ImplicitCalculations.h 11.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
#include <itkImage.h>
#include <itkImageFileWriter.h>
#include <rtsLinearAlgebra.h>
//#include "DrawingFunctions.h"
#include "rtsFiberNetwork.h"
#include <octree\octree.h>
#include <rts_itkVolume.h>
#include <rtsDTGrid3D.h>
#include <rtsDTGridFastSweeping.h>
#include <algorithm>

/***************************************************
New Stuff
***************************************************/
//networks for analysis
rtsFiberNetwork* goldNetwork;
rtsFiberNetwork* testNetwork;
rtsFiberNetwork* focusNetwork;


//Implicit network representations
rtsDTGrid3D<float>* goldGrid;
rtsDTGrid3D<float>* testGrid;
rtsDTGrid3D<float>* focusGrid;

//lexicographic lists, contains LexIDs for each sampled point as well as identifiers to the associated fiber
struct LexID
{
	unsigned long ID;
	unsigned int fiber;

	bool operator<(LexID &rhs)
	{
		if(ID < rhs.ID)
			return true;
		return false;
	}
	bool operator==(LexID &rhs)
	{
		if(ID == rhs.ID)
			return true;
		return false;
	}
};
list<LexID> goldLexList;
list<LexID> testLexList;

//standard deviation of the implicit envelope
float STD;

//Size of each grid voxel.  This value is defined in Network Space.
float VOXEL_SIZE;

//Theoretical size of the grid.  Used to compute the lexicographic identifiers.
vector3D<int> GRID_DIM;

//Transformation matrix that converts Network Space coordinates into Grid Space coordinates.
matrix4x4<float> toGRID;

//Dilation parameter describes the radius of the envelope around the network (in voxels)
int DILATION;

void ComputeGridProperties()
{
	/*Computes the following grid properties:
	VOXEL_SIZE = the size (along one side) of each voxel "bin"
	GRID_DIM = the theoretical dimensions of the grid used to represent the network
	toGRID = transformation used to convert a point on the network into "grid space"
	*/

	//pick a voxel size based on the standard daviation of the envelope that captures the shape of the Gaussian
	//lets say that a voxel is 1 standard-deviation wide
	VOXEL_SIZE = STD*1.0;
	//dilate the DT Grid to 3 standard deviations
	DILATION = (3.0*STD)/VOXEL_SIZE;
	

	//find the minimum and maximum points in both networks to get the theoretical grid size
	//find the bounding box for both networks
	point3D<float> net_min;
	net_min.x = min(goldNetwork->min_pos.x, testNetwork->min_pos.x);
	net_min.y = min(goldNetwork->min_pos.y, testNetwork->min_pos.y);
	net_min.z = min(goldNetwork->min_pos.z, testNetwork->min_pos.z);

	point3D<float> net_max;
	net_max.x = max(goldNetwork->max_pos.x, testNetwork->max_pos.x);
	net_max.y = max(goldNetwork->max_pos.y, testNetwork->max_pos.y);
	net_max.z = max(goldNetwork->max_pos.z, testNetwork->max_pos.z);

	//compute the spatial size of the network
	vector3D<float> net_size = net_max - net_min;

	//compute the theoretical size of the grid
	GRID_DIM.x = ceil(net_size.x / VOXEL_SIZE);
	GRID_DIM.y = ceil(net_size.y / VOXEL_SIZE);
	GRID_DIM.z = ceil(net_size.z / VOXEL_SIZE);

	//compute the transformation from Network Space to Grid Space
	matrix4x4<float> scale;
	scale. SetIdentity();
	scale.SetScale(1.0/VOXEL_SIZE, 1.0/VOXEL_SIZE, 1.0/VOXEL_SIZE);

	matrix4x4<float> trans;
	trans.SetIdentity();
	trans.SetTranslation(-net_min.x, -net_min.y, -net_min.z);

	toGRID.SetIdentity();
	toGRID = scale*trans;

	cout<<"Voxel Size: "<<VOXEL_SIZE<<endl;
	cout<<"Grid Dimensions: "<<GRID_DIM.x<<","<<GRID_DIM.y<<","<<GRID_DIM.z<<endl;
}

void RasterizeSegmentLex(int f, point3D<float> p0, point3D<float> p1, list<LexID>* destList)
{
	/*Resamples a segment and stores the resulting points as
	lexicographic values in LexicographicList.
	*/

	//transform the Network Space coordinates to Grid Space
	point3D<float> grid_p0 = toGRID*p0;
	point3D<float> grid_p1 = toGRID*p1;

	//find the direction of travel
	vector3D<float> v = grid_p1 - grid_p0;

	//set the step size to the voxel size
	int length = (int)v.Length();
	v.Normalize();

	//start at p0, continue until p1
	point3D<float> p = grid_p0;

	int l;
	LexID lex;

	
	for(l=0; l<=length; l++)
	{
		lex.ID = (unsigned long)p.x*GRID_DIM.y*GRID_DIM.z + (unsigned long)p.y*GRID_DIM.z + (unsigned long)p.z;
		lex.fiber = f;
		destList->push_back(lex);

		p = p + v;
	}
}

void RasterizeFiberLex(rtsFiberNetwork* sourceNet, int f, list<LexID>* destList)
{
	/*resamples a fiber f and stores the resulting points as
	lexicographic values in LexicographicList.
	*/

	int num_points = sourceNet->FiberList[f].pointList.size();
	int p;

	point3D<float> pos = sourceNet->getNodeCoord(f, 0);

	point3D<float> coord;
	for(p=0; p<num_points; p++)
	{
		coord = sourceNet->getFiberPoint(f, p);
		RasterizeSegmentLex(f, pos, coord, destList);
		pos = coord;
	}
	RasterizeSegmentLex(f, pos, sourceNet->getNodeCoord(f, 1), destList);
}

list<LexID> RasterizeNetworkLex(rtsFiberNetwork* sourceNet, rtsDTGrid3D<float>* destGrid)
{
	/*This function creates a list of points on the focus network
	and stores them in a list as a lexicographic point:
	lp = z*sx*sy + y*sx + x
	*/

	//create a list that stores Lexicographic identifiers
	list<LexID> LexicographicList;

	int num_fibers = sourceNet->FiberList.size();
	int f;
	for(f=0; f<num_fibers; f++)
		RasterizeFiberLex(sourceNet, f, &LexicographicList);

	LexicographicList.sort();
	LexicographicList.unique();
	//LexicographicList.reverse();

	//nonLexVolume.SaveVOL("nonlexico.vol");

	//save the points in the focus field
	point3D<unsigned long> p;
	list<LexID>::iterator i;
	unsigned long lexID;
	for(i=LexicographicList.begin(); i!=LexicographicList.end(); i++)
	{
		lexID = (*i).ID;
		p.x = (lexID)/(GRID_DIM.y*GRID_DIM.z);
		p.y = (lexID - p.x*GRID_DIM.y*GRID_DIM.z)/GRID_DIM.z;
		p.z = (lexID - p.x*GRID_DIM.y*GRID_DIM.z - p.y*GRID_DIM.z);
		//cout<<"Pushing ";
		//p.print();
		//focusField->set(p.x, p.y, p.z, 255);
		destGrid->push(p.x, p.y, p.z, 255);
		//p.print();

	}
	return LexicographicList;
}

void EvaluateDistanceField(rtsDTGrid3D<float>* initialField)
{
	
	initialField->background = 255;
	(*initialField) = 0;
	FastSweeping3D(initialField, DILATION, VOXEL_SIZE);

}

float Gaussian(float x, float std)
{
	float prefix = 1.0/sqrt(2.0*3.14159*std*std);
	float suffix = exp(-(x*x)/(2.0*std*std));
	return prefix*suffix;
}

void EvaluateGaussianEnvelope(rtsDTGrid3D<float>* distanceField)
{
	
	rtsDTGrid3D<float>::iterator i;
	float G;
	float zero_value = Gaussian(0.0, STD);
	for(i=distanceField->begin(); i!=distanceField->after(); i++)
	{
		G = Gaussian(i.Value(), STD);
		//normalize the gaussian
		G /= zero_value;
		//cout<<G<<endl;
		i.SetValue(G);
	}
	distanceField->background = 0.0;

}

rtsDTGrid3D<float> CalculateDifference(rtsDTGrid3D<float>* grid0, rtsDTGrid3D<float>* grid1)
{
	rtsDTGrid3D<float> result;
	result = (*grid0) - (*grid1);

	
	rts_itkVolume<float> testVolume;
	testVolume.InsertDTGrid(&result);
	testVolume.SaveVOL("rasterized.vol");
	cout<<"Size: "<<testVolume.DimX()<<","<<testVolume.DimY()<<","<<testVolume.DimZ()<<endl;
	cout<<"Raw Size: "<<testVolume.DimX()*testVolume.DimY()*testVolume.DimZ()<<endl;
	

	return result;
}


float ComparePoints(float gold_val, float test_val, float std_1)
{
	/*if(gold_val > std_1)
		test_val = 0.0;
	if(test_val > std_1)
		gold_val = 0.0;
	*/
	if(test_val > std_1 && gold_val > std_1)
		return 0.0;
	return gold_val - test_val;

}

rtsDTGrid3D<float> CompareGrids(rtsDTGrid3D<float>* goldGrid, rtsDTGrid3D<float>* testGrid)
{
	rtsDTGrid3D<float> result;
	//create an iterator for each DT Grid
	rtsDTGrid3D<float>::iterator gold_i = goldGrid->begin();
	rtsDTGrid3D<float>::iterator test_i = testGrid->begin();

	//compute the value at one standard deviation
	float std_1 = Gaussian(STD, STD);
	cout<<"Value at 1 STD: "<<std_1<<endl;
	//create a variable to store the result value
	float result_value;

	//iterate both until one iterator has hit after()
	while(gold_i != goldGrid->after() && test_i != testGrid->after())
	{
		//if the iterators are at the same coordinate
		if(gold_i.Coord() == test_i.Coord())
		{
			//insert result of the comparison into the new grid
			result_value = ComparePoints(gold_i.Value(), test_i.Value(), std_1);
			result.push(gold_i.X1(), gold_i.X2(), gold_i.X3(), result_value);
			//increment both
			gold_i++; test_i++;
		}
		//add the lowest (lexicographically) value to the background, insert the result, and increment
		else if( (gold_i.Coord() < test_i.Coord()) )
		{
			result_value = ComparePoints(gold_i.Value(), testGrid->background, std_1);
			result.push(gold_i.X1(), gold_i.X2(), gold_i.X3(), result_value);
			gold_i++;
		}
		else if( (test_i.Coord() < gold_i.Coord()) )
		{
			result_value = ComparePoints(goldGrid->background, test_i.Value(), std_1);
			result.push(test_i.X1(), test_i.X2(), test_i.X3(), result_value);
			test_i++;
		}
	}

	cout<<"here"<<endl;

	//if the left iterator hasn't finished, iterate to finish it off
	while(gold_i != goldGrid->after())
	{
		result_value = ComparePoints(gold_i.Value(), testGrid->background, std_1);
		result.push(gold_i.X1(), gold_i.X2(), gold_i.X3(), result_value);
		gold_i++;
	}

	while(test_i != testGrid->after())
	{
		result_value = ComparePoints(goldGrid->background, test_i.Value(), std_1);
		result.push(test_i.X1(), test_i.X2(), test_i.X3(), result_value);
		test_i++;
	}


	return result;

	
	rts_itkVolume<float> testVolume;
	testVolume.InsertDTGrid(&result);
	testVolume.SaveVOL("rasterized.vol");
	cout<<"Size: "<<testVolume.DimX()<<","<<testVolume.DimY()<<","<<testVolume.DimZ()<<endl;
	cout<<"Raw Size: "<<testVolume.DimX()*testVolume.DimY()*testVolume.DimZ()<<endl;
	

	return result;
}

void IntegrateResult(rtsDTGrid3D<float>* inputGrid, float &total_positive, float &total_negative)
{
	total_positive = total_negative = 0.0;
	rtsDTGrid3D<float>::iterator i;
	float value;
	for(i = inputGrid->begin(); i != inputGrid->after(); i++)
	{
		value = i.Value();
		if(value > 0.0)
			total_positive += value;
		if(value < 0.0)
			total_negative += -value;
	}
}

float SumGrid(rtsDTGrid3D<float>* inputGrid)
{
	rtsDTGrid3D<float>::iterator i;
	float result = 0.0;
	for(i = inputGrid->begin(); i != inputGrid->after(); i++)
	{
		result += i.Value();
	}
	return result;
}

void StoreInFiber(rtsFiberNetwork* network, int fiber, float value)
{
	if(network->FiberList[fiber].FiberData == NULL)
	{
		network->FiberList[fiber].FiberData = (void*)(new float[2]);
		((float*)network->FiberList[fiber].FiberData)[0] = 0.0;
		((float*)network->FiberList[fiber].FiberData)[1] = 0.0;
	}

	((float*)network->FiberList[fiber].FiberData)[0] += value;
	((float*)network->FiberList[fiber].FiberData)[1] += 1.0;

}
void MapToExplicit(int radius, rtsDTGrid3D<float>* inGrid, list<LexID>* inLexList, rtsFiberNetwork* inNetwork)
{
	//create a template iterator to move over the input grid
	rtsMultiDirectionStencil3D<float> i;

	//create an iterator to move through the lexicographic list
	list<LexID>::iterator L = inLexList->begin();
	
	//set the stencil positions
	int x, y, z;
	for(x=-radius; x<=radius; x++)
		for(y=-radius; y<=radius; y++)
			for(z=-radius; z<=radius; z++)
			{
				i.addPosition(x, y, z);
			}

	i.Initialize(inGrid);
	unsigned long lex_id;
	float positives;
	int f;
	int p;
	for(i.StartPPP(); L != inLexList->end(); i.PPP())
	{
		//convert the iterator position to a Lexicographic ID
		lex_id = (unsigned long)i.X1()*GRID_DIM.y*GRID_DIM.z + (unsigned long)i.X2()*GRID_DIM.z + (unsigned long)i.X3();
		if(lex_id == (*L).ID)
		{
			//get the fiber ID associated with the point
			f = (*L).fiber;

			//get the positive value
			positives = 0.0;
			for(p = 0; p<i.numValues(); p++)
			{
				if(i.getValue(p) > 0)
					positives += i.getValue(p);
			}
			//if(positives > 0)
			//	cout<<positives<<endl;

			//store the value in the network
			StoreInFiber(inNetwork, f, positives);
			L++;

		}


	}
	


}