main.cu 36.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
๏ปฟ#include <stdlib.h>
#include <string>
#include <fstream>
#include <algorithm> 

// STIM includes
#include <stim/parser/arguments.h>
#include <stim/visualization/camera.h>
#include <stim/gl/gl_texture.h>
#include "gl_network.h"
#include "network.h"
#include <stim/visualization/gl_aaboundingbox.h>

// OpenGL includes
#include <GL/glut.h>
#include <GL/freeglut.h>

#ifdef __CUDACC__
//CUDA includes
#include <cuda.h>
#endif

// BOOST includes
#include <boost/tuple/tuple.hpp>

// visualization objects
stim::gl_aaboundingbox<float> bb;	// axis-aligned bounding box object
stim::camera cam;					// camera object

// overall parameters
unsigned num_nets = 0;				// number of networks that've been loaded
float sigma = 3.0f;					// default sigma(resample rate) equals to 3.0
float radius = 0.7f;					// equals to radius
float delta;						// camera moving parameter

// networks
stim::gl_network<float> GT;			// ground truth network
stim::gl_network<float> T;			// test network
stim::gl_network<float> _GT;		// splitted GT
stim::gl_network<float> _T;			// splitted T

// flags
bool flag_mapping = false;				// flag indicates mapping
bool flag_stack = false;				// flag indicates loading image stacks
bool flag_adjoint_network = false;		// flag indicates render a T overlaid on GT
bool flag_light = false;				// flag indicates light on/off
bool flag_highlight_difference;			// flag indicates highlight the difference between two networks

// relationships
std::vector<unsigned> _gt_t;			// store indices of nearest edge points in _T for _GT
std::vector<unsigned> _t_gt;			// store indices of nearest edge points in _GT for _T

// hard-coded parameters
float resample_rate = 0.5f;			// sample rate for the network (fraction of sigma used as the maximum sample rate)
float camera_factor = 1.2f;			// start point of the camera as a function of X and Y size
float orbit_factor = 0.01f;			// degrees per pixel used to orbit the camera
float zoom_factor = 10.0f;			// zooming factor
float radius_factor = 0.5f;			// radius changing factor

// mouse click
bool LButtonDown = false;			// true when left button down
bool RButtonDown = false;

// mouse position tracking
int mouse_x;
int mouse_y;

// render modes
bool compareMode = true;			// default mode is compare mode
bool mappingMode = false;
bool volumeMode = false;

// random color set
std::vector<float> colormap;

// special key indicator
int mods;

// OpenGL objects
GLuint cmap_tex = 0;				// texture name for the color map

// Stack view parameter
stim::gl_texture<unsigned char> S;					// texture storing the image stack
float planes[3] = { 0.0f, 0.0f, 0.0f };				// plane position in world space

// sets an OpenGL viewport taking up the entire window
void glut_render_single_projection(){

	glMatrixMode(GL_PROJECTION);					// load the projection matrix for editing
	glLoadIdentity();								// start with the identity matrix
	int X = glutGet(GLUT_WINDOW_WIDTH);				// use the whole screen for rendering
	int Y = glutGet(GLUT_WINDOW_HEIGHT);
	glViewport(0, 0, X, Y);							// specify a viewport for the entire window
	float aspect = (float)X / (float)Y;				// calculate the aspect ratio
	gluPerspective(60, aspect, 0.1, 1000000);		// set up a perspective projection
}

// sets an OpenGL viewport taking up the left half of the window
void glut_render_left_projection(){

	glMatrixMode(GL_PROJECTION);					// load the projection matrix for editing
	glLoadIdentity();								// start with the identity matrix
	int X = glutGet(GLUT_WINDOW_WIDTH) / 2;			// only use half of the screen for the viewport
	int Y = glutGet(GLUT_WINDOW_HEIGHT);
	glViewport(0, 0, X, Y);							// specify the viewport on the left
	float aspect = (float)X / (float)Y;				// calculate the aspect ratio
	gluPerspective(60, aspect, 0.1, 1000000);		// set up a perspective projection
}

// sets an OpenGL viewport taking up the right half of the window
void glut_render_right_projection(){

	glMatrixMode(GL_PROJECTION);					// load the projection matrix for editing
	glLoadIdentity();								// start with the identity matrix
	int X = glutGet(GLUT_WINDOW_WIDTH) / 2;			// only use half of the screen for the viewport
	int Y = glutGet(GLUT_WINDOW_HEIGHT);
	glViewport(X, 0, X, Y);							// specify the viewport on the right
	float aspect = (float)X / (float)Y;				// calculate the aspect ratio
	gluPerspective(60, aspect, 0.1, 1000000);		// set up a perspective projection
}

void glut_render_modelview(){

	glMatrixMode(GL_MODELVIEW);						// load the modelview matrix for editing
	glLoadIdentity();								// start with the identity matrix
	stim::vec3<float> eye = cam.getPosition();		// get the camera position (eye point)
	stim::vec3<float> focus = cam.getLookAt();		// get the camera focal point
	stim::vec3<float> up = cam.getUp();				// get the camera "up" orientation

	gluLookAt(eye[0], eye[1], eye[2], focus[0], focus[1], focus[2], up[0], up[1], up[2]);	// set up the OpenGL camera
}

// draw x slice
void draw_x_slice(float p) {
	float x = p;
	float y = S.size(1);
	float z = S.size(2);

	float tx = p / S.size(0);

	glBegin(GL_QUADS);										
	glTexCoord3f(tx, 0, 0);
	glVertex3f(x, 0, 0);

	glTexCoord3f(tx, 0, 1);
	glVertex3f(x, 0, z);

	glTexCoord3f(tx, 1, 1);
	glVertex3f(x, y, z);

	glTexCoord3f(tx, 1, 0);
	glVertex3f(x, y, 0);
	glEnd();
}
// draw y slice
void draw_y_slice(float p) {
	float x = S.size(0);
	float y = p;
	float z = S.size(2);

	float ty = p / S.size(1);

	glBegin(GL_QUADS);										
	glTexCoord3f(0, ty, 0);
	glVertex3f(0, y, 0);

	glTexCoord3f(0, ty, 1);
	glVertex3f(0, y, z);

	glTexCoord3f(1, ty, 1);
	glVertex3f(x, y, z);

	glTexCoord3f(1, ty, 0);
	glVertex3f(x, y, 0);
	glEnd();
}
// draw z slice
void draw_z_slice(float p) {
	float x = S.size(0);
	float y = S.size(1);
	float z = p;

	float tz = p / S.size(2);

	glBegin(GL_QUADS);										
	glTexCoord3f(0, 0, tz);
	glVertex3f(0, 0, z);

	glTexCoord3f(0, 1, tz);
	glVertex3f(0, y, z);

	glTexCoord3f(1, 1, tz);
	glVertex3f(x, y, z);

	glTexCoord3f(1, 0, tz);
	glVertex3f(x, 0, z);
	glEnd();
}

/// draw a bounding box around the data set
void draw_box() {
	float c[3] = { S.size(0), S.size(1), S.size(2) };
	glLineWidth(1.0);

	glBegin(GL_LINE_LOOP);
	glColor3f(0, 0, 0);
	glVertex3f(0, 0, 0);

	glColor3f(0, 1, 0);
	glVertex3f(0, c[1], 0);

	glColor3f(0, 1, 1);
	glVertex3f(0, c[1], c[2]);

	glColor3f(0, 0, 1);
	glVertex3f(0, 0, c[2]);
	glEnd();

	glBegin(GL_LINE_LOOP);
	glColor3f(1, 0, 0);
	glVertex3f(c[0], 0, 0);

	glColor3f(1, 1, 0);
	glVertex3f(c[0], c[1], 0);

	glColor3f(1, 1, 1);
	glVertex3f(c[0], c[1], c[2]);

	glColor3f(1, 0, 1);
	glVertex3f(c[0], 0, c[2]);
	glEnd();

	glBegin(GL_LINES);
	glColor3f(0, 0, 0);
	glVertex3f(0, 0, 0);
	glColor3f(1, 0, 0);
	glVertex3f(c[0], 0, 0);

	glColor3f(0, 1, 0);
	glVertex3f(0, c[1], 0);
	glColor3f(1, 1, 0);
	glVertex3f(c[0], c[1], 0);

	glColor3f(0, 1, 1);
	glVertex3f(0, c[1], c[2]);
	glColor3f(1, 1, 1);
	glVertex3f(c[0], c[1], c[2]);

	glColor3f(0, 0, 1);
	glVertex3f(0, 0, c[2]);
	glColor3f(1, 0, 1);
	glVertex3f(c[0], 0, c[2]);
	glEnd();
}
void draw_frames() {
	float c[3] = { S.size(0), S.size(1), S.size(2) };			// store the size of the data set for all three dimensions

	glLineWidth(1.0);
	glColor3f(1, 0, 0);											// draw the X plane
	glBegin(GL_LINE_LOOP);
	glVertex3f(planes[0], 0, 0);
	glVertex3f(planes[0], c[1], 0);
	glVertex3f(planes[0], c[1], c[2]);
	glVertex3f(planes[0], 0, c[2]);
	glEnd();

	glColor3f(0, 1, 0);											// draw the Y plane
	glBegin(GL_LINE_LOOP);
	glVertex3f(0, planes[1], 0);
	glVertex3f(c[0], planes[1], 0);
	glVertex3f(c[0], planes[1], c[2]);
	glVertex3f(0, planes[1], c[2]);
	glEnd();

	glColor3f(0, 0, 1);											// draw the Z plane
	glBegin(GL_LINE_LOOP);
	glVertex3f(0, 0, planes[2]);
	glVertex3f(c[0], 0, planes[2]);
	glVertex3f(c[0], c[1], planes[2]);
	glVertex3f(0, c[1], planes[2]);
	glEnd();
}

// enforce bound
void enforce_bounds() {
	for (int d = 0; d < 3; d++) {
		if (planes[d] < 0) planes[d] = 0;
		if (planes[d] > S.size(d)) planes[d] = S.size(d);
	}
}

// draw the network(s)
void glut_render(void) {

	stim::vec3<float> p1 = cam.getLookAt() + cam.getUp() * 100000;
	stim::vec3<float> p2 = cam.getPosition();

	// light	
	GLfloat global_ambient[] = { 0.5f, 0.5f, 0.5f, 1.0f };
	GLfloat ambient[] = { 0.0f, 0.0f, 0.0f, 1.0f };
	GLfloat diffuse1[] = { 1.0f, 1.0f, 1.0f, 1.0f };
	GLfloat diffuse2[] = { 0.4f, 0.4f, 0.4f, 1.0f };
	GLfloat specular[] = { 1.0f, 1.0f, 1.0f, 1.0f };
	GLfloat position1[] = { p1[0], p1[1], p1[2], 1.0f };		// upper right light source
	GLfloat position2[] = { p2[0], p2[1], p2[2], 1.0f };		// lower left light source

	glClearColor(0.0, 0.0, 0.0, 1.0);
	glShadeModel(GL_SMOOTH);

	glLightModelfv(GL_LIGHT_MODEL_AMBIENT, global_ambient);

	glLightfv(GL_LIGHT0, GL_AMBIENT, ambient);				// set ambient for light 0
	glLightfv(GL_LIGHT0, GL_DIFFUSE, diffuse1);				// set diffuse for light 0
	glLightfv(GL_LIGHT0, GL_SPECULAR, specular);			// set specular for light 0
	glLightfv(GL_LIGHT0, GL_POSITION, position1);			// set position for light 0

	glLightfv(GL_LIGHT1, GL_AMBIENT, ambient);				// set ambient for light 1
	glLightfv(GL_LIGHT1, GL_DIFFUSE, diffuse2);				// set diffuse for light 1
	glLightfv(GL_LIGHT1, GL_SPECULAR, specular);			// set specular for light 1
	glLightfv(GL_LIGHT1, GL_POSITION, position2);			// set position for light 1

	//no mapping, just comparing
	if (!flag_mapping) {	
		if (num_nets == 1) {										// if a single network is loaded
			glEnable(GL_DEPTH_TEST);								// enable depth
			glut_render_single_projection();						// fill the entire viewport
			glut_render_modelview();								// set up the modelview matrix with camera details
			glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);		// clear the screen
			if (volumeMode) {
				draw_box();
				draw_frames();
				glEnable(GL_TEXTURE_3D);							// enable 3D texture mapping
				S.bind();											// bind the texture
				draw_x_slice(planes[0]);							// draw the X plane
				draw_y_slice(planes[1]);							// draw the Y plane
				draw_z_slice(planes[2]);							// draw the Z plane
				glDisable(GL_TEXTURE_3D);							// disable 3D texture mapping
			}
			glColor3f(1.0f, 1.0f, 1.0f);
			GT.glCenterline0();										// render the GT network (the only one loaded)
			glDisable(GL_DEPTH_TEST);	
		}
		
		if (num_nets == 2) {												// if two networks are loaded	
			glEnable(GL_TEXTURE_1D);										// enable texture mapping
			if (flag_light == 0)
				glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);	// texture map will be used as the network color
			else
				glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
			glBindTexture(GL_TEXTURE_1D, cmap_tex);							// bind the Brewer texture map
			
			glEnable(GL_DEPTH_TEST);								// enable depth
			glut_render_left_projection();							// set up a projection for the left half of the window
			glut_render_modelview();								// set up the modelview matrix using camera details
			glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);		// clear the screen

			GT.glCylinder(sigma, radius);							// render the GT network
			if (flag_adjoint_network == 1) {
				glDisable(GL_TEXTURE_1D);							// disable texture in order to render in other color
				glEnable(GL_BLEND);									// enable color blend
				glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);	// set blend function
				glDisable(GL_DEPTH_TEST);							// should disable depth to render transparancy
				glColor4f(0.0f, 0.3f, 0.0f, 0.2f);
				T.glAdjointCylinder(sigma, radius);
				glDisable(GL_BLEND);
				glEnable(GL_DEPTH_TEST);
				glEnable(GL_TEXTURE_1D);
				glColor4f(1.0f, 1.0f, 1.0f, 1.0f);
			}

			glut_render_right_projection();							// set up a projection for the right half of the window
			glut_render_modelview();								// set up the modelview matrix using camera details
			
			T.glCylinder(sigma, radius);							// render the T network
			if (flag_adjoint_network == 1) {
				glDisable(GL_TEXTURE_1D);							// temporarily disable texture
				glEnable(GL_BLEND);									// enable color blend
				glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);	// set blend function
				glDisable(GL_DEPTH_TEST);							// should disable depth
				glColor4f(0.0f, 0.3f, 0.0f, 0.2f);
				GT.glAdjointCylinder(sigma, radius);
				glDisable(GL_BLEND);
				glEnable(GL_DEPTH_TEST);
				glEnable(GL_TEXTURE_1D);							// re-enable texture
				glColor4f(1.0f, 1.0f, 1.0f, 1.0f);
			}

			sigma = radius;											// set sigma equal to radius
			glDisable(GL_TEXTURE_1D);
		}
	}

	//do comparing and mapping
	else {	
		if (num_nets == 1) {											// if a single network is loaded
			std::cout << "You should have at least two networks to do mapping." << std::endl;	// exit program because there isn't enough network
			exit(1);
		}
		if (num_nets == 2) {											// if two networks are loaded
			if (compareMode) {
				glEnable(GL_TEXTURE_1D);										// enable texture mapping
				if (flag_light == 0)
					glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);	// texture map will be used as the network color
				else
					glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);// map light to texture
				glBindTexture(GL_TEXTURE_1D, cmap_tex);							// bind the Brewer texture map
				
				glEnable(GL_DEPTH_TEST);								// enable depth
				glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);		// clear the screen
				glut_render_left_projection();							// set up a projection for the left half of the window
				glut_render_modelview();								//set up the modelview matrix using camera details

				_GT.glCylinder(sigma, radius);							// render the GT network
				if (flag_adjoint_network == 1) {
					glDisable(GL_TEXTURE_1D);							// temporarily disable texture
					glEnable(GL_BLEND);									// enable color blend
					glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);	// set blend function
					glDisable(GL_DEPTH_TEST);							// should disable depth
					glColor4f(0.0f, 0.3f, 0.0f, 0.2f);
					_T.glAdjointCylinder(sigma, radius);
					glDisable(GL_BLEND);
					glEnable(GL_DEPTH_TEST);
					glEnable(GL_TEXTURE_1D);							// re-enable texture
					glColor4f(1.0f, 1.0f, 1.0f, 1.0f);
				}

				glut_render_right_projection();							// set up a projection for the right half of the window
				glut_render_modelview();								// set up the modelview matrix using camera details

				_T.glCylinder(sigma, radius);							// render the T network
				if (flag_adjoint_network == 1) {
					glDisable(GL_TEXTURE_1D);							// temporarily disable texture
					glEnable(GL_BLEND);									// enable color blend
					glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);	// set blend function
					glDisable(GL_DEPTH_TEST);							//should disable depth
					glColor4f(0.0f, 0.3f, 0.0f, 0.2f);
					_GT.glAdjointCylinder(sigma, radius);
					glDisable(GL_BLEND);
					glEnable(GL_DEPTH_TEST);
					glEnable(GL_TEXTURE_1D);							// re-enable texture
					glColor4f(1.0f, 1.0f, 1.0f, 1.0f);
				}

				sigma = radius;											// set sigma equal to radius
				glDisable(GL_TEXTURE_1D);
			}
			else if (mappingMode) {
				glEnable(GL_COLOR_MATERIAL);
				glEnable(GL_DEPTH_TEST);								// enable depth
				glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);		// clear the screen
				glut_render_left_projection();							// set up a projection for the left half of the window
				glut_render_modelview();								// set up the modelview matrix using camera details
				
				if (flag_highlight_difference == 0)
					_GT.glRandColorCylinder(0, _gt_t, colormap, sigma, radius);
				else
					_GT.glDifferenceCylinder(0, _gt_t, colormap, sigma, radius);
				

				glut_render_right_projection();							// set up a projection for the right half of the window
				glut_render_modelview();								// set up the modelview matrix using camera details
					
				if (flag_highlight_difference == 0)
					_T.glRandColorCylinder(1, _t_gt, colormap, sigma, radius);
				else
					_T.glDifferenceCylinder(1, _t_gt, colormap, sigma, radius);

				sigma = radius;											// set sigma equal to radius
			}
			else if (volumeMode) {
				
				glEnable(GL_DEPTH_TEST);								// enable depth
				glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);		// clear the screen
				glut_render_left_projection();							// set up a projection for the left half of the window
				glut_render_modelview();								// set up the modelview matrix using camera details
				
				draw_box();
				draw_frames();
				glDisable(GL_TEXTURE_1D);								// disable 1D  texture
				glEnable(GL_TEXTURE_3D);								// enable 3D texture mapping
				S.bind();												// bind the texture
				draw_x_slice(planes[0]);								// draw the X plane
				draw_y_slice(planes[1]);								// draw the Y plane
				draw_z_slice(planes[2]);								// draw the Z plane
				glDisable(GL_TEXTURE_3D);								// disable 3D texture mapping
				GT.glCylinder(sigma, radius);

				glut_render_right_projection();							// set up a projection for the right half of the window
				glut_render_modelview();								// set up the modelview matrix using camera details

				draw_box();
				draw_frames();
				glDisable(GL_TEXTURE_1D);								// disable 1D  texture
				glEnable(GL_TEXTURE_3D);								// enable 3D texture mapping
				S.bind();												// bind the texture
				draw_x_slice(planes[0]);								// draw the X plane
				draw_y_slice(planes[1]);								// draw the Y plane
				draw_z_slice(planes[2]);								// draw the Z plane
				glDisable(GL_TEXTURE_3D);								// disable 3D texture mapping
				T.glCylinder(sigma, radius);
				glColor3f(1.0f, 1.0f, 1.0f);

				sigma = radius;
			}
		}
	}
	glDisable(GL_DEPTH_TEST);

	if (num_nets == 2) {												// works only with two networks
		std::ostringstream ss;
		if (mappingMode)												// if it is in mapping mode
			ss << "Mapping Mode";
		else if (compareMode)
			ss << "Compare Mode";										// default mode is compare mode
		else
			ss << "volumeDisplay";

		if (flag_light == 1)
			glDisable(GL_LIGHTING);
		glMatrixMode(GL_PROJECTION);									// set up the 2d viewport for mode text printing
		glPushMatrix();
		glLoadIdentity();
		int X = glutGet(GLUT_WINDOW_WIDTH);								// get the current window width
		int Y = glutGet(GLUT_WINDOW_HEIGHT);							// get the current window height
		glViewport(0, 0, X / 2, Y);										// locate to left bottom corner
		gluOrtho2D(0, X, 0, Y);											// define othogonal aspect
		glColor3f(0.8f, 0.0f, 0.0f);										// using red to show mode

		glMatrixMode(GL_MODELVIEW);
		glPushMatrix();
		glLoadIdentity();

		glRasterPos2f(0, 5);											//print text in the left bottom corner
		glutBitmapString(GLUT_BITMAP_TIMES_ROMAN_24, (const unsigned char*)(ss.str().c_str()));

		glPopMatrix();
		glMatrixMode(GL_PROJECTION);
		glPopMatrix();
		glColor3f(1.0, 1.0, 1.0);										//clear red color
		if (flag_light == 1)
			glEnable(GL_LIGHTING);
	}

	glDisable(GL_COLOR_MATERIAL);

	glutSwapBuffers();
}

// defines camera motion based on mouse dragging
void glut_motion(int x, int y){
	
	int mods = glutGetModifiers();
	if(LButtonDown == true && RButtonDown == false && mods == 0){

	float theta = orbit_factor * (mouse_x - x);		// determine the number of degrees along the x-axis to rotate
	float phi = orbit_factor * (y - mouse_y);		// number of degrees along the y-axis to rotate

	cam.OrbitFocus(theta, phi);						// rotate the camera around the focal point
	}
	else if (mods != 0) {
		float dx = (float)(x - mouse_x);
		float dist = dx;							// calculate the distance that the mouse moved in pixel coordinates
		float sdist = dist;							// scale the distance by the sensitivity
		if (mods == GLUT_ACTIVE_SHIFT) {			// if the SHIFT key is pressed
			planes[0] += (sdist)* S.spacing(0);		// move the X plane based on the mouse wheel direction
		}
		else if (mods == GLUT_ACTIVE_CTRL) {		// if the CTRL key is pressed
			planes[1] += (sdist)* S.spacing(1);		// move the Y plane based on the mouse wheel direction
		}
		else if (mods == GLUT_ACTIVE_ALT) {			// if hte ALT key is pressed
			planes[2] += (sdist)* S.spacing(2);		// move the Z plane based on the mouse wheel direction
		}
		enforce_bounds();
	}

	mouse_x = x;									// update the mouse position
	mouse_y = y;

	glutPostRedisplay();							// re-draw the visualization
}

// sets the menu options
void glut_menu(int value) {
	
	if (value == 1) {								// menu 1 represents comparing mode
		compareMode = true;
		mappingMode = false;
		volumeMode = false;
	}
	if (value == 2) {								// menu 2 represents mapping mode
		compareMode = false;
		mappingMode = true;
		volumeMode = false;
	}
	if (value == 3) {								// menu 3 represents volume mode
		compareMode = false;
		mappingMode = false;
		volumeMode = true;
	}
	if (value == 4) {
		exit(0);
	}
	glutPostRedisplay();
}

// sets the mouse position when clicked
void glut_mouse(int button, int state, int x, int y){
	
	if(button == GLUT_LEFT_BUTTON && state == GLUT_DOWN){
		mouse_x = x;
		mouse_y = y;
		LButtonDown = true;
	}
	else if(button == GLUT_RIGHT_BUTTON && state == GLUT_DOWN){
		mouse_x = x;
		mouse_y = y;
		RButtonDown = true;
	}
	else if(button == GLUT_LEFT_BUTTON && state == GLUT_UP){
		mouse_x = x;
		mouse_y = y;
		LButtonDown = false;
	}
	else if(button == GLUT_RIGHT_BUTTON && state == GLUT_UP){
		mouse_x = x;
		mouse_y = y;
		RButtonDown = false;
	}
}

// define camera move based on mouse wheel move(actually we can combine this with glut_mouse)
void glut_wheel(int wheel, int direction, int x, int y) {
	
	int mods = glutGetModifiers();
	if (mods == GLUT_ACTIVE_SHIFT) {					// if the SHIFT key is pressed
		planes[0] += (direction)* S.spacing(0);			// move the X plane based on the mouse wheel direction
	}
	else if (mods == GLUT_ACTIVE_CTRL) {				// if the CTRL key is pressed
		planes[1] += (direction)* S.spacing(1);			// move the Y plane based on the mouse wheel direction
	}
	else if (mods == GLUT_ACTIVE_ALT) {					// if hte ALT key is pressed
		planes[2] += (direction)* S.spacing(2);			// move the Z plane based on the mouse wheel direction
	}
	else {
		if (direction > 0)								// if it is button 3(up), move closer
			delta = zoom_factor;
		else											// if it is button 4(down), leave farther
			delta = -zoom_factor;
	}
	enforce_bounds();

	cam.Push(delta);
	glutPostRedisplay();
}

// define keyboard inputs
void glut_keyboard(unsigned char key, int x, int y){
	
	// register different keyboard operation
	switch (key) {
		
		// change render mode
		case 'm':																			// if keyboard 'm' is pressed, then change render mode
			if (compareMode && !mappingMode && flag_mapping && !flag_adjoint_network) {		// if current mode is comparing mode
				compareMode = false;
				mappingMode = true;
			}
			else if (!compareMode && mappingMode && flag_mapping && !flag_adjoint_network) {// if current mode is mapping mode
				compareMode = true;
				mappingMode = false;
			}
			break;

		// render the image stack
		case 'v':
			if (!volumeMode && !flag_mapping)
				volumeMode = true;
			else if (volumeMode && !flag_mapping)
				volumeMode = false;
			break;

		// zooming
		case 'w':						// if keyboard 'w' is pressed, then move closer
			delta = zoom_factor;
			cam.Push(delta);
			break;
		case 's':						// if keyboard 's' is pressed, then leave farther
			delta = -zoom_factor;
			cam.Push(delta);
			break;

		// resample and re-render the cylinder in different radius
		case 'd':						// if keyboard 'd' is pressed, then increase radius by radius_factor
			radius += radius_factor;
			break;
		case 'a':						// if keyboard 'a' is pressed, then decrease radius by radius_factor
			radius -= radius_factor;
			// get rid of the degenerated case when radius decrease below 0
			if (radius < 0.001f)
				radius = 0.2;
			break;

		// turn on/off the light
		case 'l':						// if keyboard 'l' is pressed, then change the light
			if (!flag_light && !flag_adjoint_network) {
				flag_light = 1;
				glEnable(GL_LIGHTING);
				glEnable(GL_LIGHT0);
				glEnable(GL_LIGHT1);
			}
			else if (flag_light && !flag_adjoint_network) {
				flag_light = 0;
				glDisable(GL_LIGHTING);
				glDisable(GL_LIGHT0);
				glDisable(GL_LIGHT1);
			}
			break;

		// render a transparant T very close to GT in compare mode
		case 32:						// if keyboard 'SPACE' is pressed, then change the flag_adjoint_network
			if (!flag_adjoint_network && compareMode && !flag_light)
				flag_adjoint_network = 1;
			else if (flag_adjoint_network && compareMode && !flag_light)
				flag_adjoint_network = 0;
			break;

		// render only the difference
		case 'h':
			if (!flag_highlight_difference && mappingMode && !flag_light)
				flag_highlight_difference = 1;
			else if (flag_highlight_difference && mappingMode && !flag_light)
				flag_highlight_difference = 0;
			break;

		// close window and exit application
		case 27:						// if keyboard 'ESC' is pressed, then exit
			exit(0);
	}
	glutPostRedisplay();
}

#define BREWER_CTRL_PTS 11										// number of control points in the Brewer map
void texture_initialize(){

	//define the colormap
	static float  brewer_map[BREWER_CTRL_PTS][3] = {			// generate a Brewer color map (blue to red)
		{0.192157f, 0.211765f, 0.584314f},
		{0.270588f, 0.458824f, 0.705882f},
		{0.454902f, 0.678431f, 0.819608f},
		{0.670588f, 0.85098f, 0.913725f},
		{0.878431f, 0.952941f, 0.972549f},
		{1.0f, 1.0f, 0.74902f},
		{0.996078f, 0.878431f, 0.564706f},
		{0.992157f, 0.682353f, 0.380392f},
		{0.956863f, 0.427451f, 0.262745f},
		{0.843137f, 0.188235f, 0.152941f},
		{0.647059f, 0.0f, 0.14902f}
	};

	glGenTextures(1, &cmap_tex);								// generate a texture map name
	glBindTexture(GL_TEXTURE_1D, cmap_tex);						// bind the texture map

	glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);		// enable linear interpolation
	glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
	glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_WRAP_S, GL_CLAMP);			// clamp the values at the minimum and maximum
	glTexImage1D(GL_TEXTURE_1D, 0, 3, BREWER_CTRL_PTS, 0, GL_RGB, GL_FLOAT,	// upload the texture map to the GPU
					brewer_map);
	if (flag_stack == 1) {
		S.attach();												// attach 3D texture
	}
}

// Initialize the OpenGL (GLUT) window, including starting resolution, callbacks, texture maps, and camera
void glut_initialize(){
	
	int myargc = 1;												// GLUT requires arguments, so create some bogus ones
	char* myargv[1];
	myargv [0]=strdup ("netmets");

	glutInit(&myargc, myargv);									// pass bogus arguments to glutInit()
	glutSetOption(GLUT_MULTISAMPLE, 8);
	glutInitDisplayMode(GLUT_DEPTH | GLUT_DOUBLE | GLUT_RGBA);	// generate a color buffer, depth buffer, and enable double buffering
	glutInitWindowPosition(100,100);							// set the initial window position
	glutInitWindowSize(320, 320);								// set the initial window size
	glutCreateWindow("NetMets - STIM Lab, UH");					// set the dialog box title

#ifdef _WIN32
	GLenum err = glewInit();									// initialize GLEW (necessary for Windows)
	if (GLEW_OK != err) {										// eror with GLEW
		std::cout << "Error with GLEW: " << glewGetErrorString(err) << std::endl;
		exit(1);
	}
#endif
	
	// register callback functions
	glutDisplayFunc(glut_render);				// function executed for rendering - renders networks
	glutMouseFunc(glut_mouse);					// executed on a mouse click - sets starting mouse positions for rotations
	glutMotionFunc(glut_motion);				// executed when the mouse is moved while a button is pressed
	if (flag_mapping == 1) {					// only in mapping mode, keyboard will be used
		glutCreateMenu(glut_menu);				// register menu option callback
		glutAddMenuEntry("Comparing Mode", 1);	// register menu 1 as comparing mode
		glutAddMenuEntry("Mapping Mode", 2);	// register menu 2 as mapping mode
		glutAddMenuEntry("Volume Display", 3);	// register menu 3 as volume metric mode
		glutAddMenuEntry("Exit", 4);			// register menu 4 as exiting
		glutAttachMenu(GLUT_RIGHT_BUTTON);		// register right mouse to open menu option
	}		
	glutKeyboardFunc(glut_keyboard);			// register keyboard callback
	glutMouseWheelFunc(glut_wheel);		

	texture_initialize();						// set up texture mapping (create texture maps, enable features)

	stim::vec3<float> c = bb.center();			// get the center of the network bounding box

	// place the camera along the z-axis at a distance determined by the network size along x and y
	cam.setPosition(c + stim::vec<float>(0, 0, camera_factor * std::max(bb.size()[0], bb.size()[1])));
	cam.LookAt(c[0], c[1], c[2]);				// look at the center of the network
}

#ifdef __CUDACC__
// set specific device to work on
void setdevice(int &device){
	int count;
	cudaGetDeviceCount(&count);					// numbers of device that are available
	if(count < device + 1){
		std::cout<<"The selected CUDA device ("<<device<<") is unavailable. "<<count<<" devices are detected."<<std::endl;
		if (count == 0)
			device = -1;
		else
			exit(1);
	}
}
#else
void setdevice(int &device){
	device = -1;								// set to default -1
}
#endif

// compare both networks and fill the networks with error information
void compare(float sigma, int device){

	GT = GT.compare(T, sigma, device);				// compare the ground truth to the test case - store errors in GT
    T = T.compare(GT, sigma, device);				// compare the test case to the ground truth - store errors in T

	//calculate the metrics
	float FPR = GT.average();						// calculate the metrics
	float FNR = T.average();
	
	std::cout << "FNR: " << FPR << std::endl;		// print false alarms and misses
	std::cout << "FPR: " << FNR << std::endl;
}

// split and map two networks and fill the networks' R with metric information
void mapping(float sigma, int device, float threshold){

	// compare and split two networks
	_GT.split(GT, T, sigma, device, threshold);
	_T.split(T, GT, sigma, device, threshold);

	// mapping two new splitted networks and get their edge relation
	_GT.mapping(_T, _gt_t, device, threshold);
	_T.mapping(_GT, _t_gt, device, threshold);

	// generate random color set based on the number of edges in GT
	size_t num = _gt_t.size();						// also create random color for unmapping edge, but won't be used though
	colormap.resize(3 * num);						// 3 portions compound RGB
	for(int i = 0; i < 3 * num; i++)
		colormap[i] = rand()/(float)RAND_MAX;		// set to [0, 1]
	
	//calculate the metrics
	float FPR = _GT.average(0);						// calculate the metrics
	float FNR = _T.average(0);
	
	std::cout << "FNR: " << FPR << std::endl;		// print false alarms and misses
	std::cout << "FPR: " << FNR << std::endl;
}

// writes features of the networks i.e average segment length, tortuosity, branching index, contraction, fractal dimension, number of end and branch points to a csv file
// Pranathi wrote this - saves network features to a CSV file
void features(std::string filename){
		double avgL_t, avgL_gt, avgT_t, avgT_gt, avgB_t, avgB_gt, avgC_t, avgC_gt, avgFD_t, avgFD_gt;
		unsigned int e_t, e_gt, b_gt, b_t;
		avgL_gt = GT.Lengths();
		avgT_gt = GT.Tortuosities();
		avgL_t = T.Lengths();
		avgT_t = T.Tortuosities();
		avgB_gt = GT.BranchingIndex();
		avgB_t = T.BranchingIndex();
		avgC_gt = GT.Contractions();
		avgFD_gt = GT.FractalDimensions();
		avgC_t = T.Contractions();
		avgFD_t = T.FractalDimensions();
		e_gt = GT.EndP();
		e_t = T.EndP();
		b_gt = GT.BranchP();
		b_t = T.BranchP();
		std::ofstream myfile;
		myfile.open (filename.c_str());
		myfile << "Length, Tortuosity, Contraction, Fractal Dimension, Branch Points, End points, Branching Index, \n";
		myfile << avgL_gt << "," << avgT_gt << "," << avgC_gt << "," << avgFD_gt << "," << b_gt << "," << e_gt << "," << avgB_gt <<std::endl;
		myfile << avgL_t << "," << avgT_t << "," << avgC_t << "," << avgFD_t << "," << b_t << "," << e_t << "," << avgB_t <<std::endl;
		myfile.close();
}

// Output an advertisement for the lab, authors, and usage information
void advertise(){
	std::cout<<std::endl<<std::endl;
	std::cout<<"========================================================================="<<std::endl;
	std::cout<<"Thank you for using the NetMets network comparison tool!"<<std::endl;
	std::cout<<"Scalable Tissue Imaging and Modeling (STIM) Lab, University of Houston"<<std::endl;
	std::cout<<"Developers: Pranathi Vemuri, David Mayerich, Jiaming Guo"<<std::endl;
	std::cout<<"Source: https://git.stim.ee.uh.edu/segmentation/netmets" <<std::endl;
	std::cout<<"========================================================================="<<std::endl<<std::endl;

	std::cout<<"usage: netmets file1 file2 --sigma 3"<<std::endl;
	std::cout<<"            compare two .obj files with a tolerance of 3 (units defined by the network)"<<std::endl<<std::endl;
	std::cout<<"       netmets file1 --gui"<<std::endl;
	std::cout<<"            load a file and display it using OpenGL"<<std::endl<<std::endl;
	std::cout<<"       netmets file1 file2 --device 0"<<std::endl;
	std::cout<<"            compare two files using device 0 (if there isn't a gpu, use cpu)"<<std::endl<<std::endl;
	std::cout<<"       netmets file1 file2 --mapping value"<<std::endl;
	std::cout<<"            mapping two files in random colors with a threshold of value"<<std::endl<<std::endl;
}

int main(int argc, char* argv[])
{
	stim::arglist args;						// create an instance of arglist

	// add arguments
	args.add("help", "prints this help");
	args.add("sigma", "force a sigma value to specify the tolerance of the network comparison", "3");
	args.add("gui", "display the network or network comparison using OpenGL");
	args.add("device", "choose specific device to run (use -1 for CPU only)", "0");
	args.add("features", "save features to a CSV file, specify file name");
	args.add("mapping", "mapping input according to similarity");
	args.add("stack", "load the image stacks");
	args.add("spacing", "spacing between pixel samples in each dimension", "1.0 1.0 1.0", "any real positive value");

	args.parse(argc, argv);					// parse the user arguments

	if(args["help"].is_set()){				// test for help
		advertise();						// output the advertisement
		std::cout<<args.str();				// output arguments
		exit(1);							// exit
	}
	
	if (args.nargs() >= 1) {				// if at least one network file is specified
		num_nets = 1;						// set the number of networks to one
		std::vector<std::string> tmp = stim::parser::split(args.arg(0), '.');	// split the filename at '.'
		if ("swc" == tmp[1]) 				// loading swc file
			GT.load_swc(args.arg(0));		// load the specified file as the ground truth
		else if ("obj" == tmp[1])			// loading obj file
			GT.load_obj(args.arg(0));		// load the specified file as the ground truth
		else {
			std::cout << "Invalid loading file" << std::endl;
			exit(1);
		}	
	}

	if (args.nargs() == 2) {								// if two files are specified, they will be displayed in neighboring viewports and compared
		int device = args["device"].as_int();				// get the device value from the user
		num_nets = 2;										// set the number of networks to two
		sigma = args["sigma"].as_float();					// get the sigma value from the user
		std::vector<std::string> tmp = stim::parser::split(args.arg(1), '.');	// split the filename at '.'
		if ("swc" == tmp[1]) 								// loading swc files
			T.load_swc(args.arg(1));                        // load the second (test) network
		else if ("obj" == tmp[1])							// loading obj files
			T.load_obj(args.arg(1));
		else {
			std::cout << "Invalid loading file" << std::endl;
			exit(1);
		}
		if (args["features"].is_set())						// if the user wants to save features
			features(args["features"].as_string());

		GT = GT.resample(resample_rate * sigma);			// resample both networks based on the sigma value
		T = T.resample(resample_rate * sigma);
		if (args["mapping"].is_set()) {
			float threshold = (float)args["mapping"].as_float();
			mapping(sigma, device, threshold);
		}
		else
			compare(sigma, device);							// run the comparison algorithm
		}
	
	if (args["stack"].is_set()) {
		S.load_images(args["stack"].as_string());
		flag_stack = true;
	}

	float sp[3] = { 1.0f, 1.0f, 1.0f };						// allocate variables for grid spacing
	if (args["spacing"].nargs() == 1)						// if only one argument is given
		sp[2] = (float)args["spacing"].as_float(0);			// assume that it's the z coordinate (most often anisotropic)
	else if (args["spacing"].nargs() == 3) {				// if three arguments are given
		sp[0] = (float)args["spacing"].as_float(0);			// set the arguments as expected
		sp[1] = (float)args["spacing"].as_float(1);
		sp[2] = (float)args["spacing"].as_float(2);
	}

	S.spacing(sp[0], sp[1], sp[2]);							// set the spacing between samples

	planes[0] = S.size(0) / 4.0f;							// initialize the start positions for the orthogonal display planes
	planes[1] = S.size(1) / 4.0f;
	planes[2] = S.size(2) / 4.0f;

	//if a GUI is requested, display the network using OpenGL
	if(args["gui"].is_set()){
		if (args["mapping"].is_set()) {
			flag_mapping = true;							// set flag of mapping to true
			bb = _GT.boundingbox();							// generate a bounding volume		
			glut_initialize();								// create the GLUT window and set callback functions		
			glutMainLoop();									// enter GLUT event processing cycle
		}
		else {
			bb = GT.boundingbox();							// generate a bounding volume		
			glut_initialize();								// create the GLUT window and set callback functions		
			glutMainLoop();									// enter GLUT event processing cycle
		}
	}
}