gl_network.h 25 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
#ifndef STIM_GL_NETWORK
#define STIM_GL_NETWORK

#include <GL/glut.h>
#include "network.h"
#include <stim/visualization/aaboundingbox.h>

namespace stim{

template <typename T>
class gl_network : public stim::network<T>{

protected:
	using stim::network<T>::E;
	using stim::network<T>::V;

	GLuint dlist;

public:

	/// Default constructor
	gl_network() : stim::network<T>(){
		dlist = 0;
	}

	/// Constructor creates a gl_network from a stim::network
	gl_network(stim::network<T> N) : stim::network<T>(N){
		dlist = 0;
	}

	/// Fills the parameters with the minimum and maximum spatial positions in the network,
	///     specifying a bounding box for the network geometry
	aaboundingbox<T> boundingbox(){

		aaboundingbox<T> bb;								//create a bounding box

		//loop through every edge
		for(unsigned e = 0; e < E.size(); e++){
			//loop through every point
			for(unsigned p = 0; p < E[e].size(); p++)
				bb.expand(E[e][p]);						//expand the bounding box to include the point
		}

		return bb;								//return the bounding box
	}

	///render cylinder based on points from the top/bottom hat
	///@param C1 set of points from one of the hat
	void renderCylinder(std::vector< stim::vec3<T> > C1, std::vector< stim::vec3<T> > C2, stim::vec3<T> P1, stim::vec3<T> P2) {
		glBegin(GL_QUAD_STRIP);
		for (unsigned i = 0; i < C1.size(); i++) {				// for every point on the circle
			stim::vec3<T> n1 = C1[i] - P1;						// set normal vector for every vertex on the quads
			stim::vec3<T> n2 = C2[i] - P2;
			n1 = n1.norm();
			n2 = n2.norm();
			glNormal3f(n1[0], n1[1], n1[2]);
			glVertex3f(C1[i][0], C1[i][1], C1[i][2]);
			glNormal3f(n2[0], n2[1], n2[2]);
			glVertex3f(C2[i][0], C2[i][1], C2[i][2]);											
		}	
		glEnd();
	}

	///render the vertex as sphere based on glut build-in function
	///@param x, y, z are the three coordinates of the center point
	///@param radius is the radius of the sphere
	///@param subdivisions is the slice/stride along/around z-axis
	void renderBall(T x, T y, T z, T radius, int subdivisions) {
		glPushMatrix();
		glTranslatef(x, y, z);
		glutSolidSphere(radius, subdivisions, subdivisions);
		glPopMatrix();
	}

	///render the vertex as sphere based on transformation
	///@param x, y, z are the three coordinates of the center point
	///@param radius is the radius of the sphere
	///@param slice is the number of subdivisions around the z-axis
	///@param stack is the number of subdivisions along the z-axis
	void renderBall(T x, T y, T z, T radius, T slice, T stack) {
		T step_z = stim::PI / slice;					// step angle along z-axis
		T step_xy = 2 * stim::PI / stack;				// step angle in xy-plane
		T xx[4], yy[4], zz[4];							// store coordinates

		T angle_z = 0.0;								// start angle
		T angle_xy = 0.0;

		glBegin(GL_QUADS);
		for (unsigned i = 0; i < slice; i++) {			// around the z-axis
			angle_z = i * step_z;						// step step_z each time

			for (unsigned j = 0; j < stack; j++) {		// along the z-axis
				angle_xy = j * step_xy;					// step step_xy each time, draw floor by floor

				xx[0] = radius * std::sin(angle_z) * std::cos(angle_xy);	// four vertices
				yy[0] = radius * std::sin(angle_z) * std::sin(angle_xy);
				zz[0] = radius * std::cos(angle_z);

				xx[1] = radius * std::sin(angle_z + step_z) * std::cos(angle_xy);
				yy[1] = radius * std::sin(angle_z + step_z) * std::sin(angle_xy);
				zz[1] = radius * std::cos(angle_z + step_z);

				xx[2] = radius * std::sin(angle_z + step_z) * std::cos(angle_xy + step_xy);
				yy[2] = radius * std::sin(angle_z + step_z) * std::sin(angle_xy + step_xy);
				zz[2] = radius * std::cos(angle_z + step_z);

				xx[3] = radius * std::sin(angle_z) * std::cos(angle_xy + step_xy);
				yy[3] = radius * std::sin(angle_z) * std::sin(angle_xy + step_xy);
				zz[3] = radius * std::cos(angle_z);

				for (unsigned k = 0; k < 4; k++) {
					glVertex3f(x + xx[k], y + yy[k], z + zz[k]);			// draw the floor plane
				}
			}
		}
		glEnd();
	}

	/// Render the network centerline as a series of line strips.
	/// glCenterline0 is for only one input
	void glCenterline0(){
		if (!glIsList(dlist)) {					//if dlist isn't a display list, create it
			dlist = glGenLists(1);				//generate a display list
			glNewList(dlist, GL_COMPILE);		//start a new display list
			for (unsigned e = 0; e < E.size(); e++) {				//for each edge in the network
				glBegin(GL_LINE_STRIP);
				for (unsigned p = 0; p < E[e].size(); p++) {			//for each point on that edge
					glVertex3f(E[e][p][0], E[e][p][1], E[e][p][2]);		//set the vertex position based on the current point
					glTexCoord1f(0);									//set white color
				}
				glEnd();
			}
			glEndList();						//end the display list
		}
		glCallList(dlist);					// render the display list
	}

	///render the network centerline as a series of line strips(when loading at least two networks, otherwise using glCenterline0())
	///colors are based on metric values
	void glCenterline(){

		if(!glIsList(dlist)){					//if dlist isn't a display list, create it
			dlist = glGenLists(1);				//generate a display list
			glNewList(dlist, GL_COMPILE);		//start a new display list
			for(unsigned e = 0; e < E.size(); e++){				//for each edge in the network
				//unsigned errormag_id = E[e].nmags() - 1;
				glBegin(GL_LINE_STRIP);
				for(unsigned p = 0; p < E[e].size(); p++){				//for each point on that edge
					glVertex3f(E[e][p][0], E[e][p][1], E[e][p][2]);		//set the vertex position based on the current point
					glTexCoord1f(E[e].r(p));							//set the texture coordinate based on the specified magnitude index
				}
				glEnd();
			}
			glEndList();						//end the display list
		}		
		glCallList(dlist);						//render the display list
	}

	///render the network cylinder as a series of tubes(when only one network loaded) 
	void glCylinder0(T scale = 1.0f, bool undo = false) {

		float r1, r2;
		if (undo == true)
			glDeleteLists(dlist, 1);								// delete display list 
		if (!glIsList(dlist)) {										// if dlist isn't a display list, create it
			dlist = glGenLists(1);									// generate a display list
			glNewList(dlist, GL_COMPILE);							// start a new display list
			for (unsigned e = 0; e < E.size(); e++) {				// for each edge in the network
				for (unsigned p = 1; p < E[e].size(); p++) {		// for each point on that edge
					stim::circle<T> C1 = E[e].circ(p - 1);
					stim::circle<T> C2 = E[e].circ(p);
					r1 = E[e].r(p - 1);
					r2 = E[e].r(p);
					C1.set_R(scale * r1);								// re-scale the circle to the same
					C2.set_R(scale * r2);
					std::vector< stim::vec3<T> > Cp1 = C1.glpoints(20);	// get 20 points on the circle plane
					std::vector< stim::vec3<T> > Cp2 = C2.glpoints(20);
					glBegin(GL_QUAD_STRIP);
					for (unsigned i = 0; i < Cp1.size(); i++) {
						glVertex3f(Cp1[i][0], Cp1[i][1], Cp1[i][2]);
						glVertex3f(Cp2[i][0], Cp2[i][1], Cp2[i][2]);
					}
					glEnd();
				}													// set the texture coordinate based on the specified magnitude index
			}
			for (unsigned n = 0; n < V.size(); n++) {
				for (unsigned i = 0; i < E.size(); i++) {
					if (E[i].v[0] == n) {
						r1 = E[i].r(0) * scale;
						break;
					}
					else if (E[i].v[1] == n) {
						r1 = E[i].r(E[i].size() - 1) * scale;
						break;
					}
				}
				renderBall(V[n][0], V[n][1], V[n][2], r1, 20);
			}
			glEndList();						// end the display list
		}
		glCallList(dlist);						// render the display list
	}

	///render the network cylinder as a series of tubes
	///colors are based on metric values 
	void glCylinder(float sigma, float radius) {

		if (radius != sigma)					// if render radius was changed by user, create a new display list
			glDeleteLists(dlist, 1);
		if (!glIsList(dlist)) {										// if dlist isn't a display list, create it
			dlist = glGenLists(1);									// generate a display list
			glNewList(dlist, GL_COMPILE);							// start a new display list
			for (unsigned e = 0; e < E.size(); e++) {				// for each edge in the network
				for (unsigned p = 1; p < E[e].size(); p++) {		// for each point on that edge
					stim::circle<T> C1 = E[e].circ(p - 1);
					stim::circle<T> C2 = E[e].circ(p);
					C1.set_R(2*radius);								// re-scale the circle to the same
					C2.set_R(2*radius);
					std::vector< stim::vec3<T> > Cp1 = C1.glpoints(20);// get 20 points on the circle plane
					std::vector< stim::vec3<T> > Cp2 = C2.glpoints(20);
					glBegin(GL_QUAD_STRIP);
					for (unsigned i = 0; i < Cp1.size(); i++) {
						stim::vec3<T> n1 = Cp1[i] - E[e][p - 1];	// set normal vector for every vertex on the quads
						stim::vec3<T> n2 = Cp2[i] - E[e][p];
						n1 = n1.norm();
						n2 = n2.norm();

						glNormal3f(n1[0], n1[1], n1[2]);
						glTexCoord1f(E[e].r(p - 1));
						glVertex3f(Cp1[i][0], Cp1[i][1], Cp1[i][2]);
						glNormal3f(n2[0], n2[1], n2[2]);
						glTexCoord1f(E[e].r(p));
						glVertex3f(Cp2[i][0], Cp2[i][1], Cp2[i][2]);
					}
					glEnd();
				}													// set the texture coordinate based on the specified magnitude index
			}
			for (unsigned n = 0; n < V.size(); n++) {
				size_t num = V[n].e[0].size();					// store the number of outgoing edge of that vertex
				if (num != 0) {									// if it has outgoing edge
					unsigned idx = V[n].e[0][0];				// find the index of first outgoing edge of that vertex
					glTexCoord1f(E[idx].r(0));					// bind the texture as metric of first point on that edge
				}					
				else {
					unsigned idx = V[n].e[1][0];				// find the index of first incoming edge of that vertex
					glTexCoord1f(E[idx].r(E[idx].size() - 1));	// bind the texture as metric of last point on that edge
				}
				renderBall(V[n][0], V[n][1], V[n][2], 2*radius, 20);
			}
			glEndList();						// end the display list
		}
		glCallList(dlist);						// render the display list
	}

	///render a T as a adjoint network of GT in transparancy(darkgreen, overlaid)
	void glAdjointCylinder(float sigma, float radius) {
		
		if (radius != sigma)					// if render radius was changed by user, create a new display list
			glDeleteLists(dlist + 4, 1);
		if (!glIsList(dlist + 4)) {
			glNewList(dlist + 4, GL_COMPILE);
			for (unsigned e = 0; e < E.size(); e++) {				// for each edge in the network
				for (unsigned p = 1; p < E[e].size(); p++) {		// for each point on that edge
					stim::circle<T> C1 = E[e].circ(p - 1);
					stim::circle<T> C2 = E[e].circ(p);
					C1.set_R(2 * radius);							// scale the circle to the same
					C2.set_R(2 * radius);
					std::vector< stim::vec3<T> >Cp1 = C1.glpoints(20);
					std::vector< stim::vec3<T> >Cp2 = C2.glpoints(20);
					glBegin(GL_QUAD_STRIP);
					for (unsigned i = 0; i < Cp1.size(); i++) {		// for every point on the circle(+1 means closing the circle)
						glVertex3f(Cp1[i][0], Cp1[i][1], Cp1[i][2]);
						glVertex3f(Cp2[i][0], Cp2[i][1], Cp2[i][2]);
					}
					glEnd();
				}								// set the texture coordinate based on the specified magnitude index
			}
			for (unsigned n = 0; n < V.size(); n++) {
				size_t num = V[n].e[0].size();					// store the number of outgoing edge of that vertex
				if (num != 0) {									// if it has outgoing edge
					unsigned idx = V[n].e[0][0];				// find the index of first outgoing edge of that vertex 
				}
				else {
					unsigned idx = V[n].e[1][0];				// find the index of first incoming edge of that vertex
				}
				renderBall(V[n][0], V[n][1], V[n][2], 2 * radius, 20);
			}
			glEndList();
		}
		glCallList(dlist + 4);
	}

	///render the network cylinder as series of tubes
	///@param I is a indicator: 0 -> GT, 1 -> T
	///@param map is the mapping relationship between two networks
	///@param colormap is the random generated color set for render
	void glRandColorCylinder(int I, std::vector<unsigned> map, std::vector<T> colormap, float sigma, float radius) {
		
		if (radius != sigma)									// if render radius was changed by user, create a new display list
			glDeleteLists(dlist + 2, 1);
		if (!glIsList(dlist + 2)) {								// if dlist isn't a display list, create it
			glNewList(dlist + 2, GL_COMPILE);					// start a new display list
			for (unsigned e = 0; e < E.size(); e++) {			// for each edge in the network
				if (map[e] != unsigned(-1)) {
					if (I == 0) {								// if it is to render GT
						glColor3f(colormap[e * 3 + 0], colormap[e * 3 + 1], colormap[e * 3 + 2]);
					}									
					else {										// if it is to render T
						glColor3f(colormap[map[e] * 3 + 0], colormap[map[e] * 3 + 1], colormap[map[e] * 3 + 2]);
					}

					for (unsigned p = 1; p < E[e].size(); p++) {// for each point on that edge
						stim::circle<T> C1 = E[e].circ(p - 1);
						stim::circle<T> C2 = E[e].circ(p);
						C1.set_R(2*radius);						// re-scale the circle to the same
						C2.set_R(2*radius);
						std::vector< stim::vec3<T> >Cp1 = C1.glpoints(20);
						std::vector< stim::vec3<T> >Cp2 = C2.glpoints(20);
						renderCylinder(Cp1, Cp2, E[e][p - 1], E[e][p]);
					}
				}
				else {
					glColor3f(1.0, 1.0, 1.0);					// white color for the un-mapping edges
					for (unsigned p = 1; p < E[e].size(); p++) {// for each point on that edge
						stim::circle<T> C1 = E[e].circ(p - 1);
						stim::circle<T> C2 = E[e].circ(p);
						C1.set_R(2*radius);						// scale the circle to the same
						C2.set_R(2*radius);
						std::vector< stim::vec3<T> >Cp1 = C1.glpoints(20);
						std::vector< stim::vec3<T> >Cp2 = C2.glpoints(20);
						renderCylinder(Cp1, Cp2, E[e][p - 1], E[e][p]);
					}
				}
			}
			for (unsigned n = 0; n < V.size(); n++) {
				size_t num_edge = V[n].e[0].size() + V[n].e[1].size();
				if (num_edge > 1) {					// if it is the joint vertex
					glColor3f(0.3, 0.3, 0.3);		// gray
					renderBall(V[n][0], V[n][1], V[n][2], 3*radius, 20);
				}
				else {								// if it is the terminal vertex
					glColor3f(0.6, 0.6, 0.6);		// more white gray
					renderBall(V[n][0], V[n][1], V[n][2], 3*radius, 20);
				}
			}
			glEndList();
		}
		glCallList(dlist + 2);
	}

	///render the network centerline as a series of line strips in random different color
	///@param I is a indicator: 0 -> GT, 1 -> T
	///@param map is the mapping relationship between two networks
	///@param colormap is the random generated color set for render
	void glRandColorCenterline(int I, std::vector<unsigned> map, std::vector<T> colormap) {
		if (!glIsList(dlist + 2)) {
			glNewList(dlist + 2, GL_COMPILE);
			for (unsigned e = 0; e < E.size(); e++) {
				if (map[e] != unsigned(-1)) {					// if it has corresponding edge in another network
					if (I == 0)									// if it is to render GT
						glColor3f(colormap[e * 3 + 0], colormap[e * 3 + 1], colormap[e * 3 + 2]);
					else										// if it is to render T
						glColor3f(colormap[map[e] * 3 + 0], colormap[map[e] * 3 + 1], colormap[map[e] * 3 + 2]);

					glBegin(GL_LINE_STRIP);
					for (unsigned p = 0; p < E[e].size(); p++) {
						glVertex3f(E[e][p][0], E[e][p][1], E[e][p][2]);
					}
					glEnd();
				}
				else {
					glColor3f(1.0, 1.0, 1.0);					// white color for the un-mapping edges
					glBegin(GL_LINE_STRIP);
					for (unsigned p = 0; p < E[e].size(); p++) {
						glVertex3f(E[e][p][0], E[e][p][1], E[e][p][2]);
					}
					glEnd();
				}
			}
			glEndList();
		}
		glCallList(dlist + 2);
	}

	void glAdjointCenterline() {
		if (!glIsList(dlist + 4)) {
			glNewList(dlist + 4, GL_COMPILE);
			for (unsigned e = 0; e < E.size(); e++) {				//for each edge in the network
																
				glBegin(GL_LINE_STRIP);
				for (unsigned p = 0; p < E[e].size(); p++) {			//for each point on that edge
					glVertex3f(E[e][p][0], E[e][p][1], E[e][p][2]);		//set the vertex position based on the current point
					glTexCoord1f(E[e].r(p));							//set the texture coordinate based on the specified magnitude index
				}
				glEnd();
			}
			glEndList();
		}
		glCallList(dlist + 4);
	}

	// highlight the difference part
	void glDifferenceCylinder(int I, std::vector<unsigned> map, std::vector<T> colormap, float sigma, float radius) {

		if (radius != sigma)									// if render radius was changed by user, create a new display list
			glDeleteLists(dlist + 6, 1);
		if (!glIsList(dlist + 6)) {								// if dlist isn't a display list, create it
			glNewList(dlist + 6, GL_COMPILE);					// start a new display list
			for (unsigned e = 0; e < E.size(); e++) {			// for each edge in the network
				if (map[e] != unsigned(-1)) {
					glEnable(GL_BLEND);									//enable color blend
					glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);	//set blend function
					glDisable(GL_DEPTH_TEST);							//should disable depth

					if (I == 0) {								// if it is to render GT
						glColor4f(colormap[e * 3 + 0], colormap[e * 3 + 1], colormap[e * 3 + 2], 0.1);
					}
					else {										// if it is to render T
						glColor4f(colormap[map[e] * 3 + 0], colormap[map[e] * 3 + 1], colormap[map[e] * 3 + 2], 0.1);
					}

					for (unsigned p = 1; p < E[e].size(); p++) {// for each point on that edge
						stim::circle<T> C1 = E[e].circ(p - 1);
						stim::circle<T> C2 = E[e].circ(p);
						C1.set_R(2 * radius);						// re-scale the circle to the same
						C2.set_R(2 * radius);
						std::vector< stim::vec3<T> >Cp1 = C1.glpoints(20);
						std::vector< stim::vec3<T> >Cp2 = C2.glpoints(20);
						renderCylinder(Cp1, Cp2, E[e][p - 1], E[e][p]);
					}
					glDisable(GL_BLEND);
					glEnable(GL_DEPTH_TEST);
				}
				else {
					glColor3f(1.0, 1.0, 1.0);					// white color for the un-mapping edges
					for (unsigned p = 1; p < E[e].size(); p++) {// for each point on that edge
						stim::circle<T> C1 = E[e].circ(p - 1);
						stim::circle<T> C2 = E[e].circ(p);
						C1.set_R(2 * radius);						// scale the circle to the same
						C2.set_R(2 * radius);
						std::vector< stim::vec3<T> >Cp1 = C1.glpoints(20);
						std::vector< stim::vec3<T> >Cp2 = C2.glpoints(20);
						renderCylinder(Cp1, Cp2, E[e][p - 1], E[e][p]);
					}
				}
			}
			for (unsigned n = 0; n < V.size(); n++) {

				size_t num_edge = V[n].e[0].size() + V[n].e[1].size();
				if (num_edge > 1) {					// if it is the joint vertex
					glColor4f(0.3, 0.3, 0.3, 0.1);		// gray
					renderBall(V[n][0], V[n][1], V[n][2], 3 * radius, 20);
				}
				else {								// if it is the terminal vertex
					glColor4f(0.6, 0.6, 0.6, 0.1);		// more white gray
					renderBall(V[n][0], V[n][1], V[n][2], 3 * radius, 20);
				}
			}
			glEndList();
		}
		glCallList(dlist + 6);
	}

	//void glRandColorCenterlineGT(GLuint &dlist1, std::vector<unsigned> map, std::vector<T> colormap){
	//	if(!glIsList(dlist1)){
	//		dlist1 = glGenLists(1);
	//		glNewList(dlist1, GL_COMPILE);
	//		for(unsigned e = 0; e < E.size(); e++){
	//			if(map[e] != unsigned(-1)){
	//				glColor3f(colormap[e * 3 + 0], colormap[e * 3 + 1], colormap[e * 3 + 2]);
	//				glBegin(GL_LINE_STRIP);
	//				for(unsigned p = 0; p < E[e].size(); p++){
	//					glVertex3f(E[e][p][0], E[e][p][1], E[e][p][2]);
	//				}
	//				glEnd();
	//				for (unsigned p = 0; p < E[e].size() - 1; p++) {
	//					renderCylinder(E[e][p][0], E[e][p][1], E[e][p][2], E[e][p + 1][0], E[e][p + 1][1], E[e][p + 1][2], 10, 20);
	//				}
	//			}
	//			else{
	//				glColor3f(1.0, 1.0, 1.0);
	//				glBegin(GL_LINE_STRIP);
	//				for(unsigned p = 0; p < E[e].size(); p++){
	//					glVertex3f(E[e][p][0], E[e][p][1], E[e][p][2]);
	//				}
	//				glEnd();
	//			}
	//		}
	//		for (unsigned v = 0; v < V.size(); v++) {
	//			size_t num_edge = V[v].e[0].size() + V[v].e[1].size();
	//			if (num_edge > 1) {
	//				glColor3f(0.3, 0.3, 0.3);		// gray color for vertex
	//				renderBall(V[v][0], V[v][1], V[v][2], 20, 20);
	//			}
	//		}
	//		glEndList();
	//	}
	//	glCallList(dlist1);
	//}

	//void glRandColorCenterlineT(GLuint &dlist2, std::vector<unsigned> map, std::vector<T> colormap){
	//	if(!glIsList(dlist2)){
	//		dlist2 = glGenLists(1);
	//		glNewList(dlist2, GL_COMPILE);
	//		for(unsigned e = 0; e < E.size(); e++){
	//			if(map[e] != unsigned(-1)){
	//				glColor3f(colormap[map[e] * 3 + 0], colormap[map[e] * 3 + 1], colormap[map[e] * 3 + 2]);
	//				glBegin(GL_LINE_STRIP);
	//				for(unsigned p = 0; p < E[e].size(); p++){
	//					glVertex3f(E[e][p][0], E[e][p][1], E[e][p][2]);
	//				}
	//				glEnd();
	//				for (unsigned p = 0; p < E[e].size() - 1; p++) {
	//					renderCylinder(E[e][p][0], E[e][p][1], E[e][p][2], E[e][p + 1][0], E[e][p + 1][1], E[e][p + 1][2], 10, 20);
	//				}
	//			}
	//			else{
	//				glColor3f(1.0, 1.0, 1.0);
	//				glBegin(GL_LINE_STRIP);
	//				for(unsigned p = 0; p < E[e].size(); p++){
	//					glVertex3f(E[e][p][0], E[e][p][1], E[e][p][2]);
	//				}
	//				glEnd();
	//			}
	//		}
	//		for (unsigned v = 0; v < V.size(); v++) {
	//			size_t num_edge = V[v].e[0].size() + V[v].e[1].size();
	//			if (num_edge > 1) {
	//				glColor3f(0.3, 0.3, 0.3);		// gray color for vertex
	//				renderBall(V[v][0], V[v][1], V[v][2], 20, 20);
	//			}
	//		}
	//		glEndList();
	//	}
	//	glCallList(dlist2);
	//}


	//void renderCylinder(T x1, T y1, T z1, T x2, T y2, T z2, T radius, int subdivisions) {
	//	T dx = x2 - x1;
	//	T dy = y2 - y1;
	//	T dz = z2 - z1;
	//	/// handle the degenerate case with an approximation
	//	if (dz == 0)
	//		dz = .00000001;
	//	T d = sqrt(dx*dx + dy*dy + dz*dz);					
	//	T ax = 57.2957795*acos(dz / d);						// 180°/pi
	//	if (dz < 0.0)
	//		ax = -ax;
	//	T rx = -dy*dz;
	//	T ry = dx*dz;

	//	glPushMatrix();
	//	glTranslatef(x1, y1, z1);
	//	glRotatef(ax, rx, ry, 0.0);

	//	glutSolidCylinder(radius, d, subdivisions, 1);
	//	glPopMatrix();
	//}


	/// render the network centerline from swc file as a series of strips in different colors based on the neuronal type
	/// glCenterline0_swc is for only one input
	/*void glCenterline0_swc() {
	if (!glIsList(dlist)) {						// if dlist isn't a display list, create it
	dlist = glGenLists(1);					// generate a display list
	glNewList(dlist, GL_COMPILE);			// start a new display list
	for (unsigned e = 0; e < E.size(); e++) {
	int type = NT[e];					// get the neuronal type
	switch (type) {
	case 0:
	glColor3f(1.0f, 1.0f, 1.0f);	// white for undefined
	glBegin(GL_LINE_STRIP);
	for (unsigned p = 0; p < E[e].size(); p++) {
	glVertex3f(E[e][p][0], E[e][p][1], E[e][p][2]);
	}
	glEnd();
	break;
	case 1:
	glColor3f(1.0f, 0.0f, 0.0f);	// red for soma
	glBegin(GL_LINE_STRIP);
	for (unsigned p = 0; p < E[e].size(); p++) {
	glVertex3f(E[e][p][0], E[e][p][1], E[e][p][2]);
	}
	glEnd();
	break;
	case 2:
	glColor3f(1.0f, 0.5f, 0.0f);	// orange for axon
	glBegin(GL_LINE_STRIP);
	for (unsigned p = 0; p < E[e].size(); p++) {
	glVertex3f(E[e][p][0], E[e][p][1], E[e][p][2]);
	}
	glEnd();
	break;
	case 3:
	glColor3f(1.0f, 1.0f, 0.0f);	// yellow for undefined
	glBegin(GL_LINE_STRIP);
	for (unsigned p = 0; p < E[e].size(); p++) {
	glVertex3f(E[e][p][0], E[e][p][1], E[e][p][2]);
	}
	glEnd();
	break;
	case 4:
	glColor3f(0.0f, 1.0f, 0.0f);	// green for undefined
	glBegin(GL_LINE_STRIP);
	for (unsigned p = 0; p < E[e].size(); p++) {
	glVertex3f(E[e][p][0], E[e][p][1], E[e][p][2]);
	}
	glEnd();
	break;
	case 5:
	glColor3f(0.0f, 1.0f, 1.0f);	// verdant for undefined
	glBegin(GL_LINE_STRIP);
	for (unsigned p = 0; p < E[e].size(); p++) {
	glVertex3f(E[e][p][0], E[e][p][1], E[e][p][2]);
	}
	glEnd();
	break;
	case 6:
	glColor3f(0.0f, 0.0f, 1.0f);	// blue for undefined
	glBegin(GL_LINE_STRIP);
	for (unsigned p = 0; p < E[e].size(); p++) {
	glVertex3f(E[e][p][0], E[e][p][1], E[e][p][2]);
	}
	glEnd();
	break;
	case 7:
	glColor3f(0.5f, 0.0f, 1.0f);	// purple for undefined
	glBegin(GL_LINE_STRIP);
	for (unsigned p = 0; p < E[e].size(); p++) {
	glVertex3f(E[e][p][0], E[e][p][1], E[e][p][2]);
	}
	glEnd();
	break;
	}
	}
	glEndList();						//end the display list
	}
	glCallList(dlist);					// render the display list
	}*/

	///render the network cylinder as a series of tubes
	///colors are based on metric values 
	//void glCylinder(float sigma) {
	//	if (!glIsList(dlist)) {					//if dlist isn't a display list, create it
	//		dlist = glGenLists(1);				//generate a display list
	//		glNewList(dlist, GL_COMPILE);		//start a new display list
	//		for (unsigned e = 0; e < E.size(); e++) {				//for each edge in the network
	//			for (unsigned p = 1; p < E[e].size() - 1; p++) {	// for each point on that edge
	//				stim::circle<T> C1 = E[e].circ(p - 1);
	//				stim::circle<T> C2 = E[e].circ(p);
	//				C1.set_R(2.5*sigma);							// scale the circle to the same
	//				C2.set_R(2.5*sigma);
	//				std::vector< stim::vec3<T> >Cp1 = C1.glpoints(20);
	//				std::vector< stim::vec3<T> >Cp2 = C2.glpoints(20);
	//				glBegin(GL_QUAD_STRIP);
	//				for (unsigned i = 0; i < Cp1.size(); i++) {		// for every point on the circle(+1 means closing the circle)
	//					glVertex3f(Cp1[i][0], Cp1[i][1], Cp1[i][2]);
	//					glVertex3f(Cp2[i][0], Cp2[i][1], Cp2[i][2]);
	//					glTexCoord1f(E[e].r(p));
	//				}
	//				glEnd();
	//			}								//set the texture coordinate based on the specified magnitude index
	//		}
	//		for (unsigned n = 0; n < V.size(); n++) {
	//			size_t num = V[n].e[0].size();					//store the number of outgoing edge of that vertex
	//			if (num != 0) {									//if it has outgoing edge
	//				unsigned idx = V[n].e[0][0];				//find the index of first outgoing edge of that vertex 
	//				glTexCoord1f(E[idx].r(0));					//bind the texture as metric of first point on that edge
	//			}
	//			else {
	//				unsigned idx = V[n].e[1][0];				//find the index of first incoming edge of that vertex
	//				glTexCoord1f(E[idx].r(E[idx].size() - 1));	//bind the texture as metric of last point on that edge
	//			}
	//			renderBall(V[n][0], V[n][1], V[n][2], 2.5*sigma, 20);
	//		}
	//		glEndList();						//end the display list
	//	}
	//	glCallList(dlist);						//render the display list
	//}

};		//end stim::gl_network class
};		//end stim namespace



#endif