Blame view

flow.h 56.9 KB
9191c39e   Jiaming Guo   first version of ...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
  #ifndef FLOW3_H
  #define FLOW3_H
  
  #include <algorithm>
  
  //STIM include
  #include <stim/parser/arguments.h>
  #include <stim/visualization/gl_network.h>
  #include <stim/visualization/colormap.h>
  #include <stim/math/matrix.h>
  #include <stim/visualization/gl_aaboundingbox.h>
  #include <stim/ui/progressbar.h>
  #include <stim/grids/image_stack.h>
  
  #ifdef __CUDACC__
  #include <cublas_v2.h>
  #include <stim/cuda/cudatools/error.h>
  #endif
  
  namespace stim {
  	template <typename A, typename B, typename C>
  	struct triple {
  		A first;
  		B second;
  		C third;
  	};
  
  	template <typename T>
  	struct bridge {
  		std::vector<unsigned> v;				// vertices' indices
  		std::vector<typename stim::vec3<T> > V;	// vertices' coordinates
  		T l;		// length
  		T r;		// radii
  		T deltaP;	// pressure drop
  		T Q;		// volume flow rate
  	};
  
  	template <typename T>
  	struct sphere {
  		stim::vec3<T> c;		// center of sphere
  		T r;					// radii
  	};
  
  	template <typename T>
  	struct cone {				// radii changes gradually
  		stim::vec3<T> c1;		// center of geometry start hat
  		stim::vec3<T> c2;		// center of geometry end hat
  		T r1;					// radii at start hat
  		T r2;					// radii at end hat
  	};
  
  	template <typename T>
  	struct cuboid {
  		stim::vec3<T> c;
  		T l;					// length
  		T w;					// width
  		T h;					// height
  	};
  
  	/// indicator function
  #ifdef __CUDACC__
  	// for sphere
  	template <typename T>
6765b32b   Jiaming Guo   add hilbert curve
64
  	__global__ void inside_sphere(const stim::sphere<T> *V, unsigned num, size_t *R, T *S, unsigned char *ptr, int x, int y, int z) {
9191c39e   Jiaming Guo   first version of ...
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
  
  		unsigned ix = blockDim.x * blockIdx.x + threadIdx.x;
  		unsigned iy = blockDim.y * blockIdx.y + threadIdx.y;
  
  		if (ix >= R[1] || iy >= R[2]) return;		// avoid seg-fault
  
  		// find world_pixel coordinates
  		stim::vec3<T> world_pixel;
  		world_pixel[0] = (T)ix * S[1] - x;			// translate origin to center of the network
  		world_pixel[1] = (T)iy * S[2] - y;
  		world_pixel[2] = ((T)z - R[3] / 2) * S[3];	// ???center of box minus half width
  
  		float distance = FLT_MAX;
  		float tmp_distance;
  		unsigned idx;
  
  		for (unsigned i = 0; i < num; i++) {
  			tmp_distance = (V[i].c - world_pixel).len();
  			if (tmp_distance <= distance) {
  				distance = tmp_distance;
  				idx = i;
  			}
  		}
  		if (distance <= V[idx].r)
  			ptr[(R[2] - 1 - iy) * R[0] * R[1] + ix * R[0]] = 255;
  	}
  
  	// for cone
  	template <typename T>
6765b32b   Jiaming Guo   add hilbert curve
94
  	__global__ void inside_cone(const stim::cone<T> *E, unsigned num, size_t *R, T *S, unsigned char *ptr, int x, int y, int z) {
9191c39e   Jiaming Guo   first version of ...
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
  
  		unsigned ix = blockDim.x * blockIdx.x + threadIdx.x;
  		unsigned iy = blockDim.y * blockIdx.y + threadIdx.y;
  
  		if (ix >= R[1] || iy >= R[2]) return;			// avoid segfault
  
  		stim::vec3<T> world_pixel;
  		world_pixel[0] = (T)ix * S[1] - x;
  		world_pixel[1] = (T)iy * S[2] - y;
  		world_pixel[2] = ((T)z - R[3] / 2) * S[3];
  
  		float distance = FLT_MAX;
  		float tmp_distance;
  		float rr;										// radii at the surface where projection meets
  
  		for (unsigned i = 0; i < num; i++) {			// find the nearest cylinder
  			tmp_distance = ((world_pixel - E[i].c1).cross(world_pixel - E[i].c2)).len() / (E[i].c2 - E[i].c1).len();
  			if (tmp_distance <= distance) {
  				// we only focus on point to line segment
  				// check to see whether projection is lying outside the line segment
  				float a = (world_pixel - E[i].c1).dot((E[i].c2 - E[i].c1).norm());
  				float b = (world_pixel - E[i].c2).dot((E[i].c1 - E[i].c2).norm());
  				float length = (E[i].c1 - E[i].c2).len();
  				if (a <= length && b <= length) {		// projection lying inside the line segment
  					distance = tmp_distance;
  					rr = E[i].r1 + (E[i].r2 - E[i].r1) * a / (length);		// linear change
  				}
  			}
  		}
  		if (distance <= rr)
  			ptr[(R[2] - 1 - iy) * R[0] * R[1] + ix * R[0]] = 255;
  	}
  
  	// for source bus
  	template <typename T>
6765b32b   Jiaming Guo   add hilbert curve
130
  	__global__ void inside_cuboid(const stim::cuboid<T> *B, unsigned num, size_t *R, T *S, unsigned char *ptr, int x, int y, int z) {
9191c39e   Jiaming Guo   first version of ...
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
  
  		unsigned ix = blockDim.x * blockIdx.x + threadIdx.x;
  		unsigned iy = blockDim.y * blockIdx.y + threadIdx.y;
  
  		if (ix >= R[1] || iy >= R[2]) return;			// avoid segfault
  
  		stim::vec3<T> world_pixel;
  		world_pixel[0] = (T)ix * S[1] - x;
  		world_pixel[1] = (T)iy * S[2] - y;
  		world_pixel[2] = ((T)z - R[3] / 2) * S[3];
  
  		for (unsigned i = 0; i < num; i++) {
  			bool left_outside = false;					// flag indicates point is outside the left bound
  			bool right_outside = false;
  
  			stim::vec3<T> tmp = B[i].c;
  			stim::vec3<T> L = stim::vec3<T>(tmp[0] - B[i].l / 2.0f, tmp[1] - B[i].h / 2.0f, tmp[2] - B[i].w / 2.0f);
  			stim::vec3<T> U = stim::vec3<T>(tmp[0] + B[i].l / 2.0f, tmp[1] + B[i].h / 2.0f, tmp[2] + B[i].w / 2.0f);
  
  			for (unsigned d = 0; d < 3; d++) {
  				if (world_pixel[d] < L[d])				// if the point is less than the minimum bound
  					left_outside = true;
  				if (world_pixel[d] > U[d])				// if the point is greater than the maximum bound
  					right_outside = true;
  			}
  			if (!left_outside && !right_outside)
  				ptr[(R[2] - 1 - iy) * R[0] * R[1] + ix * R[0]] = 255;
  		}
  	}
  #endif
  
  	template <typename T>
9b69bb4c   Jiaming Guo   add diplay list t...
163
  	class flow : public stim::gl_network<T> {
9191c39e   Jiaming Guo   first version of ...
164
165
  
  	private:
9b69bb4c   Jiaming Guo   add diplay list t...
166
  
9191c39e   Jiaming Guo   first version of ...
167
168
  		unsigned num_edge;
  		unsigned num_vertex;
9b69bb4c   Jiaming Guo   add diplay list t...
169
170
171
  		GLuint dlist;					// display list for inlets/outlets connections
  
  		enum direction { UP, LEFT, DOWN, RIGHT };
9191c39e   Jiaming Guo   first version of ...
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
  
  		// calculate the cofactor of elemen[row][col]
  		void get_minor(T** src, T** dest, int row, int col, int order) {
  
  			// index of element to be copied
  			int rowCount = 0;
  			int colCount = 0;
  
  			for (int i = 0; i < order; i++) {
  				if (i != row) {
  					colCount = 0;
  					for (int j = 0; j < order; j++) {
  						// when j is not the element
  						if (j != col) {
  							dest[rowCount][colCount] = src[i][j];
  							colCount++;
  						}
  					}
  					rowCount++;
  				}
  			}
  		}
  
  		// calculate the det()
  		T determinant(T** mat, int order) {
  
  			// degenate case when n = 1
  			if (order == 1)
  				return mat[0][0];
  
  			T det = 0.0;		// determinant value
  
  								// allocate the cofactor matrix
  			T** minor = (T**)malloc((order - 1) * sizeof(T*));
  			for (int i = 0; i < order - 1; i++)
  				minor[i] = (T*)malloc((order - 1) * sizeof(T));
  
  
  			for (int i = 0; i < order; i++) {
  
  				// get minor of element(0, i)
  				get_minor(mat, minor, 0, i, order);
  
  				// recursion
  				det += (i % 2 == 1 ? -1.0 : 1.0) * mat[0][i] * determinant(minor, order - 1);
  			}
  
  			// release memory
  			for (int i = 0; i < order - 1; i++)
  				free(minor[i]);
  			free(minor);
  
  			return det;
  		}
  
  	protected:
  
  		using stim::network<T>::E;
  		using stim::network<T>::V;
  		using stim::network<T>::get_start_vertex;
  		using stim::network<T>::get_end_vertex;
  		using stim::network<T>::get_r;
  		using stim::network<T>::get_average_r;
  		using stim::network<T>::get_l;
9b69bb4c   Jiaming Guo   add diplay list t...
236
  
9191c39e   Jiaming Guo   first version of ...
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
  		T** C;																	// Conductance
  		std::vector<typename stim::triple<unsigned, unsigned, float> > Q;		// volume flow rate
  		std::vector<T> QQ;														// Q' vector
  		std::vector<T> pressure;												// final pressure
  
  	public:
  
  		std::vector<T> P;														// initial pressure
  		std::vector<T> v;														// velocity
  		std::vector<typename stim::vec3<T> > main_feeder;						// inlet/outlet main feeder
  		std::vector<unsigned> pendant_vertex;
  		std::vector<typename stim::triple<unsigned, unsigned, T> > input;		// first one store which vertex, second one stores which edge, third one stores in/out volume flow rate of that vertex
  		std::vector<typename stim::triple<unsigned, unsigned, T> > output;
  		std::vector<typename stim::bridge<T> > inlet;							// input bridge
  		std::vector<typename stim::bridge<T> > outlet;							// output bridge
  		std::vector<typename stim::sphere<T> > A;			// sphere model for making image stack
  		std::vector<typename stim::cone<T> > B;				// cone(cylinder) model for making image stack
  		std::vector<typename stim::cuboid<T> > CU;			// cuboid model for making image stack
  		stim::gl_aaboundingbox<T> bb;						// bounding box
  
  		flow() {}				// default constructor
  		~flow() {
  			for (unsigned i = 0; i < num_vertex; i++)
  				delete[] C[i];
  			delete[] C;
  		}
  
  		void init(unsigned n_e, unsigned n_v) {
  
  			num_edge = n_e;
  			num_vertex = n_v;
  
  			C = new T*[n_v]();
  			for (unsigned i = 0; i < n_v; i++) {
  				C[i] = new T[n_v]();
  			}
  
  			QQ.resize(n_v);
  			P.resize(n_v);
  			pressure.resize(n_v);
  
  			Q.resize(n_e);
  			v.resize(n_e);
  		}
  
  		void clear() {
  
  			for (unsigned i = 0; i < num_vertex; i++) {
  				QQ[i] = 0;
  				pressure[i] = 0;
  				for (unsigned j = 0; j < num_vertex; j++) {
  					C[i][j] = 0;
  				}
  			}
  			main_feeder.clear();
  			input.clear();
  			output.clear();
  			inlet.clear();
  			outlet.clear();
9b69bb4c   Jiaming Guo   add diplay list t...
296
297
298
299
300
  
  			if (glIsList(dlist)) {
  				glDeleteLists(dlist, 1);					// delete display list for modify
  				glDeleteLists(dlist + 1, 1);
  			}
9191c39e   Jiaming Guo   first version of ...
301
302
303
304
  		}
  
  		// copy radius from cylinder to flow
  		void set_radius(unsigned i, T radius) {
9b69bb4c   Jiaming Guo   add diplay list t...
305
  
9191c39e   Jiaming Guo   first version of ...
306
307
308
309
310
311
312
313
314
315
  			for (unsigned j = 0; j < num_edge; j++) {
  				if (E[j].v[0] == i)
  					E[j].cylinder<T>::set_r(0, radius);
  				else if (E[j].v[1] == i)
  					E[j].cylinder<T>::set_r(E[j].size() - 1, radius);
  			}
  		}
  
  		// get the radii of vertex i
  		T get_radius(unsigned i) {
9b69bb4c   Jiaming Guo   add diplay list t...
316
  
9191c39e   Jiaming Guo   first version of ...
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
  			unsigned tmp_e;				// edge index
  			unsigned tmp_v;				// vertex index in that edge
  			for (unsigned j = 0; j < num_edge; j++) {
  				if (E[j].v[0] == i) {
  					tmp_e = j;
  					tmp_v = 0;
  				}
  				else if (E[j].v[1] == i) {
  					tmp_e = j;
  					tmp_v = E[j].size() - 1;
  				}
  			}
  
  			return E[tmp_e].r(tmp_v);
  		}
  
  		// get the velocity of pendant vertex i
  		T get_velocity(unsigned i) {
9b69bb4c   Jiaming Guo   add diplay list t...
335
  
9191c39e   Jiaming Guo   first version of ...
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
  			unsigned tmp_e;				// edge index
  			for (unsigned j = 0; j < num_edge; j++) {
  				if (E[j].v[0] == i) {
  					tmp_e = j;
  					break;
  				}
  				else if (E[j].v[1] == i) {
  					tmp_e = j;
  					break;
  				}
  			}
  
  			return v[tmp_e];
  		}
  
  		// set pressure at specifi vertex
  		void set_pressure(unsigned i, T value) {
  			P[i] = value;
  		}
  
  		// solve the linear system to get stable flow state
  		void solve_flow(T viscosity) {
  
  			// clear up last time simulation
  			clear();
  
  			// get the pendant vertex indices
  			pendant_vertex = get_boundary_vertex();
  
  			// get bounding box
  			bb = (*this).boundingbox();
  
  			// set the conductance matrix of flow object
  			unsigned start_vertex = 0;
  			unsigned end_vertex = 0;
  			for (unsigned i = 0; i < num_edge; i++) {
  				start_vertex = get_start_vertex(i);		// get the start vertex index of current edge
  				end_vertex = get_end_vertex(i);			// get the end vertex index of current edge
  
  				C[start_vertex][end_vertex] = -((float)stim::PI * std::pow(get_average_r(i), 4)) / (8 * u * get_l(i));
  
  				C[end_vertex][start_vertex] = C[start_vertex][end_vertex];
  			}
  			// set the diagonal to the negative sum of row element
  			float sum = 0.0;
  			for (unsigned i = 0; i < num_vertex; i++) {
  				for (unsigned j = 0; j < num_vertex; j++) {
  					sum += C[i][j];
  				}
  				C[i][i] = -sum;
  				sum = 0.0;
  			}
  
  			// get the Q' vector QQ
  			// matrix manipulation to zero out the conductance matrix as defined by the boundary values that were enterd
  			for (unsigned i = 0; i < num_vertex; i++) {
  				if (P[i] != 0) {			// for every dangle vertex
  					for (unsigned j = 0; j < num_vertex; j++) {
  						if (j == i) {
  							QQ[i] = C[i][i] * P[i];
  						}
  						else {
  							C[i][j] = 0;
  							QQ[j] = QQ[j] - C[j][i] * P[i];
  							C[j][i] = 0;
  						}
  					}
  				}
  			}
  
  			// get the inverse of conductance matrix
  			stim::matrix<float> _C(num_vertex, num_vertex);
  			inversion(C, num_vertex, _C.data());
9b69bb4c   Jiaming Guo   add diplay list t...
409
  
9191c39e   Jiaming Guo   first version of ...
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
  			// get the pressure in the network
  			for (unsigned i = 0; i < num_vertex; i++) {
  				for (unsigned j = 0; j < num_vertex; j++) {
  					pressure[i] += _C(i, j) * QQ[j];
  				}
  			}
  
  			// get the flow state from known pressure
  			float start_pressure = 0.0;
  			float end_pressure = 0.0;
  			float deltaP = 0.0;
  			for (unsigned i = 0; i < num_edge; i++) {
  				start_vertex = get_start_vertex(i);
  				end_vertex = get_end_vertex(i);
  				start_pressure = pressure[start_vertex];		// get the start vertex pressure of current edge
  				end_pressure = pressure[end_vertex];			// get the end vertex pressure of current edge
  				deltaP = start_pressure - end_pressure;				// deltaP = Pa - Pb
  
  				Q[i].first = start_vertex;
  				Q[i].second = end_vertex;
9b69bb4c   Jiaming Guo   add diplay list t...
430
  
9191c39e   Jiaming Guo   first version of ...
431
432
433
434
435
436
437
  				Q[i].third = ((float)stim::PI * std::pow(get_average_r(i), 4) * deltaP) / (8 * u * get_l(i));
  				v[i] = Q[i].third / ((float)stim::PI * std::pow(get_average_r(i), 2));
  			}
  		}
  
  		// get the brewer color map based on velocity
  		void get_color_map(T& max_v, T& min_v, std::vector<unsigned char>& color, std::vector<unsigned> pendant_vertex) {
9b69bb4c   Jiaming Guo   add diplay list t...
438
  
9191c39e   Jiaming Guo   first version of ...
439
440
441
442
443
444
445
446
447
448
449
  			unsigned num_edge = Q.size();
  			unsigned num_vertex = QQ.size();
  
  			// find the absolute maximum velocity and minimum velocity
  			std::vector<float> abs_V(num_edge);
  			for (unsigned i = 0; i < num_edge; i++) {
  				abs_V[i] = std::fabsf(v[i]);
  			}
  
  			max_v = *std::max_element(abs_V.begin(), abs_V.end());
  			min_v = *std::min_element(abs_V.begin(), abs_V.end());
9b69bb4c   Jiaming Guo   add diplay list t...
450
  
9191c39e   Jiaming Guo   first version of ...
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
  			// get the color map based on velocity range along the network
  			color.clear();
  			if (pendant_vertex.size() == 2 && num_edge - num_vertex + 1 <= 0) 		// only one inlet and one outlet
  				color.resize(num_edge * 3, (unsigned char)255);
  			else {
  				color.resize(num_edge * 3);
  				stim::cpu2cpu<float>(&abs_V[0], &color[0], num_edge, min_v, max_v, stim::cmBrewer);
  			}
  		}
  
  		// print flow
  		void print_flow() {
  
  			// show the pressure information in console box
  			std::cout << "PRESSURE(g/um/s^2):" << std::endl;
  			for (unsigned i = 0; i < num_vertex; i++) {
  				std::cout << "[" << i << "] " << pressure[i] << std::endl;
  			}
  			// show the flow rate information in console box
  			std::cout << "VOLUME FLOW RATE(um^3/s):" << std::endl;
  			for (unsigned i = 0; i < num_edge; i++) {
  				std::cout << "(" << Q[i].first << "," << Q[i].second << ")" << Q[i].third << std::endl;
  			}
  		}
  
  		/// helper function
  		// find hilbert curve order
  		// @param: current direct length between two vertices
  		// @param: desire length
  		void find_hilbert_order(T l, T d, int &order) {
9b69bb4c   Jiaming Guo   add diplay list t...
481
  
9191c39e   Jiaming Guo   first version of ...
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
  			bool flag = false;
  			int o = 1;
  			T tmp;					// temp of length
  			while (!flag) {
  				// convert from cartesian length to hilbert length
  				// l -> l * (4 ^ order - 1)/(2 ^ order - 1)
  				tmp = l * (std::pow(4, o) - 1) / (std::pow(2, o) - 1);
  				if (tmp >= d)
  					flag = true;
  				else
  					o++;
  			}
  			order = o;
  		}
  
  		void move(unsigned i, T *c, direction dir, T dl, int feeder, bool invert) {
9b69bb4c   Jiaming Guo   add diplay list t...
498
  
9191c39e   Jiaming Guo   first version of ...
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
  			int cof = (invert) ? -1 : 1;
  
  			switch (dir) {
  			case UP:
  				c[1] += dl;
  				break;
  			case LEFT:
  				c[0] -= cof * dl;
  				break;
  			case DOWN:
  				c[1] -= dl;
  				break;
  			case RIGHT:
  				c[0] += cof * dl;
  				break;
  			}
  
  			stim::vec3<T> tmp;
  			for (unsigned i = 0; i < 3; i++)
  				tmp[i] = c[i];
9b69bb4c   Jiaming Guo   add diplay list t...
519
  
9191c39e   Jiaming Guo   first version of ...
520
521
522
523
524
525
526
  			if (feeder == 1)					// inlet main feeder
  				inlet[i].V.push_back(tmp);
  			else if (feeder == 0)				// outlet main feeder
  				outlet[i].V.push_back(tmp);
  		}
  
  		void hilbert_curve(unsigned i, T *c, int order, T dl, int feeder, bool invert, direction dir = DOWN) {
9b69bb4c   Jiaming Guo   add diplay list t...
527
528
  
  			if (order == 1) {
9191c39e   Jiaming Guo   first version of ...
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
  				switch (dir) {
  				case UP:
  					move(i, c, DOWN, dl, feeder, invert);
  					move(i, c, RIGHT, dl, feeder, invert);
  					move(i, c, UP, dl, feeder, invert);
  					break;
  				case LEFT:
  					move(i, c, RIGHT, dl, feeder, invert);
  					move(i, c, DOWN, dl, feeder, invert);
  					move(i, c, LEFT, dl, feeder, invert);
  					break;
  				case DOWN:
  					move(i, c, UP, dl, feeder, invert);
  					move(i, c, LEFT, dl, feeder, invert);
  					move(i, c, DOWN, dl, feeder, invert);
  					break;
  				case RIGHT:
  					move(i, c, LEFT, dl, feeder, invert);
  					move(i, c, UP, dl, feeder, invert);
  					move(i, c, RIGHT, dl, feeder, invert);
  					break;
  				}
9b69bb4c   Jiaming Guo   add diplay list t...
551
  
9191c39e   Jiaming Guo   first version of ...
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
  			}
  			else if (order > 1) {
  				switch (dir) {
  				case UP:
  					hilbert_curve(i, c, order - 1, dl, feeder, invert, LEFT);
  					move(i, c, DOWN, dl, feeder, invert);
  					hilbert_curve(i, c, order - 1, dl, feeder, invert, UP);
  					move(i, c, RIGHT, dl, feeder, invert);
  					hilbert_curve(i, c, order - 1, dl, feeder, invert, UP);
  					move(i, c, UP, dl, feeder, invert);
  					hilbert_curve(i, c, order - 1, dl, feeder, invert, RIGHT);
  					break;
  				case LEFT:
  					hilbert_curve(i, c, order - 1, dl, feeder, invert, UP);
  					move(i, c, RIGHT, dl, feeder, invert);
  					hilbert_curve(i, c, order - 1, dl, feeder, invert, LEFT);
  					move(i, c, DOWN, dl, feeder, invert);
  					hilbert_curve(i, c, order - 1, dl, feeder, invert, LEFT);
  					move(i, c, LEFT, dl, feeder, invert);
  					hilbert_curve(i, c, order - 1, dl, feeder, invert, DOWN);
  					break;
  				case DOWN:
  					hilbert_curve(i, c, order - 1, dl, feeder, invert, RIGHT);
  					move(i, c, UP, dl, feeder, invert);
  					hilbert_curve(i, c, order - 1, dl, feeder, invert, DOWN);
  					move(i, c, LEFT, dl, feeder, invert);
  					hilbert_curve(i, c, order - 1, dl, feeder, invert, DOWN);
  					move(i, c, DOWN, dl, feeder, invert);
  					hilbert_curve(i, c, order - 1, dl, feeder, invert, LEFT);
  					break;
  				case RIGHT:
  					hilbert_curve(i, c, order - 1, dl, feeder, invert, DOWN);
  					move(i, c, LEFT, dl, feeder, invert);
  					hilbert_curve(i, c, order - 1, dl, feeder, invert, RIGHT);
  					move(i, c, UP, dl, feeder, invert);
  					hilbert_curve(i, c, order - 1, dl, feeder, invert, RIGHT);
  					move(i, c, RIGHT, dl, feeder, invert);
  					hilbert_curve(i, c, order - 1, dl, feeder, invert, UP);
  					break;
  				}
  			}
  		}
  
9191c39e   Jiaming Guo   first version of ...
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
  		/// render function
  		// find two envelope caps for two spheres
  		// @param cp1, cp2: list of points on the cap
  		// @param center1, center2: center point of cap
  		// @param r1, r2: radii of cap
  		void find_envelope(std::vector<typename stim::vec3<float> > &cp1, std::vector<typename stim::vec3<float> > &cp2, stim::vec3<float> center1, stim::vec3<float> center2, float r1, float r2, GLint subdivision) {
  
  			stim::vec3<float> tmp_d;
  			if (r1 == r2) {						// two vertices have the same radius
  				tmp_d = center2 - center1;		// calculate the direction vector
  				tmp_d = tmp_d.norm();
  				stim::circle<float> tmp_c;		// in order to get zero direction vector
  				tmp_c.rotate(tmp_d);
  
  				stim::circle<float> c1(center1, r1, tmp_d, tmp_c.U);
  				stim::circle<float> c2(center2, r2, tmp_d, tmp_c.U);
  				cp1 = c1.glpoints(subdivision);
  				cp2 = c2.glpoints(subdivision);
  			}
  			else {
  				if (r1 < r2) {					// switch index, we always want r1 to be larger than r2
  					stim::vec3<float> tmp_c = center2;
  					center2 = center1;
  					center1 = tmp_c;
  					float tmp_r = r2;
  					r2 = r1;
  					r1 = tmp_r;
  				}
  				tmp_d = center2 - center1;		// bigger one points to smaller one
  				tmp_d = tmp_d.norm();
  
  				float D = (center1 - center2).len();
  				stim::vec3<float> exp;
  				exp[0] = (center2[0] * r1 - center1[0] * r2) / (r1 - r2);
  				exp[1] = (center2[1] * r1 - center1[1] * r2) / (r1 - r2);
  
  				stim::vec3<float> t1, t2, t3, t4;
  				t1[2] = t2[2] = center1[2];		// decide the specific plane to work on
  				t3[2] = t4[2] = center2[2];
  
  				// first two
  				t1[0] = pow(r1, 2)*(exp[0] - center1[0]);
  				t1[0] += r1*(exp[1] - center1[1])*sqrt(pow((exp[0] - center1[0]), 2) + pow((exp[1] - center1[1]), 2) - pow(r1, 2));
  				t1[0] /= (pow((exp[0] - center1[0]), 2) + pow((exp[1] - center1[1]), 2));
  				t1[0] += center1[0];
  
  				t2[0] = pow(r1, 2)*(exp[0] - center1[0]);
  				t2[0] -= r1*(exp[1] - center1[1])*sqrt(pow((exp[0] - center1[0]), 2) + pow((exp[1] - center1[1]), 2) - pow(r1, 2));
  				t2[0] /= (pow((exp[0] - center1[0]), 2) + pow((exp[1] - center1[1]), 2));
  				t2[0] += center1[0];
  
  				t1[1] = pow(r1, 2)*(exp[1] - center1[1]);
  				t1[1] -= r1*(exp[0] - center1[0])*sqrt(pow((exp[0] - center1[0]), 2) + pow((exp[1] - center1[1]), 2) - pow(r1, 2));
  				t1[1] /= (pow((exp[0] - center1[0]), 2) + pow((exp[1] - center1[1]), 2));
  				t1[1] += center1[1];
  
  				t2[1] = pow(r1, 2)*(exp[1] - center1[1]);
  				t2[1] += r1*(exp[0] - center1[0])*sqrt(pow((exp[0] - center1[0]), 2) + pow((exp[1] - center1[1]), 2) - pow(r1, 2));
  				t2[1] /= (pow((exp[0] - center1[0]), 2) + pow((exp[1] - center1[1]), 2));
  				t2[1] += center1[1];
  
  				// check the correctness of the points
  				//float s = (center1[1] - t1[1])*(exp[1] - t1[1]) / ((t1[0] - center1[0])*(t1[0] - exp[0]));
  				//if (s != 1) {			// swap t1[1] and t2[1]
  				//	float tmp_t = t2[1];
  				//	t2[1] = t1[1];
  				//	t1[1] = tmp_t;
  				//}
  
  				// second two
  				t3[0] = pow(r2, 2)*(exp[0] - center2[0]);
  				t3[0] += r2*(exp[1] - center2[1])*sqrt(pow((exp[0] - center2[0]), 2) + pow((exp[1] - center2[1]), 2) - pow(r2, 2));
  				t3[0] /= (pow((exp[0] - center2[0]), 2) + pow((exp[1] - center2[1]), 2));
  				t3[0] += center2[0];
  
  				t4[0] = pow(r2, 2)*(exp[0] - center2[0]);
  				t4[0] -= r2*(exp[1] - center2[1])*sqrt(pow((exp[0] - center2[0]), 2) + pow((exp[1] - center2[1]), 2) - pow(r2, 2));
  				t4[0] /= (pow((exp[0] - center2[0]), 2) + pow((exp[1] - center2[1]), 2));
  				t4[0] += center2[0];
  
  				t3[1] = pow(r2, 2)*(exp[1] - center2[1]);
  				t3[1] -= r2*(exp[0] - center2[0])*sqrt(pow((exp[0] - center2[0]), 2) + pow((exp[1] - center2[1]), 2) - pow(r2, 2));
  				t3[1] /= (pow((exp[0] - center2[0]), 2) + pow((exp[1] - center2[1]), 2));
  				t3[1] += center2[1];
  
  				t4[1] = pow(r2, 2)*(exp[1] - center2[1]);
  				t4[1] += r2*(exp[0] - center2[0])*sqrt(pow((exp[0] - center2[0]), 2) + pow((exp[1] - center2[1]), 2) - pow(r2, 2));
  				t4[1] /= (pow((exp[0] - center2[0]), 2) + pow((exp[1] - center2[1]), 2));
  				t4[1] += center2[1];
  
  				// check the correctness of the points
  				//s = (center2[1] - t3[1])*(exp[1] - t3[1]) / ((t3[0] - center2[0])*(t3[0] - exp[0]));
  				//if (s != 1) {			// swap t1[1] and t2[1]
  				//	float tmp_t = t4[1];
  				//	t4[1] = t3[1];
  				//	t3[1] = tmp_t;
  				//}
  
  				stim::vec3<float> d1;
  				float dot;
  				float a;
  				float new_r;
  				stim::vec3<float> new_u;
  				stim::vec3<float> new_c;
  
  				// calculate the bigger circle
  				d1 = t1 - center1;
  				dot = d1.dot(tmp_d);
  				a = dot / (r1 * 1) * r1;			// a = cos(alpha) * radii
  				new_c = center1 + a * tmp_d;
  				new_r = sqrt(pow(r1, 2) - pow(a, 2));
  				new_u = t1 - new_c;
  
  				stim::circle<float> c1(new_c, new_r, tmp_d, new_u);
  				cp1 = c1.glpoints(subdivision);
  
  				// calculate the smaller circle
  				d1 = t3 - center2;
  				dot = d1.dot(tmp_d);
  				a = dot / (r2 * 1) * r2;
  				new_c = center2 + a * tmp_d;
  				new_r = sqrt(pow(r2, 2) - pow(a, 2));
  				new_u = t3 - new_c;
  
  				stim::circle<float> c2(new_c, new_r, tmp_d, new_u);
  				cp2 = c2.glpoints(subdivision);
  			}
  		}
  
  		// draw solid sphere at every vertex
  		void glSolidSphere(T max_pressure, GLint subdivision) {
9b69bb4c   Jiaming Guo   add diplay list t...
726
  
9191c39e   Jiaming Guo   first version of ...
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
  			// waste?
  			for (unsigned i = 0; i < num_edge; i++) {
  				for (unsigned j = 0; j < E[i].size(); j++) {
  					if (j == 0) {						// for start vertex
  						if (P[E[i].v[0]] != 0) {
  							stim::vec3<float> new_color;
  							new_color[0] = (P[E[i].v[0]] / max_pressure) > 0.5f ? 1.0f : 2.0f * P[E[i].v[0]] / max_pressure;						// red
  							new_color[1] = 0.0f;																					// green
  							new_color[2] = (P[E[i].v[0]] / max_pressure) > 0.5f ? 1.0f - 2.0f * (P[E[i].v[0]] / max_pressure - 0.5f) : 1.0f;		// blue
  							glColor3f(new_color[0], new_color[1], new_color[2]);
  						}
  					}
  					else if (j == E[i].size() - 1) {	// for end vertex
  						if (P[E[i].v[1]] != 0) {
  							stim::vec3<float> new_color;
  							new_color[0] = (P[E[i].v[1]] / max_pressure) > 0.5f ? 1.0f : 2.0f * P[E[i].v[1]] / max_pressure;						// red
  							new_color[1] = 0.0f;																					// green
  							new_color[2] = (P[E[i].v[1]] / max_pressure) > 0.5f ? 1.0f - 2.0f * (P[E[i].v[1]] / max_pressure - 0.5f) : 1.0f;		// blue
  							glColor3f(new_color[0], new_color[1], new_color[2]);
  						}
  					}
  					else
  						glColor3f(0.5f, 0.5f, 0.5f);						// gray point
  
  					glPushMatrix();
  					glTranslatef(E[i][j][0], E[i][j][1], E[i][j][2]);
  					glutSolidSphere(get_r(i, j), subdivision, subdivision);
  					glPopMatrix();
  				}
  			}
  		}
  
  		// draw edges as series of cylinders
  		void glSolidCylinder(GLint subdivision, std::vector<unsigned char> color) {
  
  			stim::vec3<float> tmp_d;
  			stim::vec3<float> center1;
  			stim::vec3<float> center2;
  			float r1;
  			float r2;
  			std::vector<typename stim::vec3<float> > cp1(subdivision + 1);
  			std::vector<typename stim::vec3<float> > cp2(subdivision + 1);
  			for (unsigned i = 0; i < num_edge; i++) {							// for every edge
  				glEnable(GL_BLEND);												// enable color blend
  				glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);				// set blend function
  				glDisable(GL_DEPTH_TEST);
  				glColor4f((float)color[i * 3 + 0] / 255, (float)color[i * 3 + 1] / 255, (float)color[i * 3 + 2] / 255, 0.5f);
  				for (unsigned j = 0; j < E[i].size() - 1; j++) {				// for every point on the edge
  					center1 = E[i][j];
  					center2 = E[i][j + 1];
  
  					r1 = get_r(i, j);
  					r2 = get_r(i, j + 1);
9b69bb4c   Jiaming Guo   add diplay list t...
780
  
9191c39e   Jiaming Guo   first version of ...
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
  					// calculate the envelope caps
  					find_envelope(cp1, cp2, center1, center2, r1, r2, subdivision);
  
  					glBegin(GL_QUAD_STRIP);
  					for (unsigned j = 0; j < cp1.size(); j++) {
  						glVertex3f(cp1[j][0], cp1[j][1], cp1[j][2]);
  						glVertex3f(cp2[j][0], cp2[j][1], cp2[j][2]);
  					}
  					glEnd();
  				}
  			}
  			glFlush();
  			glDisable(GL_BLEND);
  		}
  
  		// draw the flow direction as cone
  		void glSolidCone(GLint subdivision) {
9b69bb4c   Jiaming Guo   add diplay list t...
798
  
9191c39e   Jiaming Guo   first version of ...
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
  			stim::vec3<T> tmp_d;									// direction
  			stim::vec3<T> center;									// cone hat center
  			stim::vec3<T> head;										// cone hat top
  			stim::circle<T> tmp_c;
  			std::vector<typename stim::vec3<T> > cp;
  			T radius;
  
  			glColor3f(1.0f, 1.0f, 1.0f);
  			for (unsigned i = 0; i < num_edge; i++) {				// for every edge
  				for (unsigned j = 0; j < E[i].size() - 1; j++) {	// for every point on current edge
  					tmp_d = E[i][j + 1] - E[i][j];
  					tmp_d = tmp_d.norm();
  					center = (E[i][j + 1] + E[i][j]) / 2;
  					tmp_c.rotate(tmp_d);
  					radius = (E[i].r(j + 1) + E[i].r(j)) / 2;
  					if (v[i] > 0)									// if flow flows from j to j+1
  						head = center + tmp_d * sqrt(3) * radius;
  					else
  						head = center - tmp_d * sqrt(3) * radius;
  
  					stim::circle<float> c(center, radius, tmp_d, tmp_c.U);
  					cp = c.glpoints(subdivision);
  
  					glBegin(GL_TRIANGLE_FAN);
  					glVertex3f(head[0], head[1], head[2]);
  					for (unsigned k = 0; k < cp.size(); k++)
  						glVertex3f(cp[k][0], cp[k][1], cp[k][2]);
  					glEnd();
  				}
  			}
  			glFlush();
  		}
  
  		// draw main feeder as solid cube
  		void glSolidCuboid(T length = 210.0f, T height = 10.0f) {
9b69bb4c   Jiaming Guo   add diplay list t...
834
  
9191c39e   Jiaming Guo   first version of ...
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
  			T width;
  			stim::vec3<T> L = bb.A;						// get the bottom left corner
  			stim::vec3<T> U = bb.B;						// get the top right corner
  			width = U[2] - L[2] + 10.0f;
  
  			glColor3f(1.0f, 1.0f, 1.0f);
  			for (unsigned i = 0; i < main_feeder.size(); i++) {
  				// front face
  				glBegin(GL_QUADS);
  				glVertex3f(main_feeder[i][0] - length / 2, main_feeder[i][1] - height / 2, main_feeder[i][2] - width / 2);
  				glVertex3f(main_feeder[i][0] + length / 2, main_feeder[i][1] - height / 2, main_feeder[i][2] - width / 2);
  				glVertex3f(main_feeder[i][0] + length / 2, main_feeder[i][1] + height / 2, main_feeder[i][2] - width / 2);
  				glVertex3f(main_feeder[i][0] - length / 2, main_feeder[i][1] + height / 2, main_feeder[i][2] - width / 2);
  				glEnd();
  
  				// back face
  				glBegin(GL_QUADS);
  				glVertex3f(main_feeder[i][0] - length / 2, main_feeder[i][1] - height / 2, main_feeder[i][2] + width / 2);
  				glVertex3f(main_feeder[i][0] + length / 2, main_feeder[i][1] - height / 2, main_feeder[i][2] + width / 2);
  				glVertex3f(main_feeder[i][0] + length / 2, main_feeder[i][1] + height / 2, main_feeder[i][2] + width / 2);
  				glVertex3f(main_feeder[i][0] - length / 2, main_feeder[i][1] + height / 2, main_feeder[i][2] + width / 2);
  				glEnd();
  
  				// top face
  				glBegin(GL_QUADS);
  				glVertex3f(main_feeder[i][0] - length / 2, main_feeder[i][1] + height / 2, main_feeder[i][2] - width / 2);
  				glVertex3f(main_feeder[i][0] + length / 2, main_feeder[i][1] + height / 2, main_feeder[i][2] - width / 2);
  				glVertex3f(main_feeder[i][0] + length / 2, main_feeder[i][1] + height / 2, main_feeder[i][2] + width / 2);
  				glVertex3f(main_feeder[i][0] - length / 2, main_feeder[i][1] + height / 2, main_feeder[i][2] + width / 2);
  				glEnd();
  
  				// bottom face
  				glBegin(GL_QUADS);
  				glVertex3f(main_feeder[i][0] - length / 2, main_feeder[i][1] - height / 2, main_feeder[i][2] - width / 2);
  				glVertex3f(main_feeder[i][0] + length / 2, main_feeder[i][1] - height / 2, main_feeder[i][2] - width / 2);
  				glVertex3f(main_feeder[i][0] + length / 2, main_feeder[i][1] - height / 2, main_feeder[i][2] + width / 2);
  				glVertex3f(main_feeder[i][0] - length / 2, main_feeder[i][1] - height / 2, main_feeder[i][2] + width / 2);
  				glEnd();
  
  				// left face
  				glBegin(GL_QUADS);
  				glVertex3f(main_feeder[i][0] - length / 2, main_feeder[i][1] - height / 2, main_feeder[i][2] - width / 2);
  				glVertex3f(main_feeder[i][0] - length / 2, main_feeder[i][1] - height / 2, main_feeder[i][2] + width / 2);
  				glVertex3f(main_feeder[i][0] - length / 2, main_feeder[i][1] + height / 2, main_feeder[i][2] + width / 2);
  				glVertex3f(main_feeder[i][0] - length / 2, main_feeder[i][1] + height / 2, main_feeder[i][2] - width / 2);
  				glEnd();
  
  				// right face
  				glBegin(GL_QUADS);
  				glVertex3f(main_feeder[i][0] + length / 2, main_feeder[i][1] - height / 2, main_feeder[i][2] - width / 2);
  				glVertex3f(main_feeder[i][0] + length / 2, main_feeder[i][1] + height / 2, main_feeder[i][2] - width / 2);
  				glVertex3f(main_feeder[i][0] + length / 2, main_feeder[i][1] + height / 2, main_feeder[i][2] + width / 2);
  				glVertex3f(main_feeder[i][0] + length / 2, main_feeder[i][1] - height / 2, main_feeder[i][2] + width / 2);
  				glEnd();
  			}
  			glFlush();
  		}
  
  		// draw the bridge as lines
  		void line_bridge() {
9b69bb4c   Jiaming Guo   add diplay list t...
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
  
  			if (!glIsList(dlist)) {
  				dlist = glGenLists(1);
  				glNewList(dlist, GL_COMPILE);
  				for (unsigned i = 0; i < inlet.size(); i++) {
  					glBegin(GL_LINE_STRIP);
  					for (unsigned j = 0; j < inlet[i].V.size(); j++)
  						glVertex3f(inlet[i].V[j][0], inlet[i].V[j][1], inlet[i].V[j][2]);
  					glEnd();
  				}
  				for (unsigned i = 0; i < outlet.size(); i++) {
  					glBegin(GL_LINE_STRIP);
  					for (unsigned j = 0; j < outlet[i].V.size(); j++)
  						glVertex3f(outlet[i].V[j][0], outlet[i].V[j][1], outlet[i].V[j][2]);
  					glEnd();
  				}
  				glFlush();
  				glEndList();
9191c39e   Jiaming Guo   first version of ...
913
  			}
9b69bb4c   Jiaming Guo   add diplay list t...
914
  			glCallList(dlist);
9191c39e   Jiaming Guo   first version of ...
915
916
917
918
919
  		}
  
  		// draw the bridge as tubes
  		void tube_bridge(T subdivision, T radii = 5.0f) {
  
9b69bb4c   Jiaming Guo   add diplay list t...
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
  			if (!glIsList(dlist + 1)) {
  				glNewList(dlist + 1, GL_COMPILE);
  
  				stim::vec3<T> dir;							// direction vector
  				stim::circle<T> unit_c;						// unit circle for finding the rotation start direction
  				std::vector<typename stim::vec3<T> > cp1;
  				std::vector<typename stim::vec3<T> > cp2;
  
  				for (unsigned i = 0; i < inlet.size(); i++) {
  					// render vertex as sphere
  					for (unsigned j = 1; j < inlet[i].V.size() - 1; j++) {
  						glPushMatrix();
  						glTranslatef(inlet[i].V[j][0], inlet[i].V[j][1], inlet[i].V[j][2]);
  						glutSolidSphere(radii, subdivision, subdivision);
  						glPopMatrix();
  					}
  					// render edge as cylinder
  					for (unsigned j = 0; j < inlet[i].V.size() - 1; j++) {
  						dir = inlet[i].V[j] - inlet[i].V[j + 1];
  						dir = dir.norm();
  						unit_c.rotate(dir);
  						stim::circle<T> c1(inlet[i].V[j], inlet[i].r, dir, unit_c.U);
  						stim::circle<T> c2(inlet[i].V[j + 1], inlet[i].r, dir, unit_c.U);
  						cp1 = c1.glpoints(subdivision);
  						cp2 = c2.glpoints(subdivision);
  
  						glBegin(GL_QUAD_STRIP);
  						for (unsigned k = 0; k < cp1.size(); k++) {
  							glVertex3f(cp1[k][0], cp1[k][1], cp1[k][2]);
  							glVertex3f(cp2[k][0], cp2[k][1], cp2[k][2]);
  						}
  						glEnd();
9191c39e   Jiaming Guo   first version of ...
952
  					}
9191c39e   Jiaming Guo   first version of ...
953
  				}
9191c39e   Jiaming Guo   first version of ...
954
  
9b69bb4c   Jiaming Guo   add diplay list t...
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
  				for (unsigned i = 0; i < outlet.size(); i++) {
  					// render vertex as sphere
  					for (unsigned j = 1; j < outlet[i].V.size() - 1; j++) {
  						glPushMatrix();
  						glTranslatef(outlet[i].V[j][0], outlet[i].V[j][1], outlet[i].V[j][2]);
  						glutSolidSphere(radii, subdivision, subdivision);
  						glPopMatrix();
  					}
  					// render edge as cylinder
  					for (unsigned j = 0; j < outlet[i].V.size() - 1; j++) {
  						dir = outlet[i].V[j] - outlet[i].V[j + 1];
  						dir = dir.norm();
  						unit_c.rotate(dir);
  						stim::circle<T> c1(outlet[i].V[j], outlet[i].r, dir, unit_c.U);
  						stim::circle<T> c2(outlet[i].V[j + 1], outlet[i].r, dir, unit_c.U);
  						cp1 = c1.glpoints(subdivision);
  						cp2 = c2.glpoints(subdivision);
  
  						glBegin(GL_QUAD_STRIP);
  						for (unsigned k = 0; k < cp1.size(); k++) {
  							glVertex3f(cp1[k][0], cp1[k][1], cp1[k][2]);
  							glVertex3f(cp2[k][0], cp2[k][1], cp2[k][2]);
  						}
  						glEnd();
9191c39e   Jiaming Guo   first version of ...
979
  					}
9191c39e   Jiaming Guo   first version of ...
980
  				}
9b69bb4c   Jiaming Guo   add diplay list t...
981
  				glEndList();
9191c39e   Jiaming Guo   first version of ...
982
  			}
9b69bb4c   Jiaming Guo   add diplay list t...
983
984
  			glCallList(dlist + 1);
  		}	
9191c39e   Jiaming Guo   first version of ...
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
  
  		// draw gradient color bounding box outside the object
  		void bounding_box() {
  
  			stim::vec3<T> L = bb.A;						// get the bottom left corner
  			stim::vec3<T> U = bb.B;						// get the top right corner
  			
  			glLineWidth(1);
  			// front face of the box (in L[2])
  			glBegin(GL_LINE_LOOP);
  			glColor3f(0.0f, 0.0f, 0.0f);
  			glVertex3f(L[0], L[1], L[2]);
  			glColor3f(0.0f, 1.0f, 0.0f);
  			glVertex3f(L[0], U[1], L[2]);
  			glColor3f(1.0f, 1.0f, 0.0f);
  			glVertex3f(U[0], U[1], L[2]);
  			glColor3f(1.0f, 0.0f, 0.0f);
  			glVertex3f(U[0], L[1], L[2]);
  			glEnd();
  
  			// back face of the box (in U[2])
  			glBegin(GL_LINE_LOOP);
  			glColor3f(1.0f, 1.0f, 1.0f);
  			glVertex3f(U[0], U[1], U[2]);
  			glColor3f(0.0f, 1.0f, 1.0f);
  			glVertex3f(L[0], U[1], U[2]);
  			glColor3f(0.0f, 0.0f, 1.0f);
  			glVertex3f(L[0], L[1], U[2]);
  			glColor3f(1.0f, 0.0f, 1.0f);
  			glVertex3f(U[0], L[1], U[2]);
  			glEnd();
  
  			// fill out the rest of the lines to connect the two faces
  			glBegin(GL_LINES);
  			glColor3f(0.0f, 1.0f, 0.0f);
  			glVertex3f(L[0], U[1], L[2]);
  			glColor3f(0.0f, 1.0f, 1.0f);
  			glVertex3f(L[0], U[1], U[2]);
  			glColor3f(1.0f, 1.0f, 1.0f);
  			glVertex3f(U[0], U[1], U[2]);
  			glColor3f(1.0f, 1.0f, 0.0f);
  			glVertex3f(U[0], U[1], L[2]);
  			glColor3f(1.0f, 0.0f, 0.0f);
  			glVertex3f(U[0], L[1], L[2]);
  			glColor3f(1.0f, 0.0f, 1.0f);
  			glVertex3f(U[0], L[1], U[2]);
  			glColor3f(0.0f, 0.0f, 1.0f);
  			glVertex3f(L[0], L[1], U[2]);
  			glColor3f(0.0f, 0.0f, 0.0f);
  			glVertex3f(L[0], L[1], L[2]);
  			glEnd();
  		}
  
  		// mark the vertex
  		void mark_vertex() {
  			
  			glColor3f(1.0f, 1.0f, 1.0f);
  			for (unsigned i = 0; i < num_vertex; i++) {
  				glRasterPos3f(V[i][0], V[i][1] + get_radius(i), V[i][2]);
  				std::stringstream ss;
  				ss << i;
  				glutBitmapString(GLUT_BITMAP_HELVETICA_18, (const unsigned char*)(ss.str().c_str()));
  			}
  		}
  
  		// find the nearest vertex of current click position
  		// return true and a value if found
  		inline bool epsilon_vertex(T x, T y, T z, T eps, unsigned& v) {
  
  			float d = FLT_MAX;									// minimum distance between 2 vertices
  			float tmp_d = 0.0f;									// temporary stores distance for loop
  			unsigned tmp_i = 0;									// temporary stores connection index for loop
  			stim::vec3<float> tmp_v;							// temporary stores current loop point
  			d = FLT_MAX;										// set to max of float number
  
  			for (unsigned i = 0; i < V.size(); i++) {
  				tmp_v = stim::vec3<float>(x, y, z);
  	
  				tmp_v = tmp_v - V[i];							// calculate a vector between two vertices
  				tmp_d = tmp_v.len();							// calculate length of that vector
  				if (tmp_d < d) {
  					d = tmp_d;									// if found a nearer vertex 
  					tmp_i = i;									// get the index of that vertex
  				}
  			}
  			eps += get_radius(tmp_i);							// increase epsilon accordingly
  			if (d < eps) {										// if current click is close to any vertex
  				v = tmp_i;										// copy the extant vertex's index to v
  				return true;
  			}
  
  			return false;
  		}
  
  		/// build main feeder connection
  		// set up main feeder and main port of both input and output
6765b32b   Jiaming Guo   add hilbert curve
1081
  		void set_main_feeder(T border = 400.0f) {
9191c39e   Jiaming Guo   first version of ...
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
  			
  			// 0 means outgoing while 1 means incoming
  			stim::vec3<T> inlet_main_feeder;
  			stim::vec3<T> outlet_main_feeder;
  
  			inlet_main_feeder = stim::vec3<T>(bb.A[0] - border, bb.center()[1], bb.center()[2]);
  			outlet_main_feeder = stim::vec3<T>(bb.B[0] + border, bb.center()[1], bb.center()[2]);
  			
  			main_feeder.push_back(inlet_main_feeder);
  			main_feeder.push_back(outlet_main_feeder);
  
  			// find both input and output vertex
  			stim::triple<unsigned, unsigned, float> tmp;
  			unsigned N = pendant_vertex.size();				// get the number of dangle vertex
  			unsigned idx = 0;
  			for (unsigned i = 0; i < N; i++) {				// for every boundary vertex
  				idx = pendant_vertex[i];
  				for (unsigned j = 0; j < num_edge; j++) {	// for every edge
  					if (Q[j].first == idx) {			// starting vertex
  						if (Q[j].third > 0) {			// flow comes in
  							tmp.first = idx;
  							tmp.second = j;
  							tmp.third = Q[j].third;
  							input.push_back(tmp);
  							break;
  						}
  						// their might be a degenerate case that it equals to 0?
  						else if (Q[j].third < 0) {		// flow comes out
  							tmp.first = idx;
  							tmp.second = j;
  							tmp.third = -Q[j].third;
  							output.push_back(tmp);
  							break;
  						}
  					}
  					else if (Q[j].second == idx) {		// ending vertex
  						if (Q[j].third > 0) {			// flow comes in
  							tmp.first = idx;
  							tmp.second = j;
  							tmp.third = Q[j].third;
  							output.push_back(tmp);
  							break;
  						}
  						// their might be a degenerate case that it equals to 0?
  						else if (Q[j].third < 0) {		// flow comes out
  							tmp.first = idx;
  							tmp.second = j;
  							tmp.third = -Q[j].third;
  							input.push_back(tmp);
  							break;
  						}
  					}
  				}
  			}
  		}
  
  		// build connection between all inlets and outlets
  		// connection will trail along one axis around the bounding box
  		void build_synthetic_connection(T viscosity, T radii = 5.0f) {
  			
  			stim::vec3<T> L = bb.A;						// get the bottom left corner
  			stim::vec3<T> U = bb.B;						// get the top right corner
  			T box_length = U[0] - L[0];
  			T x0, dx;
  
  			stim::vec3<T> tmp_v;						// start vertex
  			stim::vec3<T> mid_v;						// middle point of the bridge
  			stim::vec3<T> bus_v;						// point on the bus
  			x0 = main_feeder[0][0] + 100.0f;			// assume bus length is 210.0f
  			for (unsigned i = 0; i < input.size(); i++) {
  				
  				tmp_v = V[input[i].first];
  				dx = 200.0f * ((tmp_v[0] - L[0]) / box_length);		// the socket position depends on proximity
  				bus_v = stim::vec3<T>(x0 - dx, main_feeder[0][1], tmp_v[2]);
  				mid_v = stim::vec3<T>(x0 - dx, tmp_v[1], tmp_v[2]);
  
  				stim::bridge<T> tmp_b;
  				tmp_b.V.push_back(bus_v);
  				tmp_b.V.push_back(mid_v);
  				tmp_b.V.push_back(tmp_v);
  				tmp_b.v.push_back(input[i].first);
  				tmp_b.Q = input[i].third;
  				tmp_b.l = (bus_v - mid_v).len() + (mid_v - tmp_v).len();
  				tmp_b.r = radii;
  
  				inlet.push_back(tmp_b);
  			}
  
  			x0 = main_feeder[1][0] - 100.0f;
  			for (unsigned i = 0; i < output.size(); i++) {
  
  				tmp_v = V[output[i].first];
  				dx = 200.0f * ((U[0] - tmp_v[0]) / box_length);		// the socket position depends on proximity
  				bus_v = stim::vec3<T>(x0 + dx, main_feeder[1][1], tmp_v[2]);
  				mid_v = stim::vec3<T>(x0 + dx, tmp_v[1], tmp_v[2]);
  
  				stim::bridge<T> tmp_b;
  				tmp_b.V.push_back(bus_v);
  				tmp_b.V.push_back(mid_v);
  				tmp_b.V.push_back(tmp_v);
  				tmp_b.v.push_back(output[i].first);
  				tmp_b.Q = output[i].third;
  				tmp_b.l = (bus_v - mid_v).len() + (mid_v - tmp_v).len();
  				tmp_b.r = radii;
  
  				outlet.push_back(tmp_b);
  			}
  		}
  
  		// automatically modify bridge to make it feasible
  		void modify_synthetic_connection(T viscosity, T rou, T radii = 5.0f) {
9b69bb4c   Jiaming Guo   add diplay list t...
1193
1194
1195
1196
  
  			glDeleteLists(dlist, 1);					// delete display list for modify
  			glDeleteLists(dlist + 1, 1);
  		
9191c39e   Jiaming Guo   first version of ...
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
  			// because of radii change at the port vertex, there will be a pressure drop at that port
  			// it follows the bernoulli equation
  			// p1 + 1/2*rou*v1^2 + rou*g*h1 = p2 + 1/2*rou*v2^2 + rou*g*h2
  			// Q1 = Q2 -> v1*r1^2 = v2*r2^2
  			std::vector<T> new_pressure = pressure;
  			unsigned idx;
  			for (unsigned i = 0; i < pendant_vertex.size(); i++) {
  				idx = pendant_vertex[i];
  				T tmp_v = get_velocity(idx);			// velocity at that pendant vertex
  				T ar = get_radius(idx) / radii;
  				new_pressure[idx] = pressure[idx] + 1.0f / 2.0f * rou * std::pow(tmp_v, 2) * (1.0f - std::pow(ar, 4));
  			}
  
  			// increase r -> increase Q -> decrease l
  			// find maximum pressure inlet port
  			T source_pressure = FLT_MIN;	// source pressure
  			unsigned inlet_index;
  			T tmp_p;
  			for (unsigned i = 0; i < inlet.size(); i++) {
  				tmp_p = new_pressure[inlet[i].v[0]] + ((8 * viscosity * inlet[i].l * inlet[i].Q) / ((float)stim::PI * std::pow(radii, 4)));
  				if (tmp_p > source_pressure) {
  					source_pressure = tmp_p;
  					inlet_index = i;
  				}
  			}
  
  			// automatically modify inlet bridge to make it feasible
  			bool upper = false;						// flag indicates the whether the port is upper than main feeder
  			bool invert = false;					// there are two version of hilbert curve depends on starting position with respect to the cup
  			T new_l;
  			stim::vec3<T> bus_v;					// the port point on the bus
  			stim::vec3<T> mid_v;					// the original corner point
  			stim::vec3<T> tmp_v;					// the pendant point
  			int order = 0;							// order of hilbert curve (iteration)
  			for (unsigned i = 0; i < inlet.size(); i++) {
  				if (i != inlet_index) {
  					new_l = (source_pressure - new_pressure[inlet[i].v[0]]) * ((float)stim::PI * std::pow(radii, 4)) / (8 * viscosity * inlet[i].Q);
  
  					if (inlet[i].V[2][1] > main_feeder[0][1]) {		// check out upper side of lower side
  						upper = true;
  						invert = false;
  					}
  					else {
  						upper = false;
  						invert = true;
  					}
  
  					T origin_l = (inlet[i].V[1] - inlet[i].V[2]).len();
  					T desire_l = new_l - (inlet[i].V[0] - inlet[i].V[1]).len();
  					find_hilbert_order(origin_l, desire_l, order);
  
  					bus_v = inlet[i].V[0];
  					mid_v = inlet[i].V[1];
  					tmp_v = inlet[i].V[2];
  					inlet[i].V.clear();
  					inlet[i].V.push_back(tmp_v);
  					inlet[i].l = new_l;
  
6765b32b   Jiaming Guo   add hilbert curve
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
  					if (desire_l - origin_l < 2 * radii) {	// do not need to use hilbert curve, just increase the length by draging out
  						T d = new_l - inlet[i].l;
  						stim::vec3<T> corner = stim::vec3<T>(tmp_v[0], tmp_v[1] + d / 2.0f * (tmp_v[1] > main_feeder[0][1] ? 1 : -1), tmp_v[2]);
  						inlet[i].V.push_back(corner);
  						corner = stim::vec3<T>(mid_v[0], mid_v[1] + d / 2.0f * (tmp_v[1] > main_feeder[0][1] ? 1 : -1), mid_v[2]);
  						inlet[i].V.push_back(corner);
  						inlet[i].V.push_back(bus_v);
  					}
  					else {
  						T fragment = (desire_l - origin_l) / ((std::pow(4, order) - 1) / (std::pow(2, order) - 1) - 1);	// the length of the opening of cup 		
  						T dl = fragment / (std::pow(2, order) - 1);											// unit cup length
  
  						if (dl > 2 * radii) {				// if the radii is feasible
  							if (upper)
  								hilbert_curve(i, &tmp_v[0], order, dl, 1, invert, DOWN);
  							else
  								hilbert_curve(i, &tmp_v[0], order, dl, 1, invert, UP);
  
  							if (tmp_v[0] != mid_v[0])
  								inlet[i].V.push_back(mid_v);
  							inlet[i].V.push_back(bus_v);
  						}
  						else {								// if the radii is not feasible
  							int count = 1;
  							while (dl <= 2 * radii) {
  								dl = origin_l / (std::pow(2, order - count) - 1);
  								count++;
  							}
  							count--;
  
  							if (upper)
  								hilbert_curve(i, &tmp_v[0], order - count, dl, 1, invert, DOWN);
  							else
  								hilbert_curve(i, &tmp_v[0], order - count, dl, 1, invert, UP);
  
  							desire_l -= origin_l * ((std::pow(4, order - count) - 1) / (std::pow(2, order - count) - 1));
  							origin_l = (bus_v - mid_v).len();
  							desire_l += origin_l;
  
  							find_hilbert_order(origin_l, desire_l, order);
  
  							fragment = (desire_l - origin_l) / ((std::pow(4, order) - 1) / (std::pow(2, order) - 1) - 1);
  							dl = fragment / (std::pow(2, order) - 1);
  							if (dl < 2 * radii)
  								std::cout << "infeasible connection between inlets!" << std::endl;
  
  							if (upper)
def55315   Jiaming Guo   fixed extended hi...
1302
  								hilbert_curve(i, &tmp_v[0], order, dl, 1, !invert, LEFT);
6765b32b   Jiaming Guo   add hilbert curve
1303
1304
1305
1306
1307
1308
1309
1310
  							else
  								hilbert_curve(i, &tmp_v[0], order, dl, 1, !invert, RIGHT);
  
  							if (tmp_v[1] != bus_v[1])
  								inlet[i].V.push_back(bus_v);
  						}
  					}
  					std::reverse(inlet[i].V.begin(), inlet[i].V.end());			// from bus to pendant vertex
9191c39e   Jiaming Guo   first version of ...
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
  				}
  			}
  
  			// find minimum pressure outlet port
  			source_pressure = FLT_MAX;
  			unsigned outlet_index;
  			for (unsigned i = 0; i < outlet.size(); i++) {
  				tmp_p = new_pressure[outlet[i].v[0]] - ((8 * viscosity * outlet[i].l * outlet[i].Q) / ((float)stim::PI * std::pow(radii, 4)));
  				if (tmp_p < source_pressure) {
  					source_pressure = tmp_p;
  					outlet_index = i;
  				}
  			}
  
  			// automatically modify outlet bridge to make it feasible
  			for (unsigned i = 0; i < outlet.size(); i++) {
  				if (i != outlet_index) {
  					new_l = (new_pressure[outlet[i].v[0]] - source_pressure) * ((float)stim::PI * std::pow(radii, 4)) / (8 * viscosity * outlet[i].Q);
6765b32b   Jiaming Guo   add hilbert curve
1329
  
9191c39e   Jiaming Guo   first version of ...
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
  					if (outlet[i].V[2][1] > main_feeder[1][1]) {
  						upper = true;
  						invert = true;
  					}
  					else {
  						upper = false;
  						invert = false;
  					}
  
  					T origin_l = (outlet[i].V[1] - outlet[i].V[2]).len();
  					T desire_l = new_l - (outlet[i].V[0] - outlet[i].V[1]).len();
  					find_hilbert_order(origin_l, desire_l, order);
  
  					bus_v = outlet[i].V[0];
  					mid_v = outlet[i].V[1];
  					tmp_v = outlet[i].V[2];
  					outlet[i].V.clear();
  					outlet[i].V.push_back(tmp_v);
  					outlet[i].l = new_l;
  
6765b32b   Jiaming Guo   add hilbert curve
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
  					if (desire_l - origin_l < 2 * radii) {	// do not need to use hilbert curve, just increase the length by draging out
  						T d = new_l - outlet[i].l;
  						stim::vec3<T> corner = stim::vec3<T>(tmp_v[0], tmp_v[1] + d / 2.0f * (tmp_v[1] > main_feeder[0][1] ? 1 : -1), tmp_v[2]);
  						outlet[i].V.push_back(corner);
  						corner = stim::vec3<T>(mid_v[0], mid_v[1] + d / 2.0f * (tmp_v[1] > main_feeder[0][1] ? 1 : -1), mid_v[2]);
  						outlet[i].V.push_back(corner);
  						outlet[i].V.push_back(bus_v);
  					}
  					else {
  						T fragment = (desire_l - origin_l) / ((std::pow(4, order) - 1) / (std::pow(2, order) - 1) - 1);	// the length of the opening of cup 		
  						T dl = fragment / (std::pow(2, order) - 1);											// unit cup length
  
  						if (dl > 2 * radii) {				// if the radii is feasible
  							if (upper)
  								hilbert_curve(i, &tmp_v[0], order, dl, 0, invert, DOWN);
  							else
  								hilbert_curve(i, &tmp_v[0], order, dl, 0, invert, UP);
  
  							if (tmp_v[0] != mid_v[0])
  								outlet[i].V.push_back(mid_v);
  							outlet[i].V.push_back(bus_v);
  						}
  						else {								// if the radii is not feasible
  							int count = 1;
  							while (dl <= 2 * radii) {
  								dl = origin_l / (std::pow(2, order - count) - 1);
  								count++;
  							}
  							count--;
  
  							if (upper)
  								hilbert_curve(i, &tmp_v[0], order - count, dl, 0, invert, DOWN);
  							else
  								hilbert_curve(i, &tmp_v[0], order - count, dl, 0, invert, UP);
  
  							desire_l -= origin_l * ((std::pow(4, order - count) - 1) / (std::pow(2, order - count) - 1));
  							origin_l = (bus_v - mid_v).len();
  							desire_l += origin_l;
  
  							find_hilbert_order(origin_l, desire_l, order);
  
  							fragment = (desire_l - origin_l) / ((std::pow(4, order) - 1) / (std::pow(2, order) - 1) - 1);
  							dl = fragment / (std::pow(2, order) - 1);
  							if (dl < 2 * radii)
  								std::cout << "infeasible connection between outlets!" << std::endl;
  
  							if (upper)
  								hilbert_curve(i, &tmp_v[0], order, dl, 0, !invert, LEFT);
  							else
def55315   Jiaming Guo   fixed extended hi...
1399
  								hilbert_curve(i, &tmp_v[0], order, dl, 0, !invert, RIGHT);
6765b32b   Jiaming Guo   add hilbert curve
1400
1401
1402
1403
1404
  
  							if (tmp_v[1] != bus_v[1])
  								outlet[i].V.push_back(bus_v);
  						}
  					}
9191c39e   Jiaming Guo   first version of ...
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
  					std::reverse(outlet[i].V.begin(), outlet[i].V.end());
  				}
  			}
  		}
  
  		// check current bridge to see feasibility
  		void check_synthetic_connection(T viscosity, T radii = 5.0f) {
  			
  			T eps = 0.01f;
  			T source_pressure = pressure[inlet[0].v[0]] + (8 * viscosity * inlet[0].l * inlet[0].Q) / ((float)stim::PI * std::pow(radii, 4));
  			T tmp_p;
  			for (unsigned i = 1; i < inlet.size(); i++) {
  				tmp_p = pressure[inlet[i].v[0]] + (8 * viscosity * inlet[i].l * inlet[i].Q) / ((float)stim::PI * std::pow(radii, 4));
  				T delta = fabs(tmp_p - source_pressure);
  				if (delta > eps) {
  					std::cout << "Nonfeasible connection!" << std::endl;
  					break;
  				}
  			}
  			source_pressure = pressure[outlet[0].v[0]] - (8 * viscosity * outlet[0].l * outlet[0].Q) / ((float)stim::PI * std::pow(radii, 4));
  			for (unsigned i = 1; i < outlet.size(); i++) {
  				tmp_p = pressure[outlet[i].v[0]] - (8 * viscosity * outlet[i].l * outlet[i].Q) / ((float)stim::PI * std::pow(radii, 4));
  				T delta = fabs(tmp_p - source_pressure);
  				if (delta > eps) {
  					std::cout << "Nonfeasible connection!" << std::endl;
  					break;
  				}
  			}
  		}
  
  		/// make binary image stack
  		// prepare for image stack
  		void preparation(T &Xl, T &Xr, T &Yt, T &Yb, T &Z, T length = 210.0f, T height = 10.0f) {
  			
  			T max_radii = 0.0f;
  			T top = FLT_MIN;
  			T bottom = FLT_MAX;
  
  			// clear up last time result
  			A.clear();
  			B.clear();
  			CU.clear();
  
  			// firstly push back the original network
  			stim::sphere<T> new_sphere;
  			stim::cone<T> new_cone;
  			stim::cuboid<T> new_cuboid;
  
  			// take every source bus as cuboid
  			new_cuboid.c = main_feeder[0];
  			new_cuboid.l = length;
  			new_cuboid.w = bb.B[2] - bb.A[2] + 10.0f;
  			new_cuboid.h = height;
  			CU.push_back(new_cuboid);
  			new_cuboid.c = main_feeder[1];
  			CU.push_back(new_cuboid);
  
  			// take every point as sphere, every line as cone
  			for (unsigned i = 0; i < num_edge; i++) {
  				for (unsigned j = 0; j < E[i].size(); j++) {
  					new_sphere.c = E[i][j];
  					new_sphere.r = E[i].r(j);
  					A.push_back(new_sphere);
  					if (j != E[i].size() - 1) {
  						new_cone.c1 = E[i][j];
  						new_cone.c2 = E[i][j + 1];
  						new_cone.r1 = E[i].r(j);
  						new_cone.r2 = E[i].r(j + 1);
  						B.push_back(new_cone);
  					}
  				}
  			}
  
  			// secondly push back outside connection
  			for (unsigned i = 0; i < inlet.size(); i++) {
6765b32b   Jiaming Guo   add hilbert curve
1480
1481
  				for (unsigned j = 1; j < inlet[i].V.size() - 1; j++) {
  					new_sphere.c = inlet[i].V[j];
9191c39e   Jiaming Guo   first version of ...
1482
1483
1484
  					new_sphere.r = inlet[i].r;
  					A.push_back(new_sphere);
  				}
9191c39e   Jiaming Guo   first version of ...
1485
1486
  			}
  			for (unsigned i = 0; i < outlet.size(); i++) {
6765b32b   Jiaming Guo   add hilbert curve
1487
1488
  				for (unsigned j = 1; j < outlet[i].V.size() - 1; j++) {
  					new_sphere.c = outlet[i].V[j];
9191c39e   Jiaming Guo   first version of ...
1489
1490
  					new_sphere.r = outlet[i].r;
  					A.push_back(new_sphere);
9191c39e   Jiaming Guo   first version of ...
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
  				}
  			}
  
  			for (unsigned i = 0; i < inlet.size(); i++) {
  				for (unsigned j = 0; j < inlet[i].V.size() - 1; j++) {
  					new_cone.c1 = inlet[i].V[j];
  					new_cone.c2 = inlet[i].V[j + 1];
  					new_cone.r1 = inlet[i].r;
  					new_cone.r2 = inlet[i].r;
  					B.push_back(new_cone);
  				}
  			}
  			for (unsigned i = 0; i < outlet.size(); i++) {
  				for (unsigned j = 0; j < outlet[i].V.size() - 1; j++) {
  					new_cone.c1 = outlet[i].V[j];
  					new_cone.c2 = outlet[i].V[j + 1];
  					new_cone.r1 = outlet[i].r;
  					new_cone.r2 = outlet[i].r;
  					B.push_back(new_cone);
  				}
  			}
  
  			// find out the image stack size
  			Xl = main_feeder[0][0] - length / 2;			// left bound x coordinate
  			Xr = main_feeder[1][0] + length / 2;			// right bound x coordinate
  
  			for (unsigned i = 0; i < A.size(); i++) {
  				if (A[i].c[1] > top)
  					top = A[i].c[1];
  				if (A[i].c[1] < bottom)
  					bottom = A[i].c[1];
  				if (A[i].r > max_radii)
  					max_radii = A[i].r;
  			}
  
  			Yt = top;										// top bound y coordinate
  			Yb = bottom;									// bottom bound y coordinate
  			Z = (bb.B[2] - bb.A[2] + 2 * max_radii);		// bounding box width(along z-axis)
  		}
  
  		/// making image stack main function
  		void make_image_stack(T dx, T dy, T dz, std::string stackdir, T radii = 5.0f) {
  			
  			/// preparation for making image stack
  			T X, Xl, Xr, Y, Yt, Yb, Z;
  			preparation(Xl, Xr, Yt, Yb, Z);
  			X = Xr - Xl;								// bounding box length(along x-axis)
  			Y = Yt - Yb;								// bounding box height(along y-axis)
  
  			/// make
  			stim::image_stack<unsigned char, T> I;
  			T size_x, size_y, size_z;
  
  			stim::vec3<T> center = bb.center();			// get the center of bounding box
  
  			size_x = X / dx + 1;						// set the size of image
  			size_y = Y / dy + 1;
  			size_z = Z / dz + 1;
  
  			///  initialize image stack object
  			I.init(1, size_x, size_y, size_z);
  			I.set_dim(dx, dy, dz);
  
  			// because of lack of memory, we have to computer one slice of stack per time
  			// allocate vertex, edge and bus
  			stim::sphere<T> *d_V;
  			stim::cone<T> *d_E;
  			stim::cuboid<T> *d_B;
  
  			HANDLE_ERROR(cudaMalloc((void**)&d_V, A.size() * sizeof(stim::sphere<T>)));
  			HANDLE_ERROR(cudaMalloc((void**)&d_E, B.size() * sizeof(stim::cone<T>)));
  			HANDLE_ERROR(cudaMalloc((void**)&d_B, CU.size() * sizeof(stim::cuboid<T>)));
  			HANDLE_ERROR(cudaMemcpy(d_V, &A[0], A.size() * sizeof(stim::sphere<T>), cudaMemcpyHostToDevice));
  			HANDLE_ERROR(cudaMemcpy(d_E, &B[0], B.size() * sizeof(stim::cone<T>), cudaMemcpyHostToDevice));
  			HANDLE_ERROR(cudaMemcpy(d_B, &CU[0], CU.size() * sizeof(stim::cuboid<T>), cudaMemcpyHostToDevice));
  
  			// allocate image stack information memory
  			size_t* d_R;
  			T *d_S;
  
  			size_t* R = (size_t*)malloc(4 * sizeof(size_t));	// size in 4 dimension
  			R[0] = 1;
  			R[1] = (size_t)size_x;
  			R[2] = (size_t)size_y;
  			R[3] = (size_t)size_z;
  			T *S = (T*)malloc(4 * sizeof(T));					// spacing in 4 dimension
  			S[0] = 1.0f;
  			S[1] = dx;
  			S[2] = dy;
  			S[3] = dz;
  			size_t num = size_x * size_y;
  
  			HANDLE_ERROR(cudaMalloc((void**)&d_R, 4 * sizeof(size_t)));
  			HANDLE_ERROR(cudaMalloc((void**)&d_S, 4 * sizeof(T)));
  			HANDLE_ERROR(cudaMemcpy(d_R, R, 4 * sizeof(size_t), cudaMemcpyHostToDevice));
  			HANDLE_ERROR(cudaMemcpy(d_S, S, 4 * sizeof(T), cudaMemcpyHostToDevice));
  
  			// for every slice of image
  			unsigned p = 0;																// percentage of progress
  			for (unsigned i = 0; i < size_z; i++) {
  
6765b32b   Jiaming Guo   add hilbert curve
1592
1593
1594
  				int x = 0 - (int)Xl;					// translate whole network(including inlet/outlet) to origin
  				int y = 0 - (int)Yb;
  				int z = i + (int)center[2];				// box symmetric along z-axis
9191c39e   Jiaming Guo   first version of ...
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
  				// allocate image slice memory
  				unsigned char* d_ptr;
  				unsigned char* ptr = (unsigned char*)malloc(num * sizeof(unsigned char));
  				memset(ptr, 0, num * sizeof(unsigned char));
  
  				HANDLE_ERROR(cudaMalloc((void**)&d_ptr, num * sizeof(unsigned char)));
  
  				cudaDeviceProp prop;
  				cudaGetDeviceProperties(&prop, 0);										// get cuda device properties structure
  				size_t max_thread = sqrt(prop.maxThreadsPerBlock);						// get the maximum number of thread per block
  
  				dim3 block(size_x / max_thread + 1, size_y / max_thread + 1);
  				dim3 thread(max_thread, max_thread);
  				inside_sphere << <block, thread >> > (d_V, A.size(), d_R, d_S, d_ptr, x, y, z);
  				cudaDeviceSynchronize();
  				inside_cone << <block, thread >> > (d_E, B.size(), d_R, d_S, d_ptr, x, y, z);
  				cudaDeviceSynchronize();
  				inside_cuboid << <block, thread >> > (d_B, CU.size(), d_R, d_S, d_ptr, x, y, z);
  
  				HANDLE_ERROR(cudaMemcpy(ptr, d_ptr, num * sizeof(unsigned char), cudaMemcpyDeviceToHost));
  
  				I.set(ptr, i);
  
  				free(ptr);
  				HANDLE_ERROR(cudaFree(d_ptr));
  
  				// print progress bar
  				p = (float)(i + 1) / (float)size_z * 100;
  				rtsProgressBar(p);
  			}
  
  			// clear up
  			free(R);
  			free(S);
  			HANDLE_ERROR(cudaFree(d_R));
  			HANDLE_ERROR(cudaFree(d_S));
  			HANDLE_ERROR(cudaFree(d_V));
  			HANDLE_ERROR(cudaFree(d_E));
  			HANDLE_ERROR(cudaFree(d_B));
  
  			if (stackdir == "")
  				I.save_images("image????.bmp");
  			else
  				I.save_images(stackdir + "/image????.bmp");
  		}
  
  		/// Calculate the inverse of A and store the result in C
  		void inversion(T** A, int order, T* C) {
  
  #ifdef __CUDACC__
  
  			// convert from double pointer to single pointer, make it flat
  			T* Aflat = (T*)malloc(order * order * sizeof(T));
  			for (unsigned i = 0; i < order; i++)
  				for (unsigned j = 0; j < order; j++)
  					Aflat[i * order + j] = A[i][j];
  
  			// create device pointer
  			T* d_Aflat;		// flat original matrix
  			T* d_Cflat;	// flat inverse matrix
  			T** d_A;		// put the flat original matrix into another array of pointer
  			T** d_C;
  			int *d_P;
  			int *d_INFO;
  
  			// allocate memory on device
  			HANDLE_ERROR(cudaMalloc((void**)&d_Aflat, order * order * sizeof(T)));
  			HANDLE_ERROR(cudaMalloc((void**)&d_Cflat, order * order * sizeof(T)));
  			HANDLE_ERROR(cudaMalloc((void**)&d_A, sizeof(T*)));
  			HANDLE_ERROR(cudaMalloc((void**)&d_C, sizeof(T*)));
  			HANDLE_ERROR(cudaMalloc((void**)&d_P, order * 1 * sizeof(int)));
  			HANDLE_ERROR(cudaMalloc((void**)&d_INFO, 1 * sizeof(int)));
  
  			// copy matrix from host to device
  			HANDLE_ERROR(cudaMemcpy(d_Aflat, Aflat, order * order * sizeof(T), cudaMemcpyHostToDevice));
  
  			// copy matrix from device to device
  			HANDLE_ERROR(cudaMemcpy(d_A, &d_Aflat, sizeof(T*), cudaMemcpyHostToDevice));
  			HANDLE_ERROR(cudaMemcpy(d_C, &d_Cflat, sizeof(T*), cudaMemcpyHostToDevice));
  
  			// calculate the inverse of matrix based on cuBLAS
  			cublasHandle_t handle;
  			CUBLAS_HANDLE_ERROR(cublasCreate_v2(&handle));	// create cuBLAS handle object
  
  			CUBLAS_HANDLE_ERROR(cublasSgetrfBatched(handle, order, d_A, order, d_P, d_INFO, 1));
  
  			int INFO = 0;
  			HANDLE_ERROR(cudaMemcpy(&INFO, d_INFO, sizeof(int), cudaMemcpyDeviceToHost));
  			if (INFO == order)
  			{
  				std::cout << "Factorization Failed : Matrix is singular." << std::endl;
  				cudaDeviceReset();
  				exit(1);
  			}
  
  			CUBLAS_HANDLE_ERROR(cublasSgetriBatched(handle, order, (const T **)d_A, order, d_P, d_C, order, d_INFO, 1));
  
  			CUBLAS_HANDLE_ERROR(cublasDestroy_v2(handle));
  
  			// copy inverse matrix from device to device
  			HANDLE_ERROR(cudaMemcpy(&d_Cflat, d_C, sizeof(T*), cudaMemcpyDeviceToHost));
  
  			// copy inverse matrix from device to host
  			HANDLE_ERROR(cudaMemcpy(C, d_Cflat, order * order * sizeof(T), cudaMemcpyDeviceToHost));
  
  			// clear up
  			free(Aflat);
  			HANDLE_ERROR(cudaFree(d_Aflat));
  			HANDLE_ERROR(cudaFree(d_Cflat));
  			HANDLE_ERROR(cudaFree(d_A));
  			HANDLE_ERROR(cudaFree(d_C));
  			HANDLE_ERROR(cudaFree(d_P));
  			HANDLE_ERROR(cudaFree(d_INFO));
  
  #else
  			// get the determinant of a
  			double det = 1.0 / determinant(A, order);
  
  			// memory allocation
  			T* tmp = (T*)malloc((order - 1)*(order - 1) * sizeof(T));
  			T** minor = (T**)malloc((order - 1) * sizeof(T*));
  			for (int i = 0; i < order - 1; i++)
  				minor[i] = tmp + (i * (order - 1));
  
  			for (int j = 0; j < order; j++) {
  				for (int i = 0; i < order; i++) {
  					// get the co-factor (matrix) of A(j,i)
  					get_minor(A, minor, j, i, order);
  					C[i][j] = det * determinant(minor, order - 1);
  					if ((i + j) % 2 == 1)
  						C[i][j] = -C[i][j];
  				}
  			}
  
  			// release memory
  			free(tmp);
  			free(minor);
  #endif
  		}
  	};
  }
  
  #endif