e4667cee
David Mayerich
first commit
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
|
#include <GL/glew.h>
#include <GLFW/glfw3.h>
#include <iostream>
#include <vector>
const double PI = 3.14159265358979323846;
#include "tensorfield.h"
#include <stim/math/quaternion.h>
//#include <stim/>
// Global variable to store the GLFW window
GLFWwindow* window;
tensorfield<float> T;
size_t z_slice = 0;
bool cout_frame = false;
float diffuse_intensity = 0.7f;
float ambient_intensity = 0.3f;
int glyph_type = 1;
float gamma = 3;
int glyph_resolution = 10;
float glyph_scale = 0.5;
//glyph vertices
bool glyph_calculated = false;
struct float3 {
float x;
float y;
float z;
};
struct float2 {
float u;
float v;
};
std::vector<float3> vertices;
std::vector<float3> normals;
std::vector<float2> texcoords;
std::vector<float> sin_theta;
std::vector<float> cos_theta;
std::vector<float> sin_phi;
std::vector<float> cos_phi;
struct eigendecomposition {
stim::vec3<float> v0;
stim::vec3<float> v2;
stim::vec3<float> lambda;
};
inline float sgn(float x) {
if (x < 0)
return -1;
else if (x > 0)
return 1;
return 0;
}
stim::vec3<float> triangle_norm(stim::vec3<float> p0, stim::vec3<float> p1, stim::vec3<float> p2) {
stim::vec3<float> a = p1 - p0;
stim::vec3<float> b = p2 - p0;
stim::vec3<float> n = a.cross(b);
return n;
}
// returns the fractional anisotropy and stores the spherical, linear, and planar components in cs, cl, and cp
float get_anisotropy(stim::vec3<float> lambda, float& cs, float& cl, float& cp) {
//calculate the denominator for each specific anisotropy
float denom = lambda[0] + lambda[1] + lambda[2];
cl = (lambda[2] - lambda[1]) / denom;
cp = 2 * (lambda[1] - lambda[0]) / denom;
cs = 3 * lambda[0] / denom;
return 0;
}
//calculate the eigenvectors and eigenvalues for the input pixel (x, y, z)
// eigenvalues are embedded in the length of the eigenvector
void get_pixel_eigen(eigendecomposition* e, size_t x, size_t y, size_t z) {
e->v0[0] = T(x, y, z, 0, 0);
e->v0[1] = T(x, y, z, 1, 0);
e->v0[2] = T(x, y, z, 2, 0);
//temporarily store v1 in order to get the eigenvalue
// (the eigenvector is redundant because it's the cross product of v0 and v1)
stim::vec3<float> v1;
v1[0] = T(x, y, z, 0, 1);
v1[1] = T(x, y, z, 1, 1);
v1[2] = T(x, y, z, 2, 1);
e->v2[0] = T(x, y, z, 0, 2);
e->v2[1] = T(x, y, z, 1, 2);
e->v2[2] = T(x, y, z, 2, 2);
e->lambda[0] = e->v0.len();
e->lambda[1] = v1.len();
e->lambda[2] = e->v2.len();
e->v0 = e->v0 / e->lambda[0];
e->v2 = e->v2 / e->lambda[2];
}
/// Create a rotation matrix to orient a glyph along the tensor direction. Orientations are based on the input vectors
/// v0, v1, and v2
void get_glyph_rotation_matrix(float* R, stim::vec3<float> v0, stim::vec3<float> v2) {
stim::matrix_sq<float, 4> M;
M(0, 0) = v0[0];
M(1, 0) = v0[1];
M(2, 0) = v0[2];
M(3, 0) = 0;
M(0, 2) = v2[0];
M(1, 2) = v2[1];
M(2, 2) = v2[2];
M(3, 2) = 0;
stim::vec3<float> a(v0[0], v0[1], v0[2]);
stim::vec3<float> b(v2[0], v2[1], v2[2]);
stim::vec3<float> c = a.cross(b);
M(0, 1) = c[0];
M(1, 1) = c[1];
M(2, 1) = c[2];
M(3, 1) = 0;
M(0, 3) = 0;
M(1, 3) = 0;
M(2, 3) = 0;
M(3, 3) = 1;
memcpy(R, M.M, 16 * sizeof(float));
return;
}
// Perform the necessary updates when the user reshapes the window
void window_reshape() {
int width, height;
//get the context size
glfwGetFramebufferSize(window, &width, &height);
//create an OpenGL viewport
glViewport(0, 0, width, height);
//set the default orthographic view (assuming that the window and image aspect ratio are identical)
float left = 0.0f;
float right = (float)T.shape[2];
float bottom = 0.0f;
float top = (float)T.shape[1];
//create an orthographic projection
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluOrtho2D(left, right, bottom, top);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
}
void init() {
glEnable(GL_DEPTH_TEST);
glEnable(GL_CULL_FACE);
glFrontFace(GL_CCW);
}
void generate_glyph_points(int resolution = 5) {
int sectorCount = 2 * resolution;
int stackCount = resolution;
int num_vertices = (sectorCount + 1) * (stackCount + 1);
sin_theta.resize(num_vertices);
sin_phi.resize(num_vertices);
cos_theta.resize(num_vertices);
cos_phi.resize(num_vertices);
float theta, phi; // vertex texCoord
float sectorStep = 2 * (float)PI / sectorCount;
float stackStep = (float)PI / stackCount;
size_t i = 0;
//calculate the vertex positions
for (int phi_i = 0; phi_i <= stackCount; ++phi_i)
{
// add (sectorCount+1) vertices per stack
// the first and last vertices have same position and normal, but different tex coords
for (int theta_i = 0; theta_i <= sectorCount; ++theta_i)
{
// calculate the spherical coordinates of the vertex
theta = (float)theta_i / sectorCount * 2 * (float)PI;
phi = (float)phi_i / stackCount * (float)PI;
//pre-compute the sine and cosine values used to create the superquadric
sin_theta[i] = sinf(theta);
sin_phi[i] = sinf(phi);
cos_theta[i] = cosf(theta);
cos_phi[i] = cosf(phi);
i++;
}
}
}
inline float weird_exp(float x, float e) {
return sgn(x) * powf(fabs(x), e);
}
stim::vec3<float> qx(size_t i, float alpha = 1, float beta = 1) {
float sin_phi_beta = weird_exp(sin_phi[i], beta);
float sin_theta_alpha = weird_exp(sin_theta[i], alpha);
float cos_theta_alpha = weird_exp(cos_theta[i], alpha);
float cos_phi_beta = weird_exp(cos_phi[i], beta);
stim::vec3<float> p;
p[0] = cos_phi_beta;
p[1] = -sin_theta_alpha * sin_phi_beta;
p[2] = cos_theta_alpha * sin_phi_beta;
return p;
}
void render_triangle(stim::vec3<float> p0, stim::vec3<float> p1, stim::vec3<float> p2) {
stim::vec3<float> n = triangle_norm(p0, p1, p2);
glNormal3f(n[0], n[1], n[2]);
glVertex3f(p0[0], p0[1], p0[2]);
glVertex3f(p1[0], p1[1], p1[2]);
glVertex3f(p2[0], p2[1], p2[2]);
}
//render a glyph (0 = ellipsoid, 1 = superquadric)
void render_glyph(eigendecomposition* e, int glyph_type = 0, int resolution = 5) {
glMatrixMode(GL_MODELVIEW);
glPushMatrix();
stim::vec3<float> norm_lambda = e->lambda.norm();
glScalef(glyph_scale, glyph_scale, glyph_scale);
glScalef(norm_lambda[2], norm_lambda[1], norm_lambda[0]);
if (glyph_type == 0) {
GLUquadric* q = gluNewQuadric();
gluSphere(q, 1, 2 * resolution, resolution);
}
else if (glyph_type == 1) {
float radius = 0.5;
int sectorCount = 2 * resolution;
int stackCount = resolution;
if (!glyph_calculated) {
generate_glyph_points(resolution);
glyph_calculated = true;
}
//get the anisotropy values
float fa, cs, cl, cp, alpha, beta;
fa = get_anisotropy(e->lambda, cs, cl, cp);
if (cl >= cp) {
alpha = powf(1 - cp, gamma);
beta = powf(1 - cl, gamma);
}
else {
alpha = powf(1 - cl, gamma);
beta = powf(1 - cp, gamma);
}
//draw the sphere
int k1, k2;
float3 p[3];
float2 s[3];
float3 n;
//draw the glyph
glBegin(GL_TRIANGLES);
for (int i = 0; i < stackCount; ++i)
{
k1 = i * (sectorCount + 1); // beginning of current stack
k2 = k1 + sectorCount + 1; // beginning of next stack
for (int j = 0; j < sectorCount; ++j, ++k1, ++k2)
{
// 2 triangles per sector excluding first and last stacks
// k1 => k2 => k1+1
if (i != 0)
{
stim::vec3<float> p0 = qx(k1, alpha, beta);
stim::vec3<float> p1 = qx(k2, alpha, beta);
stim::vec3<float> p2 = qx(k1 + 1, alpha, beta);
render_triangle(p0, p1, p2);
}
// k1+1 => k2 => k2+1
if (i != (stackCount - 1))
{
stim::vec3<float> p0 = qx(k1 + 1, alpha, beta);
stim::vec3<float> p1 = qx(k2, alpha, beta);
stim::vec3<float> p2 = qx(k2 + 1, alpha, beta);
render_triangle(p0, p1, p2);
}
}
}
glEnd();
}
glPopMatrix();
}
void lighting() {
GLfloat light_position[] = { 1, 1, -1.0, 0.0 };
GLfloat light_ambient[] = { ambient_intensity, ambient_intensity, ambient_intensity, 1.0 };
GLfloat light_diffuse[] = { diffuse_intensity, diffuse_intensity, diffuse_intensity, 1.0 };
glShadeModel(GL_SMOOTH);
glLightfv(GL_LIGHT0, GL_POSITION, light_position);
glLightfv(GL_LIGHT0, GL_DIFFUSE, light_diffuse);
glLightfv(GL_LIGHT0, GL_AMBIENT, light_ambient);
glEnable(GL_LIGHTING);
glEnable(GL_LIGHT0);
glColorMaterial(GL_FRONT, GL_AMBIENT_AND_DIFFUSE);
glEnable(GL_COLOR_MATERIAL);
glEnable(GL_NORMALIZE);
}
void render() {
size_t zi = z_slice;
float dc = 1.0f / T.shape[1];
float c[3];
eigendecomposition e;
float R[16];
glMatrixMode(GL_MODELVIEW_MATRIX);
lighting();
for (size_t yi = 0; yi < T.shape[1]; yi++) {
for (size_t xi = 0; xi < T.shape[2]; xi++) {
get_pixel_eigen(&e, xi, yi, zi);
c[0] = abs(e.v0[0]);
c[1] = abs(e.v0[1]);
c[2] = abs(e.v0[2]);
glPushMatrix();
glTranslatef((float)xi + 0.5f, (float)yi + 0.5f, 0);
stim::vec3<float> v0(e.v0[0], e.v0[1], e.v0[2]);
stim::vec3<float> v2(e.v2[0], e.v2[1], e.v2[2]);
get_glyph_rotation_matrix(R, v0,v2);
glMultMatrixf((GLfloat*)R);
glColor3f(c[0], c[1], c[2]);
render_glyph(&e, glyph_type, glyph_resolution);
glPopMatrix();
}
}
cout_frame = false;
}
void key_callback(GLFWwindow* window, int key, int scancode, int action, int mods)
{
if (key == GLFW_KEY_RIGHT && action != GLFW_RELEASE)
z_slice++;
else if (key == GLFW_KEY_LEFT && action != GLFW_RELEASE)
z_slice--;
if (z_slice >= T.shape[0]) z_slice = 0;
if (z_slice < 0) z_slice = T.shape[0] - 1;
}
void display_rotation_matrix(eigendecomposition* e) {
float R[16];
stim::vec3<float> v0(e->v0[0], e->v0[1], e->v0[2]);
stim::vec3<float> v2(e->v2[0], e->v2[1], e->v2[2]);
get_glyph_rotation_matrix(R, v0, v2);
for (int r = 0; r < 4; r++) {
for (int c = 0; c < 4; c++) {
std::cout << R[r * 4 + c] << " ";
}
std::cout << std::endl;
}
}
void display_eigen(eigendecomposition* e) {
std::cout << "v0 = (" << e->v0[0] << ", " << e->v0[1] << ", " << e->v0[2] << ")" << std::endl;
}
void mouse_button_callback(GLFWwindow* window, int button, int action, int mods) {
//if the user clicks inside the window, display information about the tensor field
if (button == GLFW_MOUSE_BUTTON_LEFT && action == GLFW_PRESS) {
double xpos, ypos;
glfwGetCursorPos(window, &xpos, &ypos); //get the position of the mouse pointer
int width, height;
glfwGetFramebufferSize(window, &width, &height);
int pixel_x = (int)(xpos / width * T.shape[2]);
int pixel_y = T.shape[1] - (int)(ypos / height * (int)T.shape[1]) - 1;
std::cout << "----------------------------" << std::endl;
std::cout << "x: " << pixel_x << " y: " << pixel_y << std::endl;
std::cout << "----------------------------" << std::endl;
eigendecomposition e;
get_pixel_eigen(&e, pixel_x, pixel_y, z_slice);
display_eigen(&e);
std::cout << "===========" << std::endl;
display_rotation_matrix(&e);
}
}
void reshape_callback(GLFWwindow* window, int width, int height) {
window_reshape();
render();
}
int main(int argc, char** argv) {
std::string filename(argv[1]);
if (T.load_tira(filename) != TIRA_SUCCESS) {
return -1;
}
/* Initialize the library */
if (!glfwInit())
return -1;
/* Create a windowed mode window and its OpenGL context */
window = glfwCreateWindow(700, 700, "Hello World", NULL, NULL);
if (!window)
{
glfwTerminate();
return -1;
}
/* Make the window's context current */
glfwMakeContextCurrent(window);
glfwSetKeyCallback(window, key_callback);
glfwSetFramebufferSizeCallback(window, reshape_callback);
glfwSetMouseButtonCallback(window, mouse_button_callback);
GLenum err = glewInit();
//deal with a GLEW initialization failure
if (GLEW_OK != err)
std::cout << "GLEW Error: " << glewGetErrorString(err) << std::endl;
//set up the window viewport
window_reshape();
//initialize the OpenGL render details
init();
/* Loop until the user closes the window */
while (!glfwWindowShouldClose(window))
{
/* Render here */
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
render();
/* Swap front and back buffers */
glfwSwapBuffers(window);
/* Poll for and process events */
glfwPollEvents();
}
glfwTerminate();
return 0;
}
|