main.cpp 17.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
#include <iostream>
#include <sstream>

#include <GL/glut.h>

#include <stim/visualization/camera.h>
#include <stim/parser/arguments.h>
#include <stim/visualization/obj.h>
#include <stim/visualization/gl_spharmonics.h>
#include <stim/math/constants.h>

#define theta_scale		0.01f
#define phi_scale		0.01f
#define zoom_scale		0.1f

//create a global camera that will specify the viewport
stim::camera cam;
int mx, my;			//mouse coordinates in the window space

stim::gl_spharmonics<float> SH(300);				//spherical harmonics to render

float d = 1.5;		//initial distance between the camera and the sphere

bool rotate_zoom = true;	//sets the current camera mode (rotation = true, zoom = false)

stim::arglist args;			//class for processing command line arguments

bool axis = false;			//render the z-axis (set via a command line flag)

/// INTERPOLATION
//stim::gl_spharmonics<double> Si;
bool interp = false;				//if we are interpolating
float alpha = 0.0f;					//alpha value for interpolation
float dalpha = 0.1f;					//change in alpha value with a key press

/// Visualization flags
bool mag = true;
bool cmap = true;
bool displace = true;
bool light = true;

bool init(){

	//set the clear color to white
	glClearColor(1.0f, 1.0f, 1.0f, 1.0f);

	//initialize the camera
	cam.setPosition(d, d, d);
	cam.LookAt(0, 0, 0, 0, 1, 1);
	cam.setFOV(40);

	//initialize the texture map stuff	
	//R.glInit(256);

	return true;
}

void render_axes() {
	glDisable(GL_TEXTURE_2D);							//turn off texture mapping		
	glBegin(GL_LINES);
		glColor3f(1.0f, 0.0f, 0.0f);					//set the color to RED and render X
		glVertex3f(0.0, 0.0, 0.0);
		glVertex3f(100.0, 0.0, 0.0);

		glColor3f(0.0f, 1.0f, 0.0f);					//set the color to RED and render X
		glVertex3f(0.0, 0.0, 0.0);
		glVertex3f(0.0, 100.0, 0.0);

		glColor3f(0.0f, 0.0f, 1.0f);					//set the color to RED and render X
		glVertex3f(0.0, 0.0, 0.0);
		glVertex3f(0.0, 0.0, 100.0);
	glEnd();
}

void render_lights() {

	stim::vec3<float> view = cam.getDirection();							//get the camera view direction
	stim::vec3<float> up = cam.getUp();										//get the camera up direction
	stim::vec3<float> left = view.cross(up).norm();							//create a vector pointing to the left
	
	GLfloat light0_diffuse[] = { 0.5f, 0.5f, 0.5f, 1 };						//create a directional light shining from the viewer's left
	GLfloat light0_position[] = { left[0], left[1], left[2], 0.0 };
	glLightfv(GL_LIGHT0, GL_DIFFUSE, light0_diffuse);
	glLightfv(GL_LIGHT0, GL_POSITION, light0_position);

	GLfloat light1_diffuse[] = { 0.8f, 0.8f, 0.8f, 1 };						//create a directional light shining from the viewer's position
	GLfloat light1_position[] = { -view[0], -view[1], -view[2], 0.0 };
	glLightfv(GL_LIGHT1, GL_DIFFUSE, light0_diffuse);
	glLightfv(GL_LIGHT1, GL_POSITION, light1_position);
	

}

//code that is run every time the user changes something
void display(){
	//clear the screen
	glClear(GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT);

	//set the projection matrix
	glMatrixMode(GL_PROJECTION);				//put the projection matrix on the stack
	glLoadIdentity();							//set it to the identity matrix
	gluPerspective(cam.getFOV(), 1, 0.001, 1000000);	//set up a perspective projection


	//set the model view matrix
	glMatrixMode(GL_MODELVIEW);					//load the model view matrix to the stack
	glLoadIdentity();							//set it to the identity matrix

	//get the camera parameters
	stim::vec3<float> p = cam.getPosition();
	stim::vec3<float> u = cam.getUp();
	stim::vec3<float> d = cam.getDirection();

	//specify the camera parameters to OpenGL
	gluLookAt(p[0], p[1], p[2], d[0], d[1], d[2], u[0], u[1], u[2]);

	if (light) {
		glEnable(GL_LIGHTING);
		glEnable(GL_LIGHT0);
		glEnable(GL_LIGHT1);
	}
	
	glEnable(GL_COLOR_MATERIAL);
	glEnable(GL_CULL_FACE);
	glEnable(GL_DEPTH_TEST);

	render_lights();									//render the lights
	glColor3f(1.0, 1.0, 1.0);
	SH.render();

	if (light) {
		glDisable(GL_LIGHTING);								//disable lighting to render the axes
		glDisable(GL_LIGHT0);
		glDisable(GL_LIGHT1);
	}

	if(axis) render_axes();								//render the axes if the user requests them
	glutSwapBuffers();									//swap in the back buffer (double-buffering is used to prevent tearing)
}

void mouse_press(int button, int state, int x, int y){

	//set the camera motion mode based on the mouse button pressed
	if(button == GLUT_LEFT_BUTTON)
		rotate_zoom = true;
	else if(button == GLUT_RIGHT_BUTTON)
		rotate_zoom = false;
	if(state == GLUT_DOWN){								//if the mouse is pressed
		mx = x;		my = y;								//set the current mouse position
	}
}

void mouse_drag(int x, int y){

	//if the camera is in rotation mode, rotate
	if(rotate_zoom == true){
		float theta = theta_scale * (mx - x);
		float phi = -phi_scale * (my - y);

		//if the mouse is dragged
		cam.OrbitFocus(theta, phi);
	}
	//otherwize zoom
	else{
		cam.Push(zoom_scale*(my - y));
	}

	//update the mouse position
	mx = x;		my = y;

	glutPostRedisplay();
}

float uniformRandom()
{
	return (  (float)(rand()))/(  (float)(RAND_MAX)); 
}

std::vector<stim::vec3 <float> >
sample_sphere(int num_samples, float radius = 1.0) {

	float solidAngle = (float)stim::TAU;	///Solid angle to sample over
	float PHI[2], Z[2], range;		///Range of angles in cylinderical coordinates
	PHI[0] = solidAngle/2;			///project the solid angle into spherical coords
	PHI[1] = (float)asin(0);		
	Z[0] = cos(PHI[0]);				///project the z into spherical coordinates
	Z[1] = cos(PHI[1]);		
	range = Z[0] - Z[1];			///the range of all possible z values.

	float z, theta, phi;			/// temporary individual

	std::vector<stim::vec3<float> > samples;

	srand(100);						///set random seed

	for(int i = 0; i < num_samples; i++)
	{
		z = uniformRandom()*range + Z[1];
		theta = uniformRandom() * (float)stim::TAU;
		phi = acos(z);
		stim::vec3<float> sph(1, theta, phi);
		stim::vec3<float> cart = sph.sph2cart();
		sph[0] *= radius;
		samples.push_back(cart);
	}
	samples.push_back(stim::vec3<float>(0.,0.,1.));
	samples.push_back(stim::vec3<float>(0.,1.0,0.));
	samples.push_back(stim::vec3<float>(0.,-1.,0.));


	std::stringstream name;
      for(int i = 0; i < num_samples; i++)
           name << samples[i].str() << std::endl;
           name << samples[num_samples].str() << std::endl;
           name << samples[num_samples+1].str() << std::endl;
           name << samples[num_samples+2].str() << std::endl;
	
    
      std::ofstream outFile;
      outFile.open("New_Pos_Vectors.txt");
      outFile << name.str().c_str();

	return samples;
}

std::vector<stim::vec3<float>> obj2vec3(stim::obj<float>& o) {
	stim::vec3<float> c = o.centroid();									//calculate the centroid
	size_t nv = o.numV();												//get the number of vertices in the obj file
	std::vector<stim::vec3<float>> vlist(nv);							//create an array to store the vertices
	stim::vec3<float> p, v, s;
	for (size_t vi = 0; vi < nv; vi++) {								//for each vertex in the obj file
		v = o.getV(vi);
		p = (v - c);													//center and normalize
		s = p.cart2sph();												//convert to spherical coordinates
		vlist[vi] = s;													//store the spherical coordinates in the point list
	}
	return vlist;
}

void advertise() {
	std::cout << "usage: shview c0 c1 c2 c3 ... --option [A B C]" << std::endl;
	std::cout << "examples:" << std::endl;
	std::cout << "   generate a spherical function with 4 coefficients (l=0 to 2)" << std::endl;
	std::cout << "          shview 1.3 0.2 2.3 1.34" << std::endl;
	std::cout << "   display a spherical function representing the spherical harmonic l = 3, m = -2" << std::endl;
	std::cout << "          shview --basis 3 -2" << std::endl;
	std::cout << args.str();
	exit(0);
}

void process_arguments(int argc, char* argv[]){

	args.add("help", "prints this help");
	args.section("Coefficients");
	args.add("coef", "specify spherical harmonic coefficients", "", "c0 c1 c2 c3 ...");
	args.add("rand", "generates a random set of SH coefficients", "", "[N min max]");
	args.add("sparse", "generates a function based on a set of sparse basis functions", "", "[l0 m0 c0 l1 m1 c1 l2 m2 c2 ...]");
	args.section("Projection");
	args.add("image", "approximates a spherical function represented by an image", "", "filename1.ppm filename2.ppm");
	args.add("n", "number of spherical harmonics coefficients to use for a projection", "10", "positive integer");	
	args.add("basis", "displays the specified SH basis function", "", "n, or [l m]");	
	args.add("obj", "approximates a geometric object given as a Wavefront OBJ file", "", "filename");
	args.add("out", "filename for outputting spherical harmonics coefficients", "", "filename");
	args.add("pdf", "outputs the PDF if an OBJ files is given");
	args.section("Visualization");
	args.add("axis", "render the z-axis as a green line");
	args.add("nodisp", "render the spherical function without displacement");
	args.add("nocmap", "render the spherical function without color mapping");
	args.add("nomag", "render the spherical function without calculating the absolute value (negative values are displaced negatively");
	args.add("nolight", "render the spherical function without lighting");
	args.add("interp", "interpolates between two specified sets of coefficients", "", "[c0 c1 c2 c3 ...]");

	//process the command line arguments
	args.parse(argc, argv);

	//if the user asks for help, give it and exit
	if (args["help"].is_set()) {
		advertise();
	}

	//set the z-axis flag
	if(args["axis"].is_set())
		axis = true;
	if (args["nodisp"]) displace = false;
	if (args["nocmap"]) cmap = false;
	if (args["nomag"]) mag = false;
	if (args["nolight"]) light = false;
	SH.rendermode(displace, cmap, mag);

	//if (args["interp"]) {											//if an interpolation harmonic is provided
	//	for (unsigned int a = 0; a < args["interp"].nargs(); a++)
	//		Si.push(args["interp"].as_float(a));
	//}

	//if arguments are specified, push them as coefficients
	if(args["coef"]){
		//push all of the arguments to the spherical harmonics class as coefficients
		for(unsigned int a = 0; a < args["coef"].nargs(); a++)
			SH.push((float)args["coef"].as_float(a));
	}
	//if the user wants to use a random set of SH coefficients
	else if(args["rand"].is_set()){

		//return an error if the user specifies both fixed and random coefficients
		if(args.nargs() != 0){
			std::cout<<"Error: both fixed and random coefficients are specified"<<std::endl;
			exit(1);
		}

		//seed the random number generator
		srand((unsigned int)time(NULL));

		unsigned int N = args["rand"].as_int(0);				//get the number of random coefficients
		float Cmin = (float)args["rand"].as_float(1);			//get the minimum and maximum coefficient values
		float Cmax = (float)args["rand"].as_float(2);

		//generate the coefficients
		for(unsigned int c = 0; c < N; c++){

			float norm = (float) rand() / RAND_MAX;		//calculate a random number in the range [0, 1]
			float scaled = norm * (Cmax - Cmin) + Cmin;	//scale the random number to [Cmin, Cmax]
			SH.push(scaled);									//push the value as a coefficient
		}
	}
	else if (args["sparse"].is_set()) {

		//calculate the number of sparse coefficients
		unsigned int nC = args["sparse"].nargs() / 3;

		std::vector<unsigned int> C;	//vector of 1D coefficients
		unsigned int Cmax = 0;			//maximum coefficient provided

		std::vector<double> V;			//vector of 1D coefficient values

		unsigned int c;
		int l, m;
		double v;
		//for each provided coefficient
		for (unsigned int i = 0; i < nC; i++) {

			//load data for a single coefficient from the command line
			l = args["sparse"].as_int(i * 3 + 0);
			m = args["sparse"].as_int(i * 3 + 1);
			v = args["sparse"].as_float(i * 3 + 2);

			//calculate the 1D coefficient
			c = pow(l + 1, 2) - (l - m) - 1;

			//update the maximum coefficient index
			if (c > Cmax) Cmax = c;

			//insert the coefficient and value into vectors
			C.push_back(c);
			V.push_back(v);
		}

		//set the size of the SH coefficient array
		SH.resize(Cmax + 1);

		//insert each coefficient
		for (unsigned int i = 0; i < nC; i++) {
			SH.setc(C[i], V[i]);
		}
	}
	else if (args["image"]) {
		if (args["image"].nargs() == 0) {
			std::cout << "ERROR: an image file must be specified as an argument to --image" << std::endl;
			exit(1);
		}
		stim::image<float> I(args["image"].as_string(0));							//load the image
		if (I.channels() > 1) I = I.channel(0);										//if a color image is provided, convert to monochrome
		I = I.stretch(0.0f, 1.0f);													//stretch the function so that it lies in [0 1]
		SH.project(I.data(), I.width(), I.height(), args["n"].as_int(0));			//project the image function onto a spherical harmonics basis
		if (args["image"].nargs() > 1) {											//if the user provides two images
			I.load(args["image"].as_string(1));
			if (I.channels() > 1) I = I.channel(0);									//if a color image is provided, convert to monochrome
			I = I.stretch(0.0f, 1.0f);												//stretch the function so that it lies in [0 1]
			SH.Sc.project(I.data(), I.width(), I.height(), args["n"].as_int(0));
		}
	}
	
	else if(args["obj"].is_set()){
		if (args["obj"].nargs() == 0) {
			std::cout << "ERROR: an OBJ file must be specified as an argument to --obj" << std::endl;
			exit(1);
		}
		stim::obj<float> OBJ(args["obj"].as_string(0));								//open the OBJ file
		std::vector<stim::vec3<float>> vlist = obj2vec3(OBJ);				//get the centered points for the OBJ
		SH.pdf(vlist, args["n"].as_int(0));		

		/*std::string filename = args["obj"].as_string(0);
		unsigned int l = args["obj"].as_int(1);
		int p = args["obj"].as_int(2);
		std::cout << p << std::endl;
		std::vector<stim::vec3<float> > sphere = sample_sphere(p);
		p = p+3;

		//create an obj object
		stim::obj<double> object(filename);

		//get the centroid of the object
		stim::vec<double> c = object.centroid();
		c[0] = 0; c[1] = 0; c[2] = 0;

		//get the number of vertices in the model
		unsigned int nV = object.numV();

		//for each vertex in the model, create an MC sample
		std::vector< stim::vec<double> > spherical;
		stim::vec<float> sample;
		stim::vec<float> centered;
		for(unsigned int i = 0; i < nV; i++){

			sample = object.getV(i);			//get a vertex in cartesian coordinates
			centered = sample - c;
			spherical.push_back(centered.cart2sph());
		}

		//generate the spherical PDF
		stim::spharmonics<double> P;
		P.pdf(spherical, l, l);
		std::vector<float> weights;		///array of weights
		if(args["pdf"].is_set())
		{
//			S.pdf(spherical, l, l);
			for(int i = 0; i < p; i++)	///for each point on the sphere.
			{
				float val = 0;		///value starts with 0
				for(int j = 0; j < nV; j++)		///for each point on surface
				{
					stim::vec3<float> star(object.getV(j)[0] - c[0],
						object.getV(j)[1] - c[1], 
						object.getV(j)[2] - c[2]);		///center each point on the model 
//					val += abs(star.dot(sphere[i])); 		///sum the dot product of the centered point and the sphere.
					if(star.dot(sphere[i]) > 0)
						val += pow(star.dot(sphere[i]),8); 		///sum the dot product of the centered point and the sphere.
				}
				weights.push_back(val);
			}
			
			S.mcBegin(l,l);
			for(int i = 0; i < p; i++)
			{
				if(sphere[i] == stim::vec3<float>(0., 0., 1.))
				{
					std::cout << i  << sphere[i] << " " << weights[i] << std::endl;
				}
				if(sphere[i] == stim::vec3<float>(0., 1., 0.))
				{
					std::cout << i << sphere[i] << " " << weights[i] << std::endl;
				}
				if(sphere[i] == stim::vec3<float>(0., -1., 0.))
				{
					std::cout << i <<  sphere[i] << " " << weights[i] << std::endl;
				}
				stim::vec3<float> sph = sphere[i].cart2sph();
				S.mcSample(sph[1], sph[2], weights[i]);
			}
			S.mcEnd();
			*/
		}
		/*else{ 
			//begin Monte-Carlo sampling, using the model vertices as samples
			S.mcBegin(l, l);
			double theta, phi, fx, px;
			for(unsigned int i = 0; i < nV; i++){
				theta = spherical[i][1];
				phi = spherical[i][2];
				fx = spherical[i][0];
				px = P(theta, phi);
				S.mcSample(theta, phi, fx / px);
			}
			S.mcEnd();
		}*/
	//}

	//if the user specifies an SH basis function
	/*if(args["basis"].is_set()){

		unsigned int n;

		//if the user specifies one index for the basis function
		if(args["basis"].nargs() == 1)
			n = args["basis"].as_int(0);
		else if(args["basis"].nargs() == 2){
			int l = args["basis"].as_int(0);		//2D indexing (l, m)
			int m = args["basis"].as_int(1);

			n = pow(l+1, 2) - (l - m) - 1;			//calculate the 1D index
		}

		//add zeros for the first (n-1) coefficients
		for(unsigned int c = 0; c < n; c++)
			SH.push(0);

		//add the n'th coefficient
		SH.push(1);
	}*/

	//output the spherical harmonics coefficients if requested
	/*if(args["out"].is_set()){
		
		if(args["out"].nargs() == 0)
			std::cout<<S.str()<<std::endl;
		else{

			//open the output file
			std::ofstream outfile;
			outfile.open(args["out"].as_string(0).c_str());

			outfile<<S.str();

			outfile.close();
		}
	}*/
}

int main(int argc, char *argv[]){

#ifdef _WIN32
	args.set_ansi(false);
#endif

	//initialize GLUT
	glutInit(&argc, argv);

	//process arguments
	process_arguments(argc, argv);

	//set the size of the GLUT window
	glutInitWindowSize(500, 500);

	glutInitDisplayMode(GLUT_DEPTH | GLUT_RGBA | GLUT_DOUBLE);

	//create the GLUT window (and an OpenGL context)
	glutCreateWindow("Spherical Harmonic Viewport");

	//SH.rendermode(false, true, true);
	//SH.colormap();										//use color-mapping

	//set the display function (which will be called repeatedly by glutMainLoop)
	glutDisplayFunc(display);

	//set the mouse press function (called when a mouse button is pressed)
	glutMouseFunc(mouse_press);
	//set the mouse motion function (which will be called any time the mouse is dragged)
	glutMotionFunc(mouse_drag);

	//run the initialization function
	if(!init())
		return 1;	//return an error if it fails


	//enter the main loop
	glutMainLoop();

	//return 0 if everything is awesome
	return 0;



}