main.cpp 12.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
#include <iostream>
#include <sstream>

#include <GL/glut.h>

#include <stim/visualization/camera.h>
#include <stim/parser/arguments.h>
#include <stim/visualization/obj.h>
#include <stim/visualization/gl_spharmonics.h>
#include <stim/math/constants.h>

#define theta_scale		0.01
#define phi_scale		0.01
#define zoom_scale		0.1

//create a global camera that will specify the viewport
stim::camera cam;
int mx, my;			//mouse coordinates in the window space

stim::gl_spharmonics<double> S;

float d = 1.5;		//initial distance between the camera and the sphere

bool rotate_zoom = true;	//sets the current camera mode (rotation = true, zoom = false)

stim::arglist args;			//class for processing command line arguments

bool zaxis = false;			//render the z-axis (set via a command line flag)

bool init(){

	//set the clear color to white
	glClearColor(1.0f, 1.0f, 1.0f, 1.0f);

	//initialize the camera
	cam.setPosition(d, d, d);
	cam.LookAt(0, 0, 0, 0, 1, 1);
	cam.setFOV(40);

	//initialize the texture map stuff	
	S.glInit(256);

	return true;
}

//code that is run every time the user changes something
void display(){
	//clear the screen
	glClear(GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT);

	//set the projection matrix
	glMatrixMode(GL_PROJECTION);				//put the projection matrix on the stack
	glLoadIdentity();							//set it to the identity matrix
	gluPerspective(cam.getFOV(), 1, 0.001, 1000000);	//set up a perspective projection


	//set the model view matrix
	glMatrixMode(GL_MODELVIEW);					//load the model view matrix to the stack
	glLoadIdentity();							//set it to the identity matrix

	//get the camera parameters
	stim::vec3<float> p = cam.getPosition();
	stim::vec3<float> u = cam.getUp();
	stim::vec3<float> d = cam.getDirection();

	//specify the camera parameters to OpenGL
	gluLookAt(p[0], p[1], p[2], d[0], d[1], d[2], u[0], u[1], u[2]);

	//draw the sphere
	S.glRender();

	//glClear(GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT);

	//draw the z-axis if requested
	if(zaxis){
		glDisable(GL_TEXTURE_2D);
		glColor3f(0.0f, 1.0f, 0.0f);
		glBegin(GL_LINES);
			glVertex3f(0.0, 0.0, 0.0);
			glVertex3f(0.0, 0.0, 100.0);
		glEnd();
	}

	//flush commands on the GPU
	glutSwapBuffers();
}

void mouse_press(int button, int state, int x, int y){

	//set the camera motion mode based on the mouse button pressed
	if(button == GLUT_LEFT_BUTTON)
		rotate_zoom = true;
	else if(button == GLUT_RIGHT_BUTTON)
		rotate_zoom = false;

	//if the mouse is pressed
	if(state == GLUT_DOWN){
		//set the current mouse position
		mx = x;		my = y;
	}
}

void mouse_drag(int x, int y){

	//if the camera is in rotation mode, rotate
	if(rotate_zoom == true){
		float theta = theta_scale * (mx - x);
		float phi = -phi_scale * (my - y);

		//if the mouse is dragged
		cam.OrbitFocus(theta, phi);
	}
	//otherwize zoom
	else{
		cam.Push(zoom_scale*(my - y));
	}

	//update the mouse position
	mx = x;		my = y;

	glutPostRedisplay();
}

float uniformRandom()
{
	return (  (float)(rand()))/(  (float)(RAND_MAX)); 
}

std::vector<stim::vec3 <float> >
sample_sphere(int num_samples, float radius = 1.0)
{

	float solidAngle = 2*stim::PI;	///Solid angle to sample over
	float PHI[2], Z[2], range;	///Range of angles in cylinderical coordinates
	PHI[0] = solidAngle/2;		///project the solid angle into spherical coords
	PHI[1] = asin(0);		///
	Z[0] = cos(PHI[0]);		///project the z into spherical coordinates
	Z[1] = cos(PHI[1]);		///
	range = Z[0] - Z[1];		///the range of all possible z values.

	float z, theta, phi;		/// temporary individual

	std::vector<stim::vec3<float> > samples;

	//srand(time(NULL));			///set random seed
	srand(100);			///set random seed

	for(int i = 0; i < num_samples; i++)
	{
		z = uniformRandom()*range + Z[1];
		theta = uniformRandom()*stim::TAU;
		phi = acos(z);
		stim::vec3<float> sph(1, theta, phi);
		stim::vec3<float> cart = sph.sph2cart();
		sph[0] *= radius;
		samples.push_back(cart);
	}
	samples.push_back(stim::vec3<float>(0.,0.,1.));
	samples.push_back(stim::vec3<float>(0.,1.0,0.));
	samples.push_back(stim::vec3<float>(0.,-1.,0.));


	std::stringstream name;
      for(int i = 0; i < num_samples; i++)
           name << samples[i].str() << std::endl;
           name << samples[num_samples].str() << std::endl;
           name << samples[num_samples+1].str() << std::endl;
           name << samples[num_samples+2].str() << std::endl;
	
    
      std::ofstream outFile;
      outFile.open("New_Pos_Vectors.txt");
      outFile << name.str().c_str();

	return samples;
}

void process_arguments(int argc, char* argv[]){

	args.add("help", "prints this help");
	args.add("rand", "generates a random set of SH coefficients", "", "[N min max]");
	args.add("sparse", "generates a function based on a set of sparse basis functions", "", "[l0 m0 c0 l1 m1 c1 l2 m2 c2 ...]");
	args.add("basis", "displays the specified SH basis function", "", "n, or [l m]");
	args.add("obj", "approximates a geometric object given as a Wavefront OBJ file", "", "filename");
	args.add("out", "filename for outputting spherical harmonics coefficients", "", "filename");
	args.add("zaxis", "render the z-axis as a green line");
	args.add("pdf", "outputs the PDF if an OBJ files is given");

	//process the command line arguments
	args.parse(argc, argv);

	//set the z-axis flag
	if(args["zaxis"].is_set())
		zaxis = true;

	//if arguments are specified, push them as coefficients
	if(args.nargs() > 0){
		//push all of the arguments to the spherical harmonics class as coefficients
		for(unsigned int a = 0; a < args.nargs(); a++)
			S.push(atof(args.arg(a).c_str()));
	}

	//if the user wants to use a random set of SH coefficients
	else if(args["rand"].is_set()){

		//return an error if the user specifies both fixed and random coefficients
		if(args.nargs() != 0){
			std::cout<<"Error: both fixed and random coefficients are specified"<<std::endl;
			exit(1);
		}

		//seed the random number generator
		srand(time(NULL));

		unsigned int N = args["rand"].as_int(0);		//get the number of random coefficients
		double Cmin = args["rand"].as_float(1);			//get the minimum and maximum coefficient values
		double Cmax = args["rand"].as_float(2);

		//generate the coefficients
		for(unsigned int c = 0; c < N; c++){

			double norm = (double) rand() / RAND_MAX;		//calculate a random number in the range [0, 1]
			double scaled = norm * (Cmax - Cmin) + Cmin;	//scale the random number to [Cmin, Cmax]
			S.push(scaled);									//push the value as a coefficient
		}
	}
	else if(args["sparse"].is_set()){

		//calculate the number of sparse coefficients
		unsigned int nC = args["sparse"].nargs() / 3;

		std::vector<unsigned int> C;	//vector of 1D coefficients
		unsigned int Cmax = 0;			//maximum coefficient provided

		std::vector<double> V;			//vector of 1D coefficient values

		unsigned int c;
		int l, m;
		double v;
		//for each provided coefficient
		for(unsigned int i = 0; i < nC; i++){

			//load data for a single coefficient from the command line
			l = args["sparse"].as_int( i * 3 + 0 );
			m = args["sparse"].as_int( i * 3 + 1 );
			v = args["sparse"].as_float( i * 3 + 2 );

			//calculate the 1D coefficient
			c = pow(l + 1, 2) - (l - m) - 1;

			//update the maximum coefficient index
			if(c > Cmax) Cmax = c;

			//insert the coefficient and value into vectors
			C.push_back(c);
			V.push_back(v);			
		}

		//set the size of the SH coefficient array
		S.resize(Cmax + 1);
		
		//insert each coefficient
		for(unsigned int i = 0; i < nC; i++){
			S.setc(C[i], V[i]);
		}

	}
	else if(args["obj"].is_set()){

		std::string filename = args["obj"].as_string(0);
		unsigned int l = args["obj"].as_int(1);
		int p = args["obj"].as_int(2);
		std::cout << p << std::endl;
		std::vector<stim::vec3<float> > sphere = sample_sphere(p);
		p = p+3;

		//create an obj object
		stim::obj<double> object(filename);

		//get the centroid of the object
		stim::vec<double> c = object.centroid();
		c[0] = 0; c[1] = 0; c[2] = 0;

		//get the number of vertices in the model
		unsigned int nV = object.numV();

		//for each vertex in the model, create an MC sample
		std::vector< stim::vec<double> > spherical;
		stim::vec<float> sample;
		stim::vec<float> centered;
		for(unsigned int i = 0; i < nV; i++){

			sample = object.getV(i);			//get a vertex in cartesian coordinates
			centered = sample - c;
			spherical.push_back(centered.cart2sph());
		}

		//generate the spherical PDF
		stim::spharmonics<double> P;
		P.pdf(spherical, l, l);
		std::vector<float> weights;		///array of weights
		if(args["pdf"].is_set())
		{
//			S.pdf(spherical, l, l);
			for(int i = 0; i < p; i++)	///for each point on the sphere.
			{
				float val = 0;		///value starts with 0
				for(int j = 0; j < nV; j++)		///for each point on surface
				{
					stim::vec3<float> star(object.getV(j)[0] - c[0],
						object.getV(j)[1] - c[1], 
						object.getV(j)[2] - c[2]);		///center each point on the model 
//					val += abs(star.dot(sphere[i])); 		///sum the dot product of the centered point and the sphere.
					if(star.dot(sphere[i]) > 0)
						val += pow(star.dot(sphere[i]),8); 		///sum the dot product of the centered point and the sphere.
				}
				weights.push_back(val);
			}
			
			S.mcBegin(l,l);
			for(int i = 0; i < p; i++)
			{
				if(sphere[i] == stim::vec3<float>(0., 0., 1.))
				{
					std::cout << i  << sphere[i] << " " << weights[i] << std::endl;
				}
				if(sphere[i] == stim::vec3<float>(0., 1., 0.))
				{
					std::cout << i << sphere[i] << " " << weights[i] << std::endl;
				}
				if(sphere[i] == stim::vec3<float>(0., -1., 0.))
				{
					std::cout << i <<  sphere[i] << " " << weights[i] << std::endl;
				}
				stim::vec3<float> sph = sphere[i].cart2sph();
				S.mcSample(sph[1], sph[2], weights[i]);
			}
			S.mcEnd();

		}
		else{ 
			//begin Monte-Carlo sampling, using the model vertices as samples
			S.mcBegin(l, l);
			double theta, phi, fx, px;
			for(unsigned int i = 0; i < nV; i++){
				theta = spherical[i][1];
				phi = spherical[i][2];
				fx = spherical[i][0];
				px = P(theta, phi);
				S.mcSample(theta, phi, fx / px);
			}
			S.mcEnd();
		}
	}

	//if the user specifies an SH basis function
	else if(args["basis"].is_set()){

		unsigned int n;

		//if the user specifies one index for the basis function
		if(args["basis"].nargs() == 1)
			n = args["basis"].as_int(0);
		else if(args["basis"].nargs() == 2){
			int l = args["basis"].as_int(0);		//2D indexing (l, m)
			int m = args["basis"].as_int(1);

			n = pow(l+1, 2) - (l - m) - 1;			//calculate the 1D index
		}

		//add zeros for the first (n-1) coefficients
		for(unsigned int c = 0; c < n; c++)
			S.push(0);

		//add the n'th coefficient
		S.push(1);
	}

	//output the spherical harmonics coefficients if requested
	if(args["out"].is_set()){
		
		if(args["out"].nargs() == 0)
			std::cout<<S.str()<<std::endl;
		else{

			//open the output file
			std::ofstream outfile;
			outfile.open(args["out"].as_string(0).c_str());

			outfile<<S.str();

			outfile.close();
		}
	}


	
	

	//if the user asks for help, give it and exit
	if(args["help"].is_set()){
		std::cout<<"usage: shview c0 c1 c2 c3 ... --option [A B C]"<<std::endl;
		std::cout<<"examples:"<<std::endl;
		std::cout<<"   generate a spherical function with 4 coefficients (l=0 to 2)"<<std::endl;
		std::cout<<"          shview 1.3 0.2 2.3 1.34"<<std::endl;
		std::cout<<"   display a spherical function representing the spherical harmonic l = 3, m = -2"<<std::endl;
		std::cout<<"          shview --basis 3 -2"<<std::endl;



		std::cout<<args.str();
		exit(0);
	}
}

int main(int argc, char *argv[]){

#ifdef _WIN32
	args.set_ansi(false);
#endif

	//initialize GLUT
	glutInit(&argc, argv);

	//process arguments
	process_arguments(argc, argv);

	//set the size of the GLUT window
	glutInitWindowSize(500, 500);

	glutInitDisplayMode(GLUT_DEPTH | GLUT_RGBA | GLUT_DOUBLE);

	//create the GLUT window (and an OpenGL context)
	glutCreateWindow("Spherical Harmonic Viewport");

	//set the display function (which will be called repeatedly by glutMainLoop)
	glutDisplayFunc(display);

	//set the mouse press function (called when a mouse button is pressed)
	glutMouseFunc(mouse_press);
	//set the mouse motion function (which will be called any time the mouse is dragged)
	glutMotionFunc(mouse_drag);

	//run the initialization function
	if(!init())
		return 1;	//return an error if it fails


	//enter the main loop
	glutMainLoop();

	//return 0 if everything is awesome
	return 0;



}