdivideFiber(f, spacing);

			//clean up the current fiber
			FiberList[f].pointList.clear();
			//copy the subdivided fiber into the current fiber point list
			for(p = subdivided.begin(); p!=subdivided.end(); p++)
				FiberList[f].pointList.push_back(*p);

		}


	}

	void Resample(float spacing)
	{
		point3D<float> p0, p1;
		vector<point3D<float> > newPointList;
		for(unsigned int f=0; f<FiberList.size(); f++)
		{
			newPointList.clear();
			p0 = NodeList[FiberList[f].n0].p;
			for(unsigned int p=0; p<FiberList[f].pointList.size(); p++)
			{
				p1 = FiberList[f].pointList[p];
				if( (p1 - p0).Length() >= spacing )
				{
					newPointList.push_back(p1);
				}
			}
			FiberList[f].pointList = newPointList;
		}
	}
	//network comparison
	CoreGraphList CompareNetworks(rtsFiberNetwork* testNetwork, float sigmaG, float sigmaC, float &gFPR, float &gFNR, float &cFPR, float &cFNR)
	{
		//create point clouds that densely sample each network
		vector<geometryPoint> netPointList0, netPointList1;
		netPointList0 = getNetPointSamples(sigmaG);
		netPointList1 = testNetwork->getNetPointSamples(sigmaG);

		//compute the L1 distance between vertices in one network to the point cloud representing the other network
		KD_ComputeEnvelopeDistance(testNetwork, &netPointList0, sigmaG);
		KD_ComputeEnvelopeDistance(this, &netPointList1, sigmaG);

		//compute the geometry metric using the distance values for each vertex
		//float FPR, FNR;
		gFNR = GeometryMetric(this, sigmaG);
		gFPR = GeometryMetric(testNetwork, sigmaG);

		CoreGraphList core;
		core = NEW_ComputeTopology(testNetwork, sigmaC);

		//Changes made by James Burck (Thanks James!)--------
		float TP = (float)core.size();

		float TPandFP = (float)FiberList.size();      // formerly P, actaully TPandFN
		float TPandFN = (float)testNetwork->FiberList.size();   // actually TPandFP

		cFNR = (TPandFN - TP) / TPandFN;
		cFPR = (TPandFP - TP) / TPandFP;
		//---------------------------------------------------

		return core;
	}


};

void rtsFiberNetwork::initTopologyGraph(vector<topologyNode>* Nodes, vector<topologyEdge>* Edges, rtsFiberNetwork* network)
{
	/*This function constructs a graph based on the given network.*/
	Nodes->clear();
	Edges->clear();

	topologyNode node;
	topologyEdge edge;
	//for each node in the fiber network, construct a topologyNode
	for(unsigned int n=0; n<network->NodeList.size(); n++)
	{
		node.compatible = 0;
		node.label = RTS_TOPOLOGY_NODE_INVALID;
		node.p = network->NodeList[n].p;
		Nodes->push_back(node);
	}

	//now fill in all the edges
	for(unsigned int f=0; f<network->FiberList.size(); f++)
	{
		edge.n0 = network->FiberList[f].n0;
		edge.error = network->FiberList[f].error;
		edge.n1 = network->FiberList[f].n1;
		edge.label = RTS_TOPOLOGY_EDGE_EXIST;

		//attach the edge to each connected node in the node list
		(*Nodes)[edge.n0].connections.push_back(Edges->size());
		(*Nodes)[edge.n1].connections.push_back(Edges->size());

		//insert the edge into the list
		Edges->push_back(edge);
	}

}

void rtsFiberNetwork::BF_ComputeL1Distance(vector<geometryPoint>* N0, vector<geometryPoint>*N1)
{
	unsigned int i, j;
	vector3D<float> v;
	float dist;
	for(i=0; i<N0->size(); i++)
	{
		for(j=0; j<N1->size(); j++)
		{
			v = (*N0)[i].p - (*N1)[j].p;
			dist = v.Length();
			if(dist < (*N0)[i].dist)
				(*N0)[i].dist = dist;
			if(dist < (*N1)[j].dist)
				(*N1)[j].dist = dist;
		}
	}
}

void rtsFiberNetwork::BD_ComputeL1Distance(vector<geometryPoint>* N0, vector<geometryPoint>*N1)
{
	//build the point arrays
	ANNpointArray dataPts0 = annAllocPts(N0->size(), 3);
	for(unsigned int i=0; i<N0->size(); i++)
	{
		dataPts0[i][0] = (*N0)[i].p.x;
		dataPts0[i][1] = (*N0)[i].p.y;
		dataPts0[i][2] = (*N0)[i].p.z;
	}
	ANNpointArray dataPts1 = annAllocPts(N1->size(), 3);
	for(unsigned int i=0; i<N1->size(); i++)
	{
		dataPts1[i][0] = (*N1)[i].p.x;
		dataPts1[i][1] = (*N1)[i].p.y;
		dataPts1[i][2] = (*N1)[i].p.z;
	}

	//create ANN variables
	ANNbd_tree* bdTree;
	ANNpoint queryPt = annAllocPt(3);
	ANNidxArray nearestIdx = new ANNidx[1];
	ANNdistArray nearestDist = new ANNdist[1];

	//compare network 0 to network 1
	//bdTree = new ANNkd_tree(dataPts0, N0->size(), 3);
	bdTree = new ANNbd_tree(dataPts0, N0->size(), 3);
	for(unsigned int i=0; i<N1->size(); i++)
	{
		queryPt[0] = (*N1)[i].p.x;
		queryPt[1] = (*N1)[i].p.y;
		queryPt[2] = (*N1)[i].p.z;
		bdTree->annkSearch(queryPt, 1, nearestIdx, nearestDist);
		(*N1)[i].dist = sqrtf((float)nearestDist[0]);
	}
	delete bdTree;

	//compare network 1 to network 0
	bdTree = new ANNbd_tree(dataPts1, N1->size(), 3);
	for(unsigned int i=0; i<N1->size(); i++)
	{
		queryPt[0] = (*N0)[i].p.x;
		queryPt[1] = (*N0)[i].p.y;
		queryPt[2] = (*N0)[i].p.z;
		bdTree->annkSearch(queryPt, 1, nearestIdx, nearestDist);
		(*N0)[i].dist = sqrtf((float)nearestDist[0]);
	}
	delete bdTree;

	annClose();
}

void rtsFiberNetwork::MapDeviationToNetwork(vector<geometryPoint>* source)
{


}

void rtsFiberNetwork::topLabelNodes(vector<topologyNode>* N0, vector<topologyNode>* N1, float sigma)
{
	unsigned int i0, i1;
	vector3D<float> v;
	float min_d;
	unsigned int min_i;
	for(i0=0; i0 < N0->size(); i0++)
	{
		v = (*N0)[i0].p - (*N1)[0].p;
		min_d = v.Length();
		min_i = 0;
		for(i1=0; i1 < N1->size(); i1++)
		{
			v = (*N0)[i0].p - (*N1)[i1].p;
			if(v.Length() < min_d)
			{
				min_d = v.Length();
				min_i = i1;
			}
		}
		//if the minimum distance from point i0 is less than sigma
		if(min_d < sigma)
		{
			(*N0)[i0].label = RTS_TOPOLOGY_NODE_VALID;
			(*N0)[i0].compatible = min_i;
		}
	}
}

bool rtsFiberNetwork::topDetectEdge(vector<topologyNode>* NodeList, vector<topologyEdge>* EdgeList, unsigned int node0, unsigned int node1)
{
	//This function determines if there is an edge linking node0 and node1
	list<unsigned int>::iterator i;
	for(i = (*NodeList)[node0].connections.begin(); i!=(*NodeList)[node0].connections.end(); i++)
	{
		if( ((*EdgeList)[*i].n0 == node0 && (*EdgeList)[*i].n1 == node1) ||
			((*EdgeList)[*i].n0 == node1 && (*EdgeList)[*i].n1 == node0) )
			return true;
	}
	return false;
}
bool rtsFiberNetwork::topDeleteEdge(vector<topologyNode>* NodeList, vector<topologyEdge>* EdgeList, unsigned int node0, unsigned int node1)
{
	//this function deletes the first edge found linking node0 and node1
	list<unsigned int>::iterator i;
	unsigned int edge_id;
	for(i = (*NodeList)[node0].connections.begin(); i!=(*NodeList)[node0].connections.end(); i++)
	{
		if( (*EdgeList)[*i].n0 == node1 || (*EdgeList)[*i].n1 == node1 )
		{
			//delete the edge

			edge_id = *i;
			//remove the edge from node0 and node1
			(*NodeList)[node0].connections.remove(edge_id);
			(*NodeList)[node1].connections.remove(edge_id);
			//remove the edge
			(*EdgeList)[edge_id].label = RTS_TOPOLOGY_EDGE_NOEXIST;
			return true;
		}
	}
	return false;

}
bool rtsFiberNetwork::topMergeNode(vector<topologyNode>* NodeList, vector<topologyEdge>* EdgeList, unsigned int node)
{
	/*this function merges a specific node with it's neighbor based on the following rules:
	1) If the node is invalid, remove adjacent edge with the highest error
	2) If the node is valid, merge with adjacent compatible node, removing the edge with the largest error
	*/

	//if the node doesn't exist, just return.
	if( (*NodeList)[node].label == RTS_TOPOLOGY_NODE_NOEXIST) return false;
	//if this node isn't connected to anything, just remove the node
	if( (*NodeList)[node].connections.size() == 0)
	{
		(*NodeList)[node].label = RTS_TOPOLOGY_NODE_NOEXIST;
		return false;
	}

	//FIND THE DESTINATION NODE
	//create the destination node
	unsigned int edge_to_remove;

	//if the node is invalid, find the edge with the highest error
	if( (*NodeList)[node].label == RTS_TOPOLOGY_NODE_INVALID)
	{
		list<unsigned int>::iterator i;
		float highest_error = 0.0;
		for(i=(*NodeList)[node].connections.begin(); i!=(*NodeList)[node].connections.end(); i++)
		{
			//if the current edge has a higher error, record it
			if((*EdgeList)[(*i)].error >= highest_error)
			{
				highest_error = (*EdgeList)[(*i)].error;
				edge_to_remove = (*i);
			}
		}
	}

	//if the node is valid, find the compatible edge with the highest error
	if( (*NodeList)[node].label == RTS_TOPOLOGY_NODE_VALID)
	{
		list<unsigned int>::iterator i;
		float highest_error = 0.0;
		bool compatible_detected = false;
		unsigned int node0, node1;
		for(i=(*NodeList)[node].connections.begin(); i!=(*NodeList)[node].connections.end(); i++)
		{
			node0 = (*EdgeList)[(*i)].n0;
			node1 = (*EdgeList)[(*i)].n1;
			//find a compatible edge with the highest weight
			if((*NodeList)[node0].label == RTS_TOPOLOGY_NODE_VALID && (*NodeList)[node1].label == RTS_TOPOLOGY_NODE_VALID &&
				(*NodeList)[node0].compatible == (*NodeList)[node1].compatible && (*EdgeList)[(*i)].error >= highest_error)
			{
				highest_error = (*EdgeList)[(*i)].error;
				edge_to_remove = (*i);
				compatible_detected = true;
			}
		}
		//if a compatible node was not attached, just leave the node and return
		if(!compatible_detected) return false;
	}

	//PERFORM THE MERGE

	//find the node that we are merging to
	unsigned int merge_to;
	if((*EdgeList)[edge_to_remove].n0 == node)
		merge_to = (*EdgeList)[edge_to_remove].n1;
	else
		merge_to = (*EdgeList)[edge_to_remove].n0;

	list<unsigned int>::iterator i;
	//remove the edge from 'node'
	for(i = (*NodeList)[node].connections.begin(); i!=(*NodeList)[node].connections.end(); i++)
		if((*i) == edge_to_remove)
		{
			(*NodeList)[node].connections.erase(i);
			break;
		}
	//remove the edge from 'merge_to'
	for(i = (*NodeList)[merge_to].connections.begin(); i!=(*NodeList)[merge_to].connections.end(); i++)
		if((*i) == edge_to_remove)
		{
			(*NodeList)[merge_to].connections.erase(i);
			break;
		}

	//update all of the edges connected to 'node'
	for(i = (*NodeList)[node].connections.begin(); i!=(*NodeList)[node].connections.end(); i++)
	{
		if((*EdgeList)[(*i)].n0 == node)
			(*EdgeList)[(*i)].n0 = merge_to;
		else
			(*EdgeList)[(*i)].n1 = merge_to;
	}
	//add all edges in 'node' to the edges in 'merge_to'
	for(i = (*NodeList)[node].connections.begin(); i!=(*NodeList)[node].connections.end(); i++)
	{
		(*NodeList)[merge_to].connections.push_back( (*i) );
	}
	//sort the list and remove duplicates
	//duplicates occur if two merged points were connected by multiple edges
	(*NodeList)[merge_to].connections.sort();
	(*NodeList)[merge_to].connections.unique();

	//get rid of 'node'
	(*NodeList)[node].connections.clear();
	(*NodeList)[node].label = RTS_TOPOLOGY_NODE_NOEXIST;

	//remove the edge
	(*EdgeList)[edge_to_remove].label = RTS_TOPOLOGY_EDGE_NOEXIST;
	return true;
}
int rtsFiberNetwork::topCollapse(vector<topologyNode>* NodeList, vector<topologyEdge>*EdgeList)
{
	unsigned int n;
	unsigned int topology_changes = 0;
	unsigned int num_connections;
	bool node_merged = false;
	for(n=0; n<NodeList->size(); n++)
	{
		//if this node is the end of a barb, mark it as a topology change
		num_connections = (*NodeList)[n].connections.size();
		node_merged = topMergeNode(NodeList, EdgeList, n);
		if(num_connections == 1 && node_merged == true)
			topology_changes++;

	}

	return topology_changes;
}
void rtsFiberNetwork::MY_ComputeTopology(rtsFiberNetwork* testNetwork, float sigma)
{
	//initialize the topology graphs
	vector<topologyNode> GT_nodes;
	vector<topologyEdge> GT_edges;
	initTopologyGraph(&GT_nodes, &GT_edges, this);
	vector<topologyNode> T_nodes;
	vector<topologyEdge> T_edges;
	initTopologyGraph(&T_nodes, &T_edges, testNetwork);

	//label the nodes in each list as VALID or INVALID
	//this function also determines node compatibility in the Test array
	topLabelNodes(&GT_nodes, &T_nodes, sigma);
	topLabelNodes(&T_nodes, &GT_nodes, sigma);

	//copy the error to the fiber networks
	for(unsigned int i=0; i<T_nodes.size(); i++)
	{
		if(T_nodes[i].label == RTS_TOPOLOGY_NODE_VALID)
			testNetwork->NodeList[i].error = 0.0;
		else
			testNetwork->NodeList[i].error = 1.0;
	}
	for(unsigned int i=0; i<GT_nodes.size(); i++)
	{
		if(GT_nodes[i].label == RTS_TOPOLOGY_NODE_VALID)
			this->NodeList[i].error = 0.0;
		else
			this->NodeList[i].error = 1.0;
	}

	unsigned int FP_edges = topCollapse(&T_nodes, &T_edges);
	unsigned int FN_edges = topCollapse(&GT_nodes, &GT_edges);

	//mark all the nodes in T as invalid again
	//this will be used to compute topological errors
	unsigned int n;
	for(n=0; n<T_nodes.size(); n++)
	{
		T_nodes[n].label = RTS_TOPOLOGY_NODE_INVALID;
	}

	//for each edge in T
	unsigned int e;
	for(e=0; e<T_edges.size(); e++)
	{
		//if the edge exists in T
		if(T_edges[e].label == RTS_TOPOLOGY_EDGE_EXIST)
		{
			//if the the edge exists in GT
			if(topDetectEdge(&GT_nodes, &GT_edges, T_nodes[T_edges[e].n0].compatible, T_nodes[T_edges[e].n1].compatible))
			{
				//set both nodes to valid, in order to detect topological errors
				T_nodes[T_edges[e].n0].label = RTS_TOPOLOGY_NODE_VALID;
				T_nodes[T_edges[e].n1].label = RTS_TOPOLOGY_NODE_VALID;
				//delete the edge in GT
				topDeleteEdge(&GT_nodes, &GT_edges, T_nodes[T_edges[e].n0].compatible, T_nodes[T_edges[e].n1].compatible);
			}
			else
				FP_edges++;
		}
	}

	//run through all edges in GT
	//for each edge that still exists, increment the FN_edges counter
	for(e=0; e<GT_edges.size(); e++)
	{
		if(GT_edges[e].label == RTS_TOPOLOGY_EDGE_EXIST)
			FN_edges++;
	}

	//find topological errors
	//these are nodes that are valid AND are duplicates
	list<unsigned int> validPoints;
	for(n=0; n<T_nodes.size(); n++)
		if(T_nodes[n].label == RTS_TOPOLOGY_NODE_VALID)
			validPoints.push_back(T_nodes[n].compatible);
	validPoints.sort();
	list<unsigned int>::iterator i;
	unsigned int last;
	unsigned int topErrors = 0;
	for(i = validPoints.begin(); i != validPoints.end(); i++)
	{
		if(i != validPoints.begin())
			if(*i == last)
				topErrors++;
		last = *i;
	}



	cout<<"False Positive Edges: "<<FP_edges<<endl;
	cout<<"False Negative Edges: "<<FN_edges<<endl;
	cout<<"Topological Errors: "<<topErrors<<endl;


}
TopologyGraph rtsFiberNetwork::BOOST_RemapGraph(TopologyGraph& G, rtsFiberNetwork* network)
{
	//create the graph
	TopologyGraph result(network->NodeList.size());

	//add all edges in G to result (based on compatibility (original index), NOT current index)
	graph_traits<TopologyGraph>::edge_iterator ei, ei_end;
	graph_traits<TopologyGraph>::vertex_descriptor v0, v1;
	int idx0, idx1;
	for(boost::tuples::tie(ei, ei_end) = edges(G); ei != ei_end; ei++)
	{
		v0 = source(*ei, G);
		v1 = target(*ei, G);
		idx0 = get(vertex_color_t(), G, v0);
		idx1 = get(vertex_color_t(), G, v1);
		add_edge(idx0, idx1, result);
	}
	return result;

}
point3D<float> rtsFiberNetwork::getNodeCoord(int fiber, bool node)
{
	//Return the node coordinate based on a fiber (edge)
	//node value is false = source, true = dest

	if(node)
		return getNodeCoord(FiberList[fiber].n1);
	else
		return getNodeCoord(FiberList[fiber].n0);

}

double rtsFiberNetwork::getTotalLength()
{
	//go through each fiber and measure the length
	int num_fibers = FiberList.size();
	double length = 0.0;
	int f;
	for(f=0; f<num_fibers; f++)
		length += getFiberLength(f);
	return length;
}
point3D<float> rtsFiberNetwork::getFiberPoint(unsigned int fiber, unsigned int point)
{
	if(point == 0)
		return NodeList[FiberList[fiber].n0].p;
	if(point == FiberList[fiber].pointList.size() + 1)
		return NodeList[FiberList[fiber].n1].p;

	return FiberList[fiber].pointList[point-1];

}

void rtsFiberNetwork::ComputeBoundingVolume()
{
	//find the bounding volume for the nodes
	min_pos = NodeList[0].p;
	max_pos = NodeList[0].p;
	for(unsigned int n=0; n<NodeList.size(); n++)
	{
		if(NodeList[n].p.x < min_pos.x)
			min_pos.x = NodeList[n].p.x;
		if(NodeList[n].p.y < min_pos.y)
			min_pos.y = NodeList[n].p.y;
		if(NodeList[n].p.z < min_pos.z)
			min_pos.z = NodeList[n].p.z;

		if(NodeList[n].p.x > max_pos.x)
			max_pos.x = NodeList[n].p.x;
		if(NodeList[n].p.y > max_pos.y)
			max_pos.y = NodeList[n].p.y;
		if(NodeList[n].p.z > max_pos.z)
			max_pos.z = NodeList[n].p.z;
	}

	//combine with the bounding volume for the fibers
	for(unsigned int f=0; f<FiberList.size(); f++)
	{
		for(unsigned int p=0; p<FiberList[f].pointList.size(); p++)
		{
			if(FiberList[f].pointList[p].x < min_pos.x)
				min_pos.x = FiberList[f].pointList[p].x;
			if(FiberList[f].pointList[p].y < min_pos.y)
				min_pos.y = FiberList[f].pointList[p].y;
			if(FiberList[f].pointList[p].z < min_pos.z)
				min_pos.z = FiberList[f].pointList[p].z;

			if(FiberList[f].pointList[p].x > max_pos.x)
				max_pos.x = FiberList[f].pointList[p].x;
			if(FiberList[f].pointList[p].y > max_pos.y)
				max_pos.y = FiberList[f].pointList[p].y;
			if(FiberList[f].pointList[p].z > max_pos.z)
				max_pos.z = FiberList[f].pointList[p].z;
		}
	}

}
void rtsFiberNetwork::Translate(float x, float y, float z)
{
	//translates the network while maintaining all connectivity

	//create a translation vector
	vector3D<float> translate(x, y, z);

	//translate all nodes
	int num_nodes = NodeList.size();
	int n;
	for(n=0; n<num_nodes; n++)
		NodeList[n].p = NodeList[n].p + translate;

	int num_fibers = FiberList.size();
	int num_points;
	int f, p;
	for(f=0; f<num_fibers; f++)
	{
		num_points = FiberList[f].pointList.size();
		for(p=0; p<num_points; p++)
			FiberList[f].pointList[p] = FiberList[f].pointList[p] + translate;
	}

	//translate the bounding box
	min_pos = min_pos + translate;
	max_pos = max_pos + translate;

}

#endif