#include #include #include #include //OpenGL includes #include #include //STIM includes #include #include #include #include #include #ifdef __CUDACC__ //CUDA includes #include #endif //ANN includes //#include //BOOST includes #include //visualization objects stim::gl_aaboundingbox bb; //axis-aligned bounding box object stim::camera cam; //camera object unsigned num_nets = 0; stim::gl_network GT; //ground truth network stim::gl_network T; //test network //hard-coded parameters float resample_rate = 0.5f; //sample rate for the network (fraction of sigma used as the maximum sample rate) float camera_factor = 1.2f; //start point of the camera as a function of X and Y size float orbit_factor = 0.01f; //degrees per pixel used to orbit the camera //mouse position tracking int mouse_x; int mouse_y; //OpenGL objects GLuint cmap_tex = 0; //texture name for the color map //sets an OpenGL viewport taking up the entire window void glut_render_single_projection(){ glMatrixMode(GL_PROJECTION); //load the projection matrix for editing glLoadIdentity(); //start with the identity matrix int X = glutGet(GLUT_WINDOW_WIDTH); //use the whole screen for rendering int Y = glutGet(GLUT_WINDOW_HEIGHT); glViewport(0, 0, X, Y); //specify a viewport for the entire window float aspect = (float)X / (float)Y; //calculate the aspect ratio gluPerspective(60, aspect, 0.1, 1000000); //set up a perspective projection } //sets an OpenGL viewport taking up the left half of the window void glut_render_left_projection(){ glMatrixMode(GL_PROJECTION); //load the projection matrix for editing glLoadIdentity(); //start with the identity matrix int X = glutGet(GLUT_WINDOW_WIDTH) / 2; //only use half of the screen for the viewport int Y = glutGet(GLUT_WINDOW_HEIGHT); glViewport(0, 0, X, Y); //specify the viewport on the left float aspect = (float)X / (float)Y; //calculate the aspect ratio gluPerspective(60, aspect, 0.1, 1000000); //set up a perspective projection } //sets an OpenGL viewport taking up the right half of the window void glut_render_right_projection(){ glMatrixMode(GL_PROJECTION); //load the projection matrix for editing glLoadIdentity(); //start with the identity matrix int X = glutGet(GLUT_WINDOW_WIDTH) / 2; //only use half of the screen for the viewport int Y = glutGet(GLUT_WINDOW_HEIGHT); glViewport(X, 0, X, Y); //specify the viewport on the right float aspect = (float)X / (float)Y; //calculate the aspect ratio gluPerspective(60, aspect, 0.1, 1000000); //set up a perspective projection } void glut_render_modelview(){ glMatrixMode(GL_MODELVIEW); //load the modelview matrix for editing glLoadIdentity(); //start with the identity matrix stim::vec3 eye = cam.getPosition(); //get the camera position (eye point) stim::vec3 focus = cam.getLookAt(); //get the camera focal point stim::vec3 up = cam.getUp(); //get the camera "up" orientation gluLookAt(eye[0], eye[1], eye[2], focus[0], focus[1], focus[2], up[0], up[1], up[2]); //set up the OpenGL camera } //draws the network(s) void glut_render(void) { if(num_nets == 1){ //if a single network is loaded glut_render_single_projection(); //fill the entire viewport glut_render_modelview(); //set up the modelview matrix with camera details glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); //clear the screen GT.glCenterline(GT.nmags() - 1); //render the GT network (the only one loaded) } if(num_nets == 2){ //if two networks are loaded glut_render_left_projection(); //set up a projection for the left half of the window glut_render_modelview(); //set up the modelview matrix using camera details glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); //clear the screen glEnable(GL_TEXTURE_1D); //enable texture mapping glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE); //texture map will be used as the network color glBindTexture(GL_TEXTURE_1D, cmap_tex); //bind the Brewer texture map GT.glCenterline(GT.nmags() - 1); //render the GT network glut_render_right_projection(); //set up a projection for the right half of the window glut_render_modelview(); //set up the modelview matrix using camera details T.glCenterline(T.nmags() - 1); //render the T network } glutSwapBuffers(); } // defines camera motion based on mouse dragging void glut_motion(int x, int y){ float theta = orbit_factor * (mouse_x - x); //determine the number of degrees along the x-axis to rotate float phi = orbit_factor * (y - mouse_y); //number of degrees along the y-axis to rotate cam.OrbitFocus(theta, phi); //rotate the camera around the focal point mouse_x = x; //update the mouse position mouse_y = y; glutPostRedisplay(); //re-draw the visualization } // sets the mouse position when clicked void glut_mouse(int button, int state, int x, int y){ mouse_x = x; mouse_y = y; } #define BREWER_CTRL_PTS 11 //number of control points in the Brewer map void texture_initialize(){ //define the colormap static float brewer_map[BREWER_CTRL_PTS][3] = { //generate a Brewer color map (blue to red) {0.192157f, 0.211765f, 0.584314f}, {0.270588f, 0.458824f, 0.705882f}, {0.454902f, 0.678431f, 0.819608f}, {0.670588f, 0.85098f, 0.913725f}, {0.878431f, 0.952941f, 0.972549f}, {1.0f, 1.0f, 0.74902f}, {0.996078f, 0.878431f, 0.564706f}, {0.992157f, 0.682353f, 0.380392f}, {0.956863f, 0.427451f, 0.262745f}, {0.843137f, 0.188235f, 0.152941f}, {0.647059f, 0.0f, 0.14902f} }; glGenTextures(1, &cmap_tex); //generate a texture map name glBindTexture(GL_TEXTURE_1D, cmap_tex); //bind the texture map glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); //enable linear interpolation glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_WRAP_S, GL_CLAMP); //clamp the values at the minimum and maximum glTexImage1D(GL_TEXTURE_1D, 0, 3, BREWER_CTRL_PTS, 0, GL_RGB, GL_FLOAT, //upload the texture map to the GPU brewer_map); } //Initialize the OpenGL (GLUT) window, including starting resolution, callbacks, texture maps, and camera void glut_initialize(){ int myargc = 1; //GLUT requires arguments, so create some bogus ones char* myargv[1]; myargv [0]=strdup ("netmets"); glutInit(&myargc, myargv); //pass bogus arguments to glutInit() glutInitDisplayMode(GLUT_DEPTH | GLUT_DOUBLE | GLUT_RGBA); //generate a color buffer, depth buffer, and enable double buffering glutInitWindowPosition(100,100); //set the initial window position glutInitWindowSize(320,320); //set the initial window size glutCreateWindow("NetMets - STIM Lab, UH"); //set the dialog box title // register callback functions glutDisplayFunc(glut_render); //function executed for rendering - renders networks glutMouseFunc(glut_mouse); //executed on a mouse click - sets starting mouse positions for rotations glutMotionFunc(glut_motion); //executed when the mouse is moved while a button is pressed texture_initialize(); //set up texture mapping (create texture maps, enable features) stim::vec3 c = bb.center(); //get the center of the network bounding box //place the camera along the z-axis at a distance determined by the network size along x and y cam.setPosition(c + stim::vec(0, 0, camera_factor * std::max(bb.size()[0], bb.size()[1]))); cam.LookAt(c[0], c[1], c[2]); //look at the center of the network glClearColor(1, 1, 1, 1); } #ifdef __CUDACC__ void setdevice(int &device){ int count; cudaGetDeviceCount(&count); // numbers of device that are available if(count < device + 1){ std::cout<<"No such device available, please set another device"<= 1){ //if at least one network file is specified num_nets = 1; //set the number of networks to one GT.load_obj(args.arg(0)); //load the specified file as the ground truth /*GT.to_txt("Graph.txt");*/ } if(args.nargs() == 2){ //if two files are specified, they will be displayed in neighboring viewports and compared int device = args["device"].as_int(); //get the device value from the user num_nets = 2; //set the number of networks to two float sigma = args["sigma"].as_float(); //get the sigma value from the user T.load_obj(args.arg(1)); //load the second (test) network if(args["features"].is_set()) //if the user wants to save features features(args["features"].as_string()); GT = GT.resample(resample_rate * sigma); //resample both networks based on the sigma value T = T.resample(resample_rate * sigma); setdevice(device); compare(sigma, device); //run the comparison algorithm } //if a GUI is requested, display the network using OpenGL if(args["gui"].is_set()){ bb = GT.boundingbox(); //generate a bounding volume glut_initialize(); //create the GLUT window and set callback functions glutMainLoop(); // enter GLUT event processing cycle } }