main.cpp
12.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
#include <iostream>
#include <sstream>
#include <GL/glut.h>
#include <stim/visualization/camera.h>
#include <stim/parser/arguments.h>
#include <stim/visualization/obj.h>
#include <stim/visualization/gl_spharmonics.h>
#include <stim/math/constants.h>
#define theta_scale 0.01
#define phi_scale 0.01
#define zoom_scale 0.1
//create a global camera that will specify the viewport
stim::camera cam;
int mx, my; //mouse coordinates in the window space
stim::gl_spharmonics<double> S;
float d = 1.5; //initial distance between the camera and the sphere
bool rotate_zoom = true; //sets the current camera mode (rotation = true, zoom = false)
stim::arglist args; //class for processing command line arguments
bool zaxis = false; //render the z-axis (set via a command line flag)
bool init(){
//set the clear color to white
glClearColor(1.0f, 1.0f, 1.0f, 1.0f);
//initialize the camera
cam.setPosition(d, d, d);
cam.LookAt(0, 0, 0, 0, 1, 1);
cam.setFOV(40);
//initialize the texture map stuff
S.glInit(256);
return true;
}
//code that is run every time the user changes something
void display(){
//clear the screen
glClear(GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT);
//set the projection matrix
glMatrixMode(GL_PROJECTION); //put the projection matrix on the stack
glLoadIdentity(); //set it to the identity matrix
gluPerspective(cam.getFOV(), 1, 0.001, 1000000); //set up a perspective projection
//set the model view matrix
glMatrixMode(GL_MODELVIEW); //load the model view matrix to the stack
glLoadIdentity(); //set it to the identity matrix
//get the camera parameters
stim::vec3<float> p = cam.getPosition();
stim::vec3<float> u = cam.getUp();
stim::vec3<float> d = cam.getDirection();
//specify the camera parameters to OpenGL
gluLookAt(p[0], p[1], p[2], d[0], d[1], d[2], u[0], u[1], u[2]);
//draw the sphere
S.glRender();
//glClear(GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT);
//draw the z-axis if requested
if(zaxis){
glDisable(GL_TEXTURE_2D);
glColor3f(0.0f, 1.0f, 0.0f);
glBegin(GL_LINES);
glVertex3f(0.0, 0.0, 0.0);
glVertex3f(0.0, 0.0, 100.0);
glEnd();
}
//flush commands on the GPU
glutSwapBuffers();
}
void mouse_press(int button, int state, int x, int y){
//set the camera motion mode based on the mouse button pressed
if(button == GLUT_LEFT_BUTTON)
rotate_zoom = true;
else if(button == GLUT_RIGHT_BUTTON)
rotate_zoom = false;
//if the mouse is pressed
if(state == GLUT_DOWN){
//set the current mouse position
mx = x; my = y;
}
}
void mouse_drag(int x, int y){
//if the camera is in rotation mode, rotate
if(rotate_zoom == true){
float theta = theta_scale * (mx - x);
float phi = -phi_scale * (my - y);
//if the mouse is dragged
cam.OrbitFocus(theta, phi);
}
//otherwize zoom
else{
cam.Push(zoom_scale*(my - y));
}
//update the mouse position
mx = x; my = y;
glutPostRedisplay();
}
float uniformRandom()
{
return ( (float)(rand()))/( (float)(RAND_MAX));
}
std::vector<stim::vec3 <float> >
sample_sphere(int num_samples, float radius = 1.0)
{
float solidAngle = 2*stim::PI; ///Solid angle to sample over
float PHI[2], Z[2], range; ///Range of angles in cylinderical coordinates
PHI[0] = solidAngle/2; ///project the solid angle into spherical coords
PHI[1] = asin(0); ///
Z[0] = cos(PHI[0]); ///project the z into spherical coordinates
Z[1] = cos(PHI[1]); ///
range = Z[0] - Z[1]; ///the range of all possible z values.
float z, theta, phi; /// temporary individual
std::vector<stim::vec3<float> > samples;
//srand(time(NULL)); ///set random seed
srand(100); ///set random seed
for(int i = 0; i < num_samples; i++)
{
z = uniformRandom()*range + Z[1];
theta = uniformRandom()*stim::TAU;
phi = acos(z);
stim::vec3<float> sph(1, theta, phi);
stim::vec3<float> cart = sph.sph2cart();
sph[0] *= radius;
samples.push_back(cart);
}
samples.push_back(stim::vec3<float>(0.,0.,1.));
samples.push_back(stim::vec3<float>(0.,1.0,0.));
samples.push_back(stim::vec3<float>(0.,-1.,0.));
std::stringstream name;
for(int i = 0; i < num_samples; i++)
name << samples[i].str() << std::endl;
name << samples[num_samples].str() << std::endl;
name << samples[num_samples+1].str() << std::endl;
name << samples[num_samples+2].str() << std::endl;
std::ofstream outFile;
outFile.open("New_Pos_Vectors.txt");
outFile << name.str().c_str();
return samples;
}
void process_arguments(int argc, char* argv[]){
args.add("help", "prints this help");
args.add("rand", "generates a random set of SH coefficients", "", "[N min max]");
args.add("sparse", "generates a function based on a set of sparse basis functions", "", "[l0 m0 c0 l1 m1 c1 l2 m2 c2 ...]");
args.add("basis", "displays the specified SH basis function", "", "n, or [l m]");
args.add("obj", "approximates a geometric object given as a Wavefront OBJ file", "", "filename");
args.add("out", "filename for outputting spherical harmonics coefficients", "", "filename");
args.add("zaxis", "render the z-axis as a green line");
args.add("pdf", "outputs the PDF if an OBJ files is given");
//process the command line arguments
args.parse(argc, argv);
//set the z-axis flag
if(args["zaxis"].is_set())
zaxis = true;
//if arguments are specified, push them as coefficients
if(args.nargs() > 0){
//push all of the arguments to the spherical harmonics class as coefficients
for(unsigned int a = 0; a < args.nargs(); a++)
S.push(atof(args.arg(a).c_str()));
}
//if the user wants to use a random set of SH coefficients
else if(args["rand"].is_set()){
//return an error if the user specifies both fixed and random coefficients
if(args.nargs() != 0){
std::cout<<"Error: both fixed and random coefficients are specified"<<std::endl;
exit(1);
}
//seed the random number generator
srand(time(NULL));
unsigned int N = args["rand"].as_int(0); //get the number of random coefficients
double Cmin = args["rand"].as_float(1); //get the minimum and maximum coefficient values
double Cmax = args["rand"].as_float(2);
//generate the coefficients
for(unsigned int c = 0; c < N; c++){
double norm = (double) rand() / RAND_MAX; //calculate a random number in the range [0, 1]
double scaled = norm * (Cmax - Cmin) + Cmin; //scale the random number to [Cmin, Cmax]
S.push(scaled); //push the value as a coefficient
}
}
else if(args["sparse"].is_set()){
//calculate the number of sparse coefficients
unsigned int nC = args["sparse"].nargs() / 3;
std::vector<unsigned int> C; //vector of 1D coefficients
unsigned int Cmax = 0; //maximum coefficient provided
std::vector<double> V; //vector of 1D coefficient values
unsigned int c;
int l, m;
double v;
//for each provided coefficient
for(unsigned int i = 0; i < nC; i++){
//load data for a single coefficient from the command line
l = args["sparse"].as_int( i * 3 + 0 );
m = args["sparse"].as_int( i * 3 + 1 );
v = args["sparse"].as_float( i * 3 + 2 );
//calculate the 1D coefficient
c = pow(l + 1, 2) - (l - m) - 1;
//update the maximum coefficient index
if(c > Cmax) Cmax = c;
//insert the coefficient and value into vectors
C.push_back(c);
V.push_back(v);
}
//set the size of the SH coefficient array
S.resize(Cmax + 1);
//insert each coefficient
for(unsigned int i = 0; i < nC; i++){
S.setc(C[i], V[i]);
}
}
else if(args["obj"].is_set()){
std::string filename = args["obj"].as_string(0);
unsigned int l = args["obj"].as_int(1);
int p = args["obj"].as_int(2);
std::cout << p << std::endl;
std::vector<stim::vec3<float> > sphere = sample_sphere(p);
p = p+3;
//create an obj object
stim::obj<double> object(filename);
//get the centroid of the object
stim::vec<double> c = object.centroid();
c[0] = 0; c[1] = 0; c[2] = 0;
//get the number of vertices in the model
unsigned int nV = object.numV();
//for each vertex in the model, create an MC sample
std::vector< stim::vec<double> > spherical;
stim::vec<float> sample;
stim::vec<float> centered;
for(unsigned int i = 0; i < nV; i++){
sample = object.getV(i); //get a vertex in cartesian coordinates
centered = sample - c;
spherical.push_back(centered.cart2sph());
}
//generate the spherical PDF
stim::spharmonics<double> P;
P.pdf(spherical, l, l);
std::vector<float> weights; ///array of weights
if(args["pdf"].is_set())
{
// S.pdf(spherical, l, l);
for(int i = 0; i < p; i++) ///for each point on the sphere.
{
float val = 0; ///value starts with 0
for(int j = 0; j < nV; j++) ///for each point on surface
{
stim::vec3<float> star(object.getV(j)[0] - c[0],
object.getV(j)[1] - c[1],
object.getV(j)[2] - c[2]); ///center each point on the model
// val += abs(star.dot(sphere[i])); ///sum the dot product of the centered point and the sphere.
if(star.dot(sphere[i]) > 0)
val += pow(star.dot(sphere[i]),8); ///sum the dot product of the centered point and the sphere.
}
weights.push_back(val);
}
S.mcBegin(l,l);
for(int i = 0; i < p; i++)
{
if(sphere[i] == stim::vec3<float>(0., 0., 1.))
{
std::cout << i << sphere[i] << " " << weights[i] << std::endl;
}
if(sphere[i] == stim::vec3<float>(0., 1., 0.))
{
std::cout << i << sphere[i] << " " << weights[i] << std::endl;
}
if(sphere[i] == stim::vec3<float>(0., -1., 0.))
{
std::cout << i << sphere[i] << " " << weights[i] << std::endl;
}
stim::vec3<float> sph = sphere[i].cart2sph();
S.mcSample(sph[1], sph[2], weights[i]);
}
S.mcEnd();
}
else{
//begin Monte-Carlo sampling, using the model vertices as samples
S.mcBegin(l, l);
double theta, phi, fx, px;
for(unsigned int i = 0; i < nV; i++){
theta = spherical[i][1];
phi = spherical[i][2];
fx = spherical[i][0];
px = P(theta, phi);
S.mcSample(theta, phi, fx / px);
}
S.mcEnd();
}
}
//if the user specifies an SH basis function
else if(args["basis"].is_set()){
unsigned int n;
//if the user specifies one index for the basis function
if(args["basis"].nargs() == 1)
n = args["basis"].as_int(0);
else if(args["basis"].nargs() == 2){
int l = args["basis"].as_int(0); //2D indexing (l, m)
int m = args["basis"].as_int(1);
n = pow(l+1, 2) - (l - m) - 1; //calculate the 1D index
}
//add zeros for the first (n-1) coefficients
for(unsigned int c = 0; c < n; c++)
S.push(0);
//add the n'th coefficient
S.push(1);
}
//output the spherical harmonics coefficients if requested
if(args["out"].is_set()){
if(args["out"].nargs() == 0)
std::cout<<S.str()<<std::endl;
else{
//open the output file
std::ofstream outfile;
outfile.open(args["out"].as_string(0).c_str());
outfile<<S.str();
outfile.close();
}
}
//if the user asks for help, give it and exit
if(args["help"].is_set()){
std::cout<<"usage: shview c0 c1 c2 c3 ... --option [A B C]"<<std::endl;
std::cout<<"examples:"<<std::endl;
std::cout<<" generate a spherical function with 4 coefficients (l=0 to 2)"<<std::endl;
std::cout<<" shview 1.3 0.2 2.3 1.34"<<std::endl;
std::cout<<" display a spherical function representing the spherical harmonic l = 3, m = -2"<<std::endl;
std::cout<<" shview --basis 3 -2"<<std::endl;
std::cout<<args.str();
exit(0);
}
}
int main(int argc, char *argv[]){
#ifdef _WIN32
args.set_ansi(false);
#endif
//initialize GLUT
glutInit(&argc, argv);
//process arguments
process_arguments(argc, argv);
//set the size of the GLUT window
glutInitWindowSize(500, 500);
glutInitDisplayMode(GLUT_DEPTH | GLUT_RGBA | GLUT_DOUBLE);
//create the GLUT window (and an OpenGL context)
glutCreateWindow("Spherical Harmonic Viewport");
//set the display function (which will be called repeatedly by glutMainLoop)
glutDisplayFunc(display);
//set the mouse press function (called when a mouse button is pressed)
glutMouseFunc(mouse_press);
//set the mouse motion function (which will be called any time the mouse is dragged)
glutMotionFunc(mouse_drag);
//run the initialization function
if(!init())
return 1; //return an error if it fails
//enter the main loop
glutMainLoop();
//return 0 if everything is awesome
return 0;
}