flow.h
56.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
#ifndef FLOW3_H
#define FLOW3_H
#include <algorithm>
//STIM include
#include <stim/parser/arguments.h>
#include <stim/visualization/gl_network.h>
#include <stim/visualization/colormap.h>
#include <stim/math/matrix.h>
#include <stim/visualization/gl_aaboundingbox.h>
#include <stim/ui/progressbar.h>
#include <stim/grids/image_stack.h>
#ifdef __CUDACC__
#include <cublas_v2.h>
#include <stim/cuda/cudatools/error.h>
#endif
namespace stim {
template <typename A, typename B, typename C>
struct triple {
A first;
B second;
C third;
};
template <typename T>
struct bridge {
std::vector<unsigned> v; // vertices' indices
std::vector<typename stim::vec3<T> > V; // vertices' coordinates
T l; // length
T r; // radii
T deltaP; // pressure drop
T Q; // volume flow rate
};
template <typename T>
struct sphere {
stim::vec3<T> c; // center of sphere
T r; // radii
};
template <typename T>
struct cone { // radii changes gradually
stim::vec3<T> c1; // center of geometry start hat
stim::vec3<T> c2; // center of geometry end hat
T r1; // radii at start hat
T r2; // radii at end hat
};
template <typename T>
struct cuboid {
stim::vec3<T> c;
T l; // length
T w; // width
T h; // height
};
/// indicator function
#ifdef __CUDACC__
// for sphere
template <typename T>
__global__ void inside_sphere(const stim::sphere<T> *V, unsigned num, size_t *R, T *S, unsigned char *ptr, int x, int y, int z) {
unsigned ix = blockDim.x * blockIdx.x + threadIdx.x;
unsigned iy = blockDim.y * blockIdx.y + threadIdx.y;
if (ix >= R[1] || iy >= R[2]) return; // avoid seg-fault
// find world_pixel coordinates
stim::vec3<T> world_pixel;
world_pixel[0] = (T)ix * S[1] - x; // translate origin to center of the network
world_pixel[1] = (T)iy * S[2] - y;
world_pixel[2] = ((T)z - R[3] / 2) * S[3]; // ???center of box minus half width
float distance = FLT_MAX;
float tmp_distance;
unsigned idx;
for (unsigned i = 0; i < num; i++) {
tmp_distance = (V[i].c - world_pixel).len();
if (tmp_distance <= distance) {
distance = tmp_distance;
idx = i;
}
}
if (distance <= V[idx].r)
ptr[(R[2] - 1 - iy) * R[0] * R[1] + ix * R[0]] = 255;
}
// for cone
template <typename T>
__global__ void inside_cone(const stim::cone<T> *E, unsigned num, size_t *R, T *S, unsigned char *ptr, int x, int y, int z) {
unsigned ix = blockDim.x * blockIdx.x + threadIdx.x;
unsigned iy = blockDim.y * blockIdx.y + threadIdx.y;
if (ix >= R[1] || iy >= R[2]) return; // avoid segfault
stim::vec3<T> world_pixel;
world_pixel[0] = (T)ix * S[1] - x;
world_pixel[1] = (T)iy * S[2] - y;
world_pixel[2] = ((T)z - R[3] / 2) * S[3];
float distance = FLT_MAX;
float tmp_distance;
float rr; // radii at the surface where projection meets
for (unsigned i = 0; i < num; i++) { // find the nearest cylinder
tmp_distance = ((world_pixel - E[i].c1).cross(world_pixel - E[i].c2)).len() / (E[i].c2 - E[i].c1).len();
if (tmp_distance <= distance) {
// we only focus on point to line segment
// check to see whether projection is lying outside the line segment
float a = (world_pixel - E[i].c1).dot((E[i].c2 - E[i].c1).norm());
float b = (world_pixel - E[i].c2).dot((E[i].c1 - E[i].c2).norm());
float length = (E[i].c1 - E[i].c2).len();
if (a <= length && b <= length) { // projection lying inside the line segment
distance = tmp_distance;
rr = E[i].r1 + (E[i].r2 - E[i].r1) * a / (length); // linear change
}
}
}
if (distance <= rr)
ptr[(R[2] - 1 - iy) * R[0] * R[1] + ix * R[0]] = 255;
}
// for source bus
template <typename T>
__global__ void inside_cuboid(const stim::cuboid<T> *B, unsigned num, size_t *R, T *S, unsigned char *ptr, int x, int y, int z) {
unsigned ix = blockDim.x * blockIdx.x + threadIdx.x;
unsigned iy = blockDim.y * blockIdx.y + threadIdx.y;
if (ix >= R[1] || iy >= R[2]) return; // avoid segfault
stim::vec3<T> world_pixel;
world_pixel[0] = (T)ix * S[1] - x;
world_pixel[1] = (T)iy * S[2] - y;
world_pixel[2] = ((T)z - R[3] / 2) * S[3];
for (unsigned i = 0; i < num; i++) {
bool left_outside = false; // flag indicates point is outside the left bound
bool right_outside = false;
stim::vec3<T> tmp = B[i].c;
stim::vec3<T> L = stim::vec3<T>(tmp[0] - B[i].l / 2.0f, tmp[1] - B[i].h / 2.0f, tmp[2] - B[i].w / 2.0f);
stim::vec3<T> U = stim::vec3<T>(tmp[0] + B[i].l / 2.0f, tmp[1] + B[i].h / 2.0f, tmp[2] + B[i].w / 2.0f);
for (unsigned d = 0; d < 3; d++) {
if (world_pixel[d] < L[d]) // if the point is less than the minimum bound
left_outside = true;
if (world_pixel[d] > U[d]) // if the point is greater than the maximum bound
right_outside = true;
}
if (!left_outside && !right_outside)
ptr[(R[2] - 1 - iy) * R[0] * R[1] + ix * R[0]] = 255;
}
}
#endif
template <typename T>
class flow : public stim::gl_network<T> {
private:
unsigned num_edge;
unsigned num_vertex;
GLuint dlist; // display list for inlets/outlets connections
enum direction { UP, LEFT, DOWN, RIGHT };
// calculate the cofactor of elemen[row][col]
void get_minor(T** src, T** dest, int row, int col, int order) {
// index of element to be copied
int rowCount = 0;
int colCount = 0;
for (int i = 0; i < order; i++) {
if (i != row) {
colCount = 0;
for (int j = 0; j < order; j++) {
// when j is not the element
if (j != col) {
dest[rowCount][colCount] = src[i][j];
colCount++;
}
}
rowCount++;
}
}
}
// calculate the det()
T determinant(T** mat, int order) {
// degenate case when n = 1
if (order == 1)
return mat[0][0];
T det = 0.0; // determinant value
// allocate the cofactor matrix
T** minor = (T**)malloc((order - 1) * sizeof(T*));
for (int i = 0; i < order - 1; i++)
minor[i] = (T*)malloc((order - 1) * sizeof(T));
for (int i = 0; i < order; i++) {
// get minor of element(0, i)
get_minor(mat, minor, 0, i, order);
// recursion
det += (i % 2 == 1 ? -1.0 : 1.0) * mat[0][i] * determinant(minor, order - 1);
}
// release memory
for (int i = 0; i < order - 1; i++)
free(minor[i]);
free(minor);
return det;
}
protected:
using stim::network<T>::E;
using stim::network<T>::V;
using stim::network<T>::get_start_vertex;
using stim::network<T>::get_end_vertex;
using stim::network<T>::get_r;
using stim::network<T>::get_average_r;
using stim::network<T>::get_l;
T** C; // Conductance
std::vector<typename stim::triple<unsigned, unsigned, float> > Q; // volume flow rate
std::vector<T> QQ; // Q' vector
std::vector<T> pressure; // final pressure
public:
std::vector<T> P; // initial pressure
std::vector<T> v; // velocity
std::vector<typename stim::vec3<T> > main_feeder; // inlet/outlet main feeder
std::vector<unsigned> pendant_vertex;
std::vector<typename stim::triple<unsigned, unsigned, T> > input; // first one store which vertex, second one stores which edge, third one stores in/out volume flow rate of that vertex
std::vector<typename stim::triple<unsigned, unsigned, T> > output;
std::vector<typename stim::bridge<T> > inlet; // input bridge
std::vector<typename stim::bridge<T> > outlet; // output bridge
std::vector<typename stim::sphere<T> > A; // sphere model for making image stack
std::vector<typename stim::cone<T> > B; // cone(cylinder) model for making image stack
std::vector<typename stim::cuboid<T> > CU; // cuboid model for making image stack
stim::gl_aaboundingbox<T> bb; // bounding box
flow() {} // default constructor
~flow() {
for (unsigned i = 0; i < num_vertex; i++)
delete[] C[i];
delete[] C;
}
void init(unsigned n_e, unsigned n_v) {
num_edge = n_e;
num_vertex = n_v;
C = new T*[n_v]();
for (unsigned i = 0; i < n_v; i++) {
C[i] = new T[n_v]();
}
QQ.resize(n_v);
P.resize(n_v);
pressure.resize(n_v);
Q.resize(n_e);
v.resize(n_e);
}
void clear() {
for (unsigned i = 0; i < num_vertex; i++) {
QQ[i] = 0;
pressure[i] = 0;
for (unsigned j = 0; j < num_vertex; j++) {
C[i][j] = 0;
}
}
main_feeder.clear();
input.clear();
output.clear();
inlet.clear();
outlet.clear();
if (glIsList(dlist)) {
glDeleteLists(dlist, 1); // delete display list for modify
glDeleteLists(dlist + 1, 1);
}
}
// copy radius from cylinder to flow
void set_radius(unsigned i, T radius) {
for (unsigned j = 0; j < num_edge; j++) {
if (E[j].v[0] == i)
E[j].cylinder<T>::set_r(0, radius);
else if (E[j].v[1] == i)
E[j].cylinder<T>::set_r(E[j].size() - 1, radius);
}
}
// get the radii of vertex i
T get_radius(unsigned i) {
unsigned tmp_e; // edge index
unsigned tmp_v; // vertex index in that edge
for (unsigned j = 0; j < num_edge; j++) {
if (E[j].v[0] == i) {
tmp_e = j;
tmp_v = 0;
}
else if (E[j].v[1] == i) {
tmp_e = j;
tmp_v = E[j].size() - 1;
}
}
return E[tmp_e].r(tmp_v);
}
// get the velocity of pendant vertex i
T get_velocity(unsigned i) {
unsigned tmp_e; // edge index
for (unsigned j = 0; j < num_edge; j++) {
if (E[j].v[0] == i) {
tmp_e = j;
break;
}
else if (E[j].v[1] == i) {
tmp_e = j;
break;
}
}
return v[tmp_e];
}
// set pressure at specifi vertex
void set_pressure(unsigned i, T value) {
P[i] = value;
}
// solve the linear system to get stable flow state
void solve_flow(T viscosity) {
// clear up last time simulation
clear();
// get the pendant vertex indices
pendant_vertex = get_boundary_vertex();
// get bounding box
bb = (*this).boundingbox();
// set the conductance matrix of flow object
unsigned start_vertex = 0;
unsigned end_vertex = 0;
for (unsigned i = 0; i < num_edge; i++) {
start_vertex = get_start_vertex(i); // get the start vertex index of current edge
end_vertex = get_end_vertex(i); // get the end vertex index of current edge
C[start_vertex][end_vertex] = -((float)stim::PI * std::pow(get_average_r(i), 4)) / (8 * u * get_l(i));
C[end_vertex][start_vertex] = C[start_vertex][end_vertex];
}
// set the diagonal to the negative sum of row element
float sum = 0.0;
for (unsigned i = 0; i < num_vertex; i++) {
for (unsigned j = 0; j < num_vertex; j++) {
sum += C[i][j];
}
C[i][i] = -sum;
sum = 0.0;
}
// get the Q' vector QQ
// matrix manipulation to zero out the conductance matrix as defined by the boundary values that were enterd
for (unsigned i = 0; i < num_vertex; i++) {
if (P[i] != 0) { // for every dangle vertex
for (unsigned j = 0; j < num_vertex; j++) {
if (j == i) {
QQ[i] = C[i][i] * P[i];
}
else {
C[i][j] = 0;
QQ[j] = QQ[j] - C[j][i] * P[i];
C[j][i] = 0;
}
}
}
}
// get the inverse of conductance matrix
stim::matrix<float> _C(num_vertex, num_vertex);
inversion(C, num_vertex, _C.data());
// get the pressure in the network
for (unsigned i = 0; i < num_vertex; i++) {
for (unsigned j = 0; j < num_vertex; j++) {
pressure[i] += _C(i, j) * QQ[j];
}
}
// get the flow state from known pressure
float start_pressure = 0.0;
float end_pressure = 0.0;
float deltaP = 0.0;
for (unsigned i = 0; i < num_edge; i++) {
start_vertex = get_start_vertex(i);
end_vertex = get_end_vertex(i);
start_pressure = pressure[start_vertex]; // get the start vertex pressure of current edge
end_pressure = pressure[end_vertex]; // get the end vertex pressure of current edge
deltaP = start_pressure - end_pressure; // deltaP = Pa - Pb
Q[i].first = start_vertex;
Q[i].second = end_vertex;
Q[i].third = ((float)stim::PI * std::pow(get_average_r(i), 4) * deltaP) / (8 * u * get_l(i));
v[i] = Q[i].third / ((float)stim::PI * std::pow(get_average_r(i), 2));
}
}
// get the brewer color map based on velocity
void get_color_map(T& max_v, T& min_v, std::vector<unsigned char>& color, std::vector<unsigned> pendant_vertex) {
unsigned num_edge = Q.size();
unsigned num_vertex = QQ.size();
// find the absolute maximum velocity and minimum velocity
std::vector<float> abs_V(num_edge);
for (unsigned i = 0; i < num_edge; i++) {
abs_V[i] = std::fabsf(v[i]);
}
max_v = *std::max_element(abs_V.begin(), abs_V.end());
min_v = *std::min_element(abs_V.begin(), abs_V.end());
// get the color map based on velocity range along the network
color.clear();
if (pendant_vertex.size() == 2 && num_edge - num_vertex + 1 <= 0) // only one inlet and one outlet
color.resize(num_edge * 3, (unsigned char)255);
else {
color.resize(num_edge * 3);
stim::cpu2cpu<float>(&abs_V[0], &color[0], num_edge, min_v, max_v, stim::cmBrewer);
}
}
// print flow
void print_flow() {
// show the pressure information in console box
std::cout << "PRESSURE(g/um/s^2):" << std::endl;
for (unsigned i = 0; i < num_vertex; i++) {
std::cout << "[" << i << "] " << pressure[i] << std::endl;
}
// show the flow rate information in console box
std::cout << "VOLUME FLOW RATE(um^3/s):" << std::endl;
for (unsigned i = 0; i < num_edge; i++) {
std::cout << "(" << Q[i].first << "," << Q[i].second << ")" << Q[i].third << std::endl;
}
}
/// helper function
// find hilbert curve order
// @param: current direct length between two vertices
// @param: desire length
void find_hilbert_order(T l, T d, int &order) {
bool flag = false;
int o = 1;
T tmp; // temp of length
while (!flag) {
// convert from cartesian length to hilbert length
// l -> l * (4 ^ order - 1)/(2 ^ order - 1)
tmp = l * (std::pow(4, o) - 1) / (std::pow(2, o) - 1);
if (tmp >= d)
flag = true;
else
o++;
}
order = o;
}
void move(unsigned i, T *c, direction dir, T dl, int feeder, bool invert) {
int cof = (invert) ? -1 : 1;
switch (dir) {
case UP:
c[1] += dl;
break;
case LEFT:
c[0] -= cof * dl;
break;
case DOWN:
c[1] -= dl;
break;
case RIGHT:
c[0] += cof * dl;
break;
}
stim::vec3<T> tmp;
for (unsigned i = 0; i < 3; i++)
tmp[i] = c[i];
if (feeder == 1) // inlet main feeder
inlet[i].V.push_back(tmp);
else if (feeder == 0) // outlet main feeder
outlet[i].V.push_back(tmp);
}
void hilbert_curve(unsigned i, T *c, int order, T dl, int feeder, bool invert, direction dir = DOWN) {
if (order == 1) {
switch (dir) {
case UP:
move(i, c, DOWN, dl, feeder, invert);
move(i, c, RIGHT, dl, feeder, invert);
move(i, c, UP, dl, feeder, invert);
break;
case LEFT:
move(i, c, RIGHT, dl, feeder, invert);
move(i, c, DOWN, dl, feeder, invert);
move(i, c, LEFT, dl, feeder, invert);
break;
case DOWN:
move(i, c, UP, dl, feeder, invert);
move(i, c, LEFT, dl, feeder, invert);
move(i, c, DOWN, dl, feeder, invert);
break;
case RIGHT:
move(i, c, LEFT, dl, feeder, invert);
move(i, c, UP, dl, feeder, invert);
move(i, c, RIGHT, dl, feeder, invert);
break;
}
}
else if (order > 1) {
switch (dir) {
case UP:
hilbert_curve(i, c, order - 1, dl, feeder, invert, LEFT);
move(i, c, DOWN, dl, feeder, invert);
hilbert_curve(i, c, order - 1, dl, feeder, invert, UP);
move(i, c, RIGHT, dl, feeder, invert);
hilbert_curve(i, c, order - 1, dl, feeder, invert, UP);
move(i, c, UP, dl, feeder, invert);
hilbert_curve(i, c, order - 1, dl, feeder, invert, RIGHT);
break;
case LEFT:
hilbert_curve(i, c, order - 1, dl, feeder, invert, UP);
move(i, c, RIGHT, dl, feeder, invert);
hilbert_curve(i, c, order - 1, dl, feeder, invert, LEFT);
move(i, c, DOWN, dl, feeder, invert);
hilbert_curve(i, c, order - 1, dl, feeder, invert, LEFT);
move(i, c, LEFT, dl, feeder, invert);
hilbert_curve(i, c, order - 1, dl, feeder, invert, DOWN);
break;
case DOWN:
hilbert_curve(i, c, order - 1, dl, feeder, invert, RIGHT);
move(i, c, UP, dl, feeder, invert);
hilbert_curve(i, c, order - 1, dl, feeder, invert, DOWN);
move(i, c, LEFT, dl, feeder, invert);
hilbert_curve(i, c, order - 1, dl, feeder, invert, DOWN);
move(i, c, DOWN, dl, feeder, invert);
hilbert_curve(i, c, order - 1, dl, feeder, invert, LEFT);
break;
case RIGHT:
hilbert_curve(i, c, order - 1, dl, feeder, invert, DOWN);
move(i, c, LEFT, dl, feeder, invert);
hilbert_curve(i, c, order - 1, dl, feeder, invert, RIGHT);
move(i, c, UP, dl, feeder, invert);
hilbert_curve(i, c, order - 1, dl, feeder, invert, RIGHT);
move(i, c, RIGHT, dl, feeder, invert);
hilbert_curve(i, c, order - 1, dl, feeder, invert, UP);
break;
}
}
}
/// render function
// find two envelope caps for two spheres
// @param cp1, cp2: list of points on the cap
// @param center1, center2: center point of cap
// @param r1, r2: radii of cap
void find_envelope(std::vector<typename stim::vec3<float> > &cp1, std::vector<typename stim::vec3<float> > &cp2, stim::vec3<float> center1, stim::vec3<float> center2, float r1, float r2, GLint subdivision) {
stim::vec3<float> tmp_d;
if (r1 == r2) { // two vertices have the same radius
tmp_d = center2 - center1; // calculate the direction vector
tmp_d = tmp_d.norm();
stim::circle<float> tmp_c; // in order to get zero direction vector
tmp_c.rotate(tmp_d);
stim::circle<float> c1(center1, r1, tmp_d, tmp_c.U);
stim::circle<float> c2(center2, r2, tmp_d, tmp_c.U);
cp1 = c1.glpoints(subdivision);
cp2 = c2.glpoints(subdivision);
}
else {
if (r1 < r2) { // switch index, we always want r1 to be larger than r2
stim::vec3<float> tmp_c = center2;
center2 = center1;
center1 = tmp_c;
float tmp_r = r2;
r2 = r1;
r1 = tmp_r;
}
tmp_d = center2 - center1; // bigger one points to smaller one
tmp_d = tmp_d.norm();
float D = (center1 - center2).len();
stim::vec3<float> exp;
exp[0] = (center2[0] * r1 - center1[0] * r2) / (r1 - r2);
exp[1] = (center2[1] * r1 - center1[1] * r2) / (r1 - r2);
stim::vec3<float> t1, t2, t3, t4;
t1[2] = t2[2] = center1[2]; // decide the specific plane to work on
t3[2] = t4[2] = center2[2];
// first two
t1[0] = pow(r1, 2)*(exp[0] - center1[0]);
t1[0] += r1*(exp[1] - center1[1])*sqrt(pow((exp[0] - center1[0]), 2) + pow((exp[1] - center1[1]), 2) - pow(r1, 2));
t1[0] /= (pow((exp[0] - center1[0]), 2) + pow((exp[1] - center1[1]), 2));
t1[0] += center1[0];
t2[0] = pow(r1, 2)*(exp[0] - center1[0]);
t2[0] -= r1*(exp[1] - center1[1])*sqrt(pow((exp[0] - center1[0]), 2) + pow((exp[1] - center1[1]), 2) - pow(r1, 2));
t2[0] /= (pow((exp[0] - center1[0]), 2) + pow((exp[1] - center1[1]), 2));
t2[0] += center1[0];
t1[1] = pow(r1, 2)*(exp[1] - center1[1]);
t1[1] -= r1*(exp[0] - center1[0])*sqrt(pow((exp[0] - center1[0]), 2) + pow((exp[1] - center1[1]), 2) - pow(r1, 2));
t1[1] /= (pow((exp[0] - center1[0]), 2) + pow((exp[1] - center1[1]), 2));
t1[1] += center1[1];
t2[1] = pow(r1, 2)*(exp[1] - center1[1]);
t2[1] += r1*(exp[0] - center1[0])*sqrt(pow((exp[0] - center1[0]), 2) + pow((exp[1] - center1[1]), 2) - pow(r1, 2));
t2[1] /= (pow((exp[0] - center1[0]), 2) + pow((exp[1] - center1[1]), 2));
t2[1] += center1[1];
// check the correctness of the points
//float s = (center1[1] - t1[1])*(exp[1] - t1[1]) / ((t1[0] - center1[0])*(t1[0] - exp[0]));
//if (s != 1) { // swap t1[1] and t2[1]
// float tmp_t = t2[1];
// t2[1] = t1[1];
// t1[1] = tmp_t;
//}
// second two
t3[0] = pow(r2, 2)*(exp[0] - center2[0]);
t3[0] += r2*(exp[1] - center2[1])*sqrt(pow((exp[0] - center2[0]), 2) + pow((exp[1] - center2[1]), 2) - pow(r2, 2));
t3[0] /= (pow((exp[0] - center2[0]), 2) + pow((exp[1] - center2[1]), 2));
t3[0] += center2[0];
t4[0] = pow(r2, 2)*(exp[0] - center2[0]);
t4[0] -= r2*(exp[1] - center2[1])*sqrt(pow((exp[0] - center2[0]), 2) + pow((exp[1] - center2[1]), 2) - pow(r2, 2));
t4[0] /= (pow((exp[0] - center2[0]), 2) + pow((exp[1] - center2[1]), 2));
t4[0] += center2[0];
t3[1] = pow(r2, 2)*(exp[1] - center2[1]);
t3[1] -= r2*(exp[0] - center2[0])*sqrt(pow((exp[0] - center2[0]), 2) + pow((exp[1] - center2[1]), 2) - pow(r2, 2));
t3[1] /= (pow((exp[0] - center2[0]), 2) + pow((exp[1] - center2[1]), 2));
t3[1] += center2[1];
t4[1] = pow(r2, 2)*(exp[1] - center2[1]);
t4[1] += r2*(exp[0] - center2[0])*sqrt(pow((exp[0] - center2[0]), 2) + pow((exp[1] - center2[1]), 2) - pow(r2, 2));
t4[1] /= (pow((exp[0] - center2[0]), 2) + pow((exp[1] - center2[1]), 2));
t4[1] += center2[1];
// check the correctness of the points
//s = (center2[1] - t3[1])*(exp[1] - t3[1]) / ((t3[0] - center2[0])*(t3[0] - exp[0]));
//if (s != 1) { // swap t1[1] and t2[1]
// float tmp_t = t4[1];
// t4[1] = t3[1];
// t3[1] = tmp_t;
//}
stim::vec3<float> d1;
float dot;
float a;
float new_r;
stim::vec3<float> new_u;
stim::vec3<float> new_c;
// calculate the bigger circle
d1 = t1 - center1;
dot = d1.dot(tmp_d);
a = dot / (r1 * 1) * r1; // a = cos(alpha) * radii
new_c = center1 + a * tmp_d;
new_r = sqrt(pow(r1, 2) - pow(a, 2));
new_u = t1 - new_c;
stim::circle<float> c1(new_c, new_r, tmp_d, new_u);
cp1 = c1.glpoints(subdivision);
// calculate the smaller circle
d1 = t3 - center2;
dot = d1.dot(tmp_d);
a = dot / (r2 * 1) * r2;
new_c = center2 + a * tmp_d;
new_r = sqrt(pow(r2, 2) - pow(a, 2));
new_u = t3 - new_c;
stim::circle<float> c2(new_c, new_r, tmp_d, new_u);
cp2 = c2.glpoints(subdivision);
}
}
// draw solid sphere at every vertex
void glSolidSphere(T max_pressure, GLint subdivision) {
// waste?
for (unsigned i = 0; i < num_edge; i++) {
for (unsigned j = 0; j < E[i].size(); j++) {
if (j == 0) { // for start vertex
if (P[E[i].v[0]] != 0) {
stim::vec3<float> new_color;
new_color[0] = (P[E[i].v[0]] / max_pressure) > 0.5f ? 1.0f : 2.0f * P[E[i].v[0]] / max_pressure; // red
new_color[1] = 0.0f; // green
new_color[2] = (P[E[i].v[0]] / max_pressure) > 0.5f ? 1.0f - 2.0f * (P[E[i].v[0]] / max_pressure - 0.5f) : 1.0f; // blue
glColor3f(new_color[0], new_color[1], new_color[2]);
}
}
else if (j == E[i].size() - 1) { // for end vertex
if (P[E[i].v[1]] != 0) {
stim::vec3<float> new_color;
new_color[0] = (P[E[i].v[1]] / max_pressure) > 0.5f ? 1.0f : 2.0f * P[E[i].v[1]] / max_pressure; // red
new_color[1] = 0.0f; // green
new_color[2] = (P[E[i].v[1]] / max_pressure) > 0.5f ? 1.0f - 2.0f * (P[E[i].v[1]] / max_pressure - 0.5f) : 1.0f; // blue
glColor3f(new_color[0], new_color[1], new_color[2]);
}
}
else
glColor3f(0.5f, 0.5f, 0.5f); // gray point
glPushMatrix();
glTranslatef(E[i][j][0], E[i][j][1], E[i][j][2]);
glutSolidSphere(get_r(i, j), subdivision, subdivision);
glPopMatrix();
}
}
}
// draw edges as series of cylinders
void glSolidCylinder(GLint subdivision, std::vector<unsigned char> color) {
stim::vec3<float> tmp_d;
stim::vec3<float> center1;
stim::vec3<float> center2;
float r1;
float r2;
std::vector<typename stim::vec3<float> > cp1(subdivision + 1);
std::vector<typename stim::vec3<float> > cp2(subdivision + 1);
for (unsigned i = 0; i < num_edge; i++) { // for every edge
glEnable(GL_BLEND); // enable color blend
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); // set blend function
glDisable(GL_DEPTH_TEST);
glColor4f((float)color[i * 3 + 0] / 255, (float)color[i * 3 + 1] / 255, (float)color[i * 3 + 2] / 255, 0.5f);
for (unsigned j = 0; j < E[i].size() - 1; j++) { // for every point on the edge
center1 = E[i][j];
center2 = E[i][j + 1];
r1 = get_r(i, j);
r2 = get_r(i, j + 1);
// calculate the envelope caps
find_envelope(cp1, cp2, center1, center2, r1, r2, subdivision);
glBegin(GL_QUAD_STRIP);
for (unsigned j = 0; j < cp1.size(); j++) {
glVertex3f(cp1[j][0], cp1[j][1], cp1[j][2]);
glVertex3f(cp2[j][0], cp2[j][1], cp2[j][2]);
}
glEnd();
}
}
glFlush();
glDisable(GL_BLEND);
}
// draw the flow direction as cone
void glSolidCone(GLint subdivision) {
stim::vec3<T> tmp_d; // direction
stim::vec3<T> center; // cone hat center
stim::vec3<T> head; // cone hat top
stim::circle<T> tmp_c;
std::vector<typename stim::vec3<T> > cp;
T radius;
glColor3f(1.0f, 1.0f, 1.0f);
for (unsigned i = 0; i < num_edge; i++) { // for every edge
for (unsigned j = 0; j < E[i].size() - 1; j++) { // for every point on current edge
tmp_d = E[i][j + 1] - E[i][j];
tmp_d = tmp_d.norm();
center = (E[i][j + 1] + E[i][j]) / 2;
tmp_c.rotate(tmp_d);
radius = (E[i].r(j + 1) + E[i].r(j)) / 2;
if (v[i] > 0) // if flow flows from j to j+1
head = center + tmp_d * sqrt(3) * radius;
else
head = center - tmp_d * sqrt(3) * radius;
stim::circle<float> c(center, radius, tmp_d, tmp_c.U);
cp = c.glpoints(subdivision);
glBegin(GL_TRIANGLE_FAN);
glVertex3f(head[0], head[1], head[2]);
for (unsigned k = 0; k < cp.size(); k++)
glVertex3f(cp[k][0], cp[k][1], cp[k][2]);
glEnd();
}
}
glFlush();
}
// draw main feeder as solid cube
void glSolidCuboid(T length = 210.0f, T height = 10.0f) {
T width;
stim::vec3<T> L = bb.A; // get the bottom left corner
stim::vec3<T> U = bb.B; // get the top right corner
width = U[2] - L[2] + 10.0f;
glColor3f(1.0f, 1.0f, 1.0f);
for (unsigned i = 0; i < main_feeder.size(); i++) {
// front face
glBegin(GL_QUADS);
glVertex3f(main_feeder[i][0] - length / 2, main_feeder[i][1] - height / 2, main_feeder[i][2] - width / 2);
glVertex3f(main_feeder[i][0] + length / 2, main_feeder[i][1] - height / 2, main_feeder[i][2] - width / 2);
glVertex3f(main_feeder[i][0] + length / 2, main_feeder[i][1] + height / 2, main_feeder[i][2] - width / 2);
glVertex3f(main_feeder[i][0] - length / 2, main_feeder[i][1] + height / 2, main_feeder[i][2] - width / 2);
glEnd();
// back face
glBegin(GL_QUADS);
glVertex3f(main_feeder[i][0] - length / 2, main_feeder[i][1] - height / 2, main_feeder[i][2] + width / 2);
glVertex3f(main_feeder[i][0] + length / 2, main_feeder[i][1] - height / 2, main_feeder[i][2] + width / 2);
glVertex3f(main_feeder[i][0] + length / 2, main_feeder[i][1] + height / 2, main_feeder[i][2] + width / 2);
glVertex3f(main_feeder[i][0] - length / 2, main_feeder[i][1] + height / 2, main_feeder[i][2] + width / 2);
glEnd();
// top face
glBegin(GL_QUADS);
glVertex3f(main_feeder[i][0] - length / 2, main_feeder[i][1] + height / 2, main_feeder[i][2] - width / 2);
glVertex3f(main_feeder[i][0] + length / 2, main_feeder[i][1] + height / 2, main_feeder[i][2] - width / 2);
glVertex3f(main_feeder[i][0] + length / 2, main_feeder[i][1] + height / 2, main_feeder[i][2] + width / 2);
glVertex3f(main_feeder[i][0] - length / 2, main_feeder[i][1] + height / 2, main_feeder[i][2] + width / 2);
glEnd();
// bottom face
glBegin(GL_QUADS);
glVertex3f(main_feeder[i][0] - length / 2, main_feeder[i][1] - height / 2, main_feeder[i][2] - width / 2);
glVertex3f(main_feeder[i][0] + length / 2, main_feeder[i][1] - height / 2, main_feeder[i][2] - width / 2);
glVertex3f(main_feeder[i][0] + length / 2, main_feeder[i][1] - height / 2, main_feeder[i][2] + width / 2);
glVertex3f(main_feeder[i][0] - length / 2, main_feeder[i][1] - height / 2, main_feeder[i][2] + width / 2);
glEnd();
// left face
glBegin(GL_QUADS);
glVertex3f(main_feeder[i][0] - length / 2, main_feeder[i][1] - height / 2, main_feeder[i][2] - width / 2);
glVertex3f(main_feeder[i][0] - length / 2, main_feeder[i][1] - height / 2, main_feeder[i][2] + width / 2);
glVertex3f(main_feeder[i][0] - length / 2, main_feeder[i][1] + height / 2, main_feeder[i][2] + width / 2);
glVertex3f(main_feeder[i][0] - length / 2, main_feeder[i][1] + height / 2, main_feeder[i][2] - width / 2);
glEnd();
// right face
glBegin(GL_QUADS);
glVertex3f(main_feeder[i][0] + length / 2, main_feeder[i][1] - height / 2, main_feeder[i][2] - width / 2);
glVertex3f(main_feeder[i][0] + length / 2, main_feeder[i][1] + height / 2, main_feeder[i][2] - width / 2);
glVertex3f(main_feeder[i][0] + length / 2, main_feeder[i][1] + height / 2, main_feeder[i][2] + width / 2);
glVertex3f(main_feeder[i][0] + length / 2, main_feeder[i][1] - height / 2, main_feeder[i][2] + width / 2);
glEnd();
}
glFlush();
}
// draw the bridge as lines
void line_bridge() {
if (!glIsList(dlist)) {
dlist = glGenLists(1);
glNewList(dlist, GL_COMPILE);
for (unsigned i = 0; i < inlet.size(); i++) {
glBegin(GL_LINE_STRIP);
for (unsigned j = 0; j < inlet[i].V.size(); j++)
glVertex3f(inlet[i].V[j][0], inlet[i].V[j][1], inlet[i].V[j][2]);
glEnd();
}
for (unsigned i = 0; i < outlet.size(); i++) {
glBegin(GL_LINE_STRIP);
for (unsigned j = 0; j < outlet[i].V.size(); j++)
glVertex3f(outlet[i].V[j][0], outlet[i].V[j][1], outlet[i].V[j][2]);
glEnd();
}
glFlush();
glEndList();
}
glCallList(dlist);
}
// draw the bridge as tubes
void tube_bridge(T subdivision, T radii = 5.0f) {
if (!glIsList(dlist + 1)) {
glNewList(dlist + 1, GL_COMPILE);
stim::vec3<T> dir; // direction vector
stim::circle<T> unit_c; // unit circle for finding the rotation start direction
std::vector<typename stim::vec3<T> > cp1;
std::vector<typename stim::vec3<T> > cp2;
for (unsigned i = 0; i < inlet.size(); i++) {
// render vertex as sphere
for (unsigned j = 1; j < inlet[i].V.size() - 1; j++) {
glPushMatrix();
glTranslatef(inlet[i].V[j][0], inlet[i].V[j][1], inlet[i].V[j][2]);
glutSolidSphere(radii, subdivision, subdivision);
glPopMatrix();
}
// render edge as cylinder
for (unsigned j = 0; j < inlet[i].V.size() - 1; j++) {
dir = inlet[i].V[j] - inlet[i].V[j + 1];
dir = dir.norm();
unit_c.rotate(dir);
stim::circle<T> c1(inlet[i].V[j], inlet[i].r, dir, unit_c.U);
stim::circle<T> c2(inlet[i].V[j + 1], inlet[i].r, dir, unit_c.U);
cp1 = c1.glpoints(subdivision);
cp2 = c2.glpoints(subdivision);
glBegin(GL_QUAD_STRIP);
for (unsigned k = 0; k < cp1.size(); k++) {
glVertex3f(cp1[k][0], cp1[k][1], cp1[k][2]);
glVertex3f(cp2[k][0], cp2[k][1], cp2[k][2]);
}
glEnd();
}
}
for (unsigned i = 0; i < outlet.size(); i++) {
// render vertex as sphere
for (unsigned j = 1; j < outlet[i].V.size() - 1; j++) {
glPushMatrix();
glTranslatef(outlet[i].V[j][0], outlet[i].V[j][1], outlet[i].V[j][2]);
glutSolidSphere(radii, subdivision, subdivision);
glPopMatrix();
}
// render edge as cylinder
for (unsigned j = 0; j < outlet[i].V.size() - 1; j++) {
dir = outlet[i].V[j] - outlet[i].V[j + 1];
dir = dir.norm();
unit_c.rotate(dir);
stim::circle<T> c1(outlet[i].V[j], outlet[i].r, dir, unit_c.U);
stim::circle<T> c2(outlet[i].V[j + 1], outlet[i].r, dir, unit_c.U);
cp1 = c1.glpoints(subdivision);
cp2 = c2.glpoints(subdivision);
glBegin(GL_QUAD_STRIP);
for (unsigned k = 0; k < cp1.size(); k++) {
glVertex3f(cp1[k][0], cp1[k][1], cp1[k][2]);
glVertex3f(cp2[k][0], cp2[k][1], cp2[k][2]);
}
glEnd();
}
}
glEndList();
}
glCallList(dlist + 1);
}
// draw gradient color bounding box outside the object
void bounding_box() {
stim::vec3<T> L = bb.A; // get the bottom left corner
stim::vec3<T> U = bb.B; // get the top right corner
glLineWidth(1);
// front face of the box (in L[2])
glBegin(GL_LINE_LOOP);
glColor3f(0.0f, 0.0f, 0.0f);
glVertex3f(L[0], L[1], L[2]);
glColor3f(0.0f, 1.0f, 0.0f);
glVertex3f(L[0], U[1], L[2]);
glColor3f(1.0f, 1.0f, 0.0f);
glVertex3f(U[0], U[1], L[2]);
glColor3f(1.0f, 0.0f, 0.0f);
glVertex3f(U[0], L[1], L[2]);
glEnd();
// back face of the box (in U[2])
glBegin(GL_LINE_LOOP);
glColor3f(1.0f, 1.0f, 1.0f);
glVertex3f(U[0], U[1], U[2]);
glColor3f(0.0f, 1.0f, 1.0f);
glVertex3f(L[0], U[1], U[2]);
glColor3f(0.0f, 0.0f, 1.0f);
glVertex3f(L[0], L[1], U[2]);
glColor3f(1.0f, 0.0f, 1.0f);
glVertex3f(U[0], L[1], U[2]);
glEnd();
// fill out the rest of the lines to connect the two faces
glBegin(GL_LINES);
glColor3f(0.0f, 1.0f, 0.0f);
glVertex3f(L[0], U[1], L[2]);
glColor3f(0.0f, 1.0f, 1.0f);
glVertex3f(L[0], U[1], U[2]);
glColor3f(1.0f, 1.0f, 1.0f);
glVertex3f(U[0], U[1], U[2]);
glColor3f(1.0f, 1.0f, 0.0f);
glVertex3f(U[0], U[1], L[2]);
glColor3f(1.0f, 0.0f, 0.0f);
glVertex3f(U[0], L[1], L[2]);
glColor3f(1.0f, 0.0f, 1.0f);
glVertex3f(U[0], L[1], U[2]);
glColor3f(0.0f, 0.0f, 1.0f);
glVertex3f(L[0], L[1], U[2]);
glColor3f(0.0f, 0.0f, 0.0f);
glVertex3f(L[0], L[1], L[2]);
glEnd();
}
// mark the vertex
void mark_vertex() {
glColor3f(1.0f, 1.0f, 1.0f);
for (unsigned i = 0; i < num_vertex; i++) {
glRasterPos3f(V[i][0], V[i][1] + get_radius(i), V[i][2]);
std::stringstream ss;
ss << i;
glutBitmapString(GLUT_BITMAP_HELVETICA_18, (const unsigned char*)(ss.str().c_str()));
}
}
// find the nearest vertex of current click position
// return true and a value if found
inline bool epsilon_vertex(T x, T y, T z, T eps, unsigned& v) {
float d = FLT_MAX; // minimum distance between 2 vertices
float tmp_d = 0.0f; // temporary stores distance for loop
unsigned tmp_i = 0; // temporary stores connection index for loop
stim::vec3<float> tmp_v; // temporary stores current loop point
d = FLT_MAX; // set to max of float number
for (unsigned i = 0; i < V.size(); i++) {
tmp_v = stim::vec3<float>(x, y, z);
tmp_v = tmp_v - V[i]; // calculate a vector between two vertices
tmp_d = tmp_v.len(); // calculate length of that vector
if (tmp_d < d) {
d = tmp_d; // if found a nearer vertex
tmp_i = i; // get the index of that vertex
}
}
eps += get_radius(tmp_i); // increase epsilon accordingly
if (d < eps) { // if current click is close to any vertex
v = tmp_i; // copy the extant vertex's index to v
return true;
}
return false;
}
/// build main feeder connection
// set up main feeder and main port of both input and output
void set_main_feeder(T border = 400.0f) {
// 0 means outgoing while 1 means incoming
stim::vec3<T> inlet_main_feeder;
stim::vec3<T> outlet_main_feeder;
inlet_main_feeder = stim::vec3<T>(bb.A[0] - border, bb.center()[1], bb.center()[2]);
outlet_main_feeder = stim::vec3<T>(bb.B[0] + border, bb.center()[1], bb.center()[2]);
main_feeder.push_back(inlet_main_feeder);
main_feeder.push_back(outlet_main_feeder);
// find both input and output vertex
stim::triple<unsigned, unsigned, float> tmp;
unsigned N = pendant_vertex.size(); // get the number of dangle vertex
unsigned idx = 0;
for (unsigned i = 0; i < N; i++) { // for every boundary vertex
idx = pendant_vertex[i];
for (unsigned j = 0; j < num_edge; j++) { // for every edge
if (Q[j].first == idx) { // starting vertex
if (Q[j].third > 0) { // flow comes in
tmp.first = idx;
tmp.second = j;
tmp.third = Q[j].third;
input.push_back(tmp);
break;
}
// their might be a degenerate case that it equals to 0?
else if (Q[j].third < 0) { // flow comes out
tmp.first = idx;
tmp.second = j;
tmp.third = -Q[j].third;
output.push_back(tmp);
break;
}
}
else if (Q[j].second == idx) { // ending vertex
if (Q[j].third > 0) { // flow comes in
tmp.first = idx;
tmp.second = j;
tmp.third = Q[j].third;
output.push_back(tmp);
break;
}
// their might be a degenerate case that it equals to 0?
else if (Q[j].third < 0) { // flow comes out
tmp.first = idx;
tmp.second = j;
tmp.third = -Q[j].third;
input.push_back(tmp);
break;
}
}
}
}
}
// build connection between all inlets and outlets
// connection will trail along one axis around the bounding box
void build_synthetic_connection(T viscosity, T radii = 5.0f) {
stim::vec3<T> L = bb.A; // get the bottom left corner
stim::vec3<T> U = bb.B; // get the top right corner
T box_length = U[0] - L[0];
T x0, dx;
stim::vec3<T> tmp_v; // start vertex
stim::vec3<T> mid_v; // middle point of the bridge
stim::vec3<T> bus_v; // point on the bus
x0 = main_feeder[0][0] + 100.0f; // assume bus length is 210.0f
for (unsigned i = 0; i < input.size(); i++) {
tmp_v = V[input[i].first];
dx = 200.0f * ((tmp_v[0] - L[0]) / box_length); // the socket position depends on proximity
bus_v = stim::vec3<T>(x0 - dx, main_feeder[0][1], tmp_v[2]);
mid_v = stim::vec3<T>(x0 - dx, tmp_v[1], tmp_v[2]);
stim::bridge<T> tmp_b;
tmp_b.V.push_back(bus_v);
tmp_b.V.push_back(mid_v);
tmp_b.V.push_back(tmp_v);
tmp_b.v.push_back(input[i].first);
tmp_b.Q = input[i].third;
tmp_b.l = (bus_v - mid_v).len() + (mid_v - tmp_v).len();
tmp_b.r = radii;
inlet.push_back(tmp_b);
}
x0 = main_feeder[1][0] - 100.0f;
for (unsigned i = 0; i < output.size(); i++) {
tmp_v = V[output[i].first];
dx = 200.0f * ((U[0] - tmp_v[0]) / box_length); // the socket position depends on proximity
bus_v = stim::vec3<T>(x0 + dx, main_feeder[1][1], tmp_v[2]);
mid_v = stim::vec3<T>(x0 + dx, tmp_v[1], tmp_v[2]);
stim::bridge<T> tmp_b;
tmp_b.V.push_back(bus_v);
tmp_b.V.push_back(mid_v);
tmp_b.V.push_back(tmp_v);
tmp_b.v.push_back(output[i].first);
tmp_b.Q = output[i].third;
tmp_b.l = (bus_v - mid_v).len() + (mid_v - tmp_v).len();
tmp_b.r = radii;
outlet.push_back(tmp_b);
}
}
// automatically modify bridge to make it feasible
void modify_synthetic_connection(T viscosity, T rou, T radii = 5.0f) {
glDeleteLists(dlist, 1); // delete display list for modify
glDeleteLists(dlist + 1, 1);
// because of radii change at the port vertex, there will be a pressure drop at that port
// it follows the bernoulli equation
// p1 + 1/2*rou*v1^2 + rou*g*h1 = p2 + 1/2*rou*v2^2 + rou*g*h2
// Q1 = Q2 -> v1*r1^2 = v2*r2^2
std::vector<T> new_pressure = pressure;
unsigned idx;
for (unsigned i = 0; i < pendant_vertex.size(); i++) {
idx = pendant_vertex[i];
T tmp_v = get_velocity(idx); // velocity at that pendant vertex
T ar = get_radius(idx) / radii;
new_pressure[idx] = pressure[idx] + 1.0f / 2.0f * rou * std::pow(tmp_v, 2) * (1.0f - std::pow(ar, 4));
}
// increase r -> increase Q -> decrease l
// find maximum pressure inlet port
T source_pressure = FLT_MIN; // source pressure
unsigned inlet_index;
T tmp_p;
for (unsigned i = 0; i < inlet.size(); i++) {
tmp_p = new_pressure[inlet[i].v[0]] + ((8 * viscosity * inlet[i].l * inlet[i].Q) / ((float)stim::PI * std::pow(radii, 4)));
if (tmp_p > source_pressure) {
source_pressure = tmp_p;
inlet_index = i;
}
}
// automatically modify inlet bridge to make it feasible
bool upper = false; // flag indicates the whether the port is upper than main feeder
bool invert = false; // there are two version of hilbert curve depends on starting position with respect to the cup
T new_l;
stim::vec3<T> bus_v; // the port point on the bus
stim::vec3<T> mid_v; // the original corner point
stim::vec3<T> tmp_v; // the pendant point
int order = 0; // order of hilbert curve (iteration)
for (unsigned i = 0; i < inlet.size(); i++) {
if (i != inlet_index) {
new_l = (source_pressure - new_pressure[inlet[i].v[0]]) * ((float)stim::PI * std::pow(radii, 4)) / (8 * viscosity * inlet[i].Q);
if (inlet[i].V[2][1] > main_feeder[0][1]) { // check out upper side of lower side
upper = true;
invert = false;
}
else {
upper = false;
invert = true;
}
T origin_l = (inlet[i].V[1] - inlet[i].V[2]).len();
T desire_l = new_l - (inlet[i].V[0] - inlet[i].V[1]).len();
find_hilbert_order(origin_l, desire_l, order);
bus_v = inlet[i].V[0];
mid_v = inlet[i].V[1];
tmp_v = inlet[i].V[2];
inlet[i].V.clear();
inlet[i].V.push_back(tmp_v);
inlet[i].l = new_l;
if (desire_l - origin_l < 2 * radii) { // do not need to use hilbert curve, just increase the length by draging out
T d = new_l - inlet[i].l;
stim::vec3<T> corner = stim::vec3<T>(tmp_v[0], tmp_v[1] + d / 2.0f * (tmp_v[1] > main_feeder[0][1] ? 1 : -1), tmp_v[2]);
inlet[i].V.push_back(corner);
corner = stim::vec3<T>(mid_v[0], mid_v[1] + d / 2.0f * (tmp_v[1] > main_feeder[0][1] ? 1 : -1), mid_v[2]);
inlet[i].V.push_back(corner);
inlet[i].V.push_back(bus_v);
}
else {
T fragment = (desire_l - origin_l) / ((std::pow(4, order) - 1) / (std::pow(2, order) - 1) - 1); // the length of the opening of cup
T dl = fragment / (std::pow(2, order) - 1); // unit cup length
if (dl > 2 * radii) { // if the radii is feasible
if (upper)
hilbert_curve(i, &tmp_v[0], order, dl, 1, invert, DOWN);
else
hilbert_curve(i, &tmp_v[0], order, dl, 1, invert, UP);
if (tmp_v[0] != mid_v[0])
inlet[i].V.push_back(mid_v);
inlet[i].V.push_back(bus_v);
}
else { // if the radii is not feasible
int count = 1;
while (dl <= 2 * radii) {
dl = origin_l / (std::pow(2, order - count) - 1);
count++;
}
count--;
if (upper)
hilbert_curve(i, &tmp_v[0], order - count, dl, 1, invert, DOWN);
else
hilbert_curve(i, &tmp_v[0], order - count, dl, 1, invert, UP);
desire_l -= origin_l * ((std::pow(4, order - count) - 1) / (std::pow(2, order - count) - 1));
origin_l = (bus_v - mid_v).len();
desire_l += origin_l;
find_hilbert_order(origin_l, desire_l, order);
fragment = (desire_l - origin_l) / ((std::pow(4, order) - 1) / (std::pow(2, order) - 1) - 1);
dl = fragment / (std::pow(2, order) - 1);
if (dl < 2 * radii)
std::cout << "infeasible connection between inlets!" << std::endl;
if (upper)
hilbert_curve(i, &tmp_v[0], order, dl, 1, !invert, LEFT);
else
hilbert_curve(i, &tmp_v[0], order, dl, 1, !invert, RIGHT);
if (tmp_v[1] != bus_v[1])
inlet[i].V.push_back(bus_v);
}
}
std::reverse(inlet[i].V.begin(), inlet[i].V.end()); // from bus to pendant vertex
}
}
// find minimum pressure outlet port
source_pressure = FLT_MAX;
unsigned outlet_index;
for (unsigned i = 0; i < outlet.size(); i++) {
tmp_p = new_pressure[outlet[i].v[0]] - ((8 * viscosity * outlet[i].l * outlet[i].Q) / ((float)stim::PI * std::pow(radii, 4)));
if (tmp_p < source_pressure) {
source_pressure = tmp_p;
outlet_index = i;
}
}
// automatically modify outlet bridge to make it feasible
for (unsigned i = 0; i < outlet.size(); i++) {
if (i != outlet_index) {
new_l = (new_pressure[outlet[i].v[0]] - source_pressure) * ((float)stim::PI * std::pow(radii, 4)) / (8 * viscosity * outlet[i].Q);
if (outlet[i].V[2][1] > main_feeder[1][1]) {
upper = true;
invert = true;
}
else {
upper = false;
invert = false;
}
T origin_l = (outlet[i].V[1] - outlet[i].V[2]).len();
T desire_l = new_l - (outlet[i].V[0] - outlet[i].V[1]).len();
find_hilbert_order(origin_l, desire_l, order);
bus_v = outlet[i].V[0];
mid_v = outlet[i].V[1];
tmp_v = outlet[i].V[2];
outlet[i].V.clear();
outlet[i].V.push_back(tmp_v);
outlet[i].l = new_l;
if (desire_l - origin_l < 2 * radii) { // do not need to use hilbert curve, just increase the length by draging out
T d = new_l - outlet[i].l;
stim::vec3<T> corner = stim::vec3<T>(tmp_v[0], tmp_v[1] + d / 2.0f * (tmp_v[1] > main_feeder[0][1] ? 1 : -1), tmp_v[2]);
outlet[i].V.push_back(corner);
corner = stim::vec3<T>(mid_v[0], mid_v[1] + d / 2.0f * (tmp_v[1] > main_feeder[0][1] ? 1 : -1), mid_v[2]);
outlet[i].V.push_back(corner);
outlet[i].V.push_back(bus_v);
}
else {
T fragment = (desire_l - origin_l) / ((std::pow(4, order) - 1) / (std::pow(2, order) - 1) - 1); // the length of the opening of cup
T dl = fragment / (std::pow(2, order) - 1); // unit cup length
if (dl > 2 * radii) { // if the radii is feasible
if (upper)
hilbert_curve(i, &tmp_v[0], order, dl, 0, invert, DOWN);
else
hilbert_curve(i, &tmp_v[0], order, dl, 0, invert, UP);
if (tmp_v[0] != mid_v[0])
outlet[i].V.push_back(mid_v);
outlet[i].V.push_back(bus_v);
}
else { // if the radii is not feasible
int count = 1;
while (dl <= 2 * radii) {
dl = origin_l / (std::pow(2, order - count) - 1);
count++;
}
count--;
if (upper)
hilbert_curve(i, &tmp_v[0], order - count, dl, 0, invert, DOWN);
else
hilbert_curve(i, &tmp_v[0], order - count, dl, 0, invert, UP);
desire_l -= origin_l * ((std::pow(4, order - count) - 1) / (std::pow(2, order - count) - 1));
origin_l = (bus_v - mid_v).len();
desire_l += origin_l;
find_hilbert_order(origin_l, desire_l, order);
fragment = (desire_l - origin_l) / ((std::pow(4, order) - 1) / (std::pow(2, order) - 1) - 1);
dl = fragment / (std::pow(2, order) - 1);
if (dl < 2 * radii)
std::cout << "infeasible connection between outlets!" << std::endl;
if (upper)
hilbert_curve(i, &tmp_v[0], order, dl, 0, !invert, LEFT);
else
hilbert_curve(i, &tmp_v[0], order, dl, 0, !invert, RIGHT);
if (tmp_v[1] != bus_v[1])
outlet[i].V.push_back(bus_v);
}
}
std::reverse(outlet[i].V.begin(), outlet[i].V.end());
}
}
}
// check current bridge to see feasibility
void check_synthetic_connection(T viscosity, T radii = 5.0f) {
T eps = 0.01f;
T source_pressure = pressure[inlet[0].v[0]] + (8 * viscosity * inlet[0].l * inlet[0].Q) / ((float)stim::PI * std::pow(radii, 4));
T tmp_p;
for (unsigned i = 1; i < inlet.size(); i++) {
tmp_p = pressure[inlet[i].v[0]] + (8 * viscosity * inlet[i].l * inlet[i].Q) / ((float)stim::PI * std::pow(radii, 4));
T delta = fabs(tmp_p - source_pressure);
if (delta > eps) {
std::cout << "Nonfeasible connection!" << std::endl;
break;
}
}
source_pressure = pressure[outlet[0].v[0]] - (8 * viscosity * outlet[0].l * outlet[0].Q) / ((float)stim::PI * std::pow(radii, 4));
for (unsigned i = 1; i < outlet.size(); i++) {
tmp_p = pressure[outlet[i].v[0]] - (8 * viscosity * outlet[i].l * outlet[i].Q) / ((float)stim::PI * std::pow(radii, 4));
T delta = fabs(tmp_p - source_pressure);
if (delta > eps) {
std::cout << "Nonfeasible connection!" << std::endl;
break;
}
}
}
/// make binary image stack
// prepare for image stack
void preparation(T &Xl, T &Xr, T &Yt, T &Yb, T &Z, T length = 210.0f, T height = 10.0f) {
T max_radii = 0.0f;
T top = FLT_MIN;
T bottom = FLT_MAX;
// clear up last time result
A.clear();
B.clear();
CU.clear();
// firstly push back the original network
stim::sphere<T> new_sphere;
stim::cone<T> new_cone;
stim::cuboid<T> new_cuboid;
// take every source bus as cuboid
new_cuboid.c = main_feeder[0];
new_cuboid.l = length;
new_cuboid.w = bb.B[2] - bb.A[2] + 10.0f;
new_cuboid.h = height;
CU.push_back(new_cuboid);
new_cuboid.c = main_feeder[1];
CU.push_back(new_cuboid);
// take every point as sphere, every line as cone
for (unsigned i = 0; i < num_edge; i++) {
for (unsigned j = 0; j < E[i].size(); j++) {
new_sphere.c = E[i][j];
new_sphere.r = E[i].r(j);
A.push_back(new_sphere);
if (j != E[i].size() - 1) {
new_cone.c1 = E[i][j];
new_cone.c2 = E[i][j + 1];
new_cone.r1 = E[i].r(j);
new_cone.r2 = E[i].r(j + 1);
B.push_back(new_cone);
}
}
}
// secondly push back outside connection
for (unsigned i = 0; i < inlet.size(); i++) {
for (unsigned j = 1; j < inlet[i].V.size() - 1; j++) {
new_sphere.c = inlet[i].V[j];
new_sphere.r = inlet[i].r;
A.push_back(new_sphere);
}
}
for (unsigned i = 0; i < outlet.size(); i++) {
for (unsigned j = 1; j < outlet[i].V.size() - 1; j++) {
new_sphere.c = outlet[i].V[j];
new_sphere.r = outlet[i].r;
A.push_back(new_sphere);
}
}
for (unsigned i = 0; i < inlet.size(); i++) {
for (unsigned j = 0; j < inlet[i].V.size() - 1; j++) {
new_cone.c1 = inlet[i].V[j];
new_cone.c2 = inlet[i].V[j + 1];
new_cone.r1 = inlet[i].r;
new_cone.r2 = inlet[i].r;
B.push_back(new_cone);
}
}
for (unsigned i = 0; i < outlet.size(); i++) {
for (unsigned j = 0; j < outlet[i].V.size() - 1; j++) {
new_cone.c1 = outlet[i].V[j];
new_cone.c2 = outlet[i].V[j + 1];
new_cone.r1 = outlet[i].r;
new_cone.r2 = outlet[i].r;
B.push_back(new_cone);
}
}
// find out the image stack size
Xl = main_feeder[0][0] - length / 2; // left bound x coordinate
Xr = main_feeder[1][0] + length / 2; // right bound x coordinate
for (unsigned i = 0; i < A.size(); i++) {
if (A[i].c[1] > top)
top = A[i].c[1];
if (A[i].c[1] < bottom)
bottom = A[i].c[1];
if (A[i].r > max_radii)
max_radii = A[i].r;
}
Yt = top; // top bound y coordinate
Yb = bottom; // bottom bound y coordinate
Z = (bb.B[2] - bb.A[2] + 2 * max_radii); // bounding box width(along z-axis)
}
/// making image stack main function
void make_image_stack(T dx, T dy, T dz, std::string stackdir, T radii = 5.0f) {
/// preparation for making image stack
T X, Xl, Xr, Y, Yt, Yb, Z;
preparation(Xl, Xr, Yt, Yb, Z);
X = Xr - Xl; // bounding box length(along x-axis)
Y = Yt - Yb; // bounding box height(along y-axis)
/// make
stim::image_stack<unsigned char, T> I;
T size_x, size_y, size_z;
stim::vec3<T> center = bb.center(); // get the center of bounding box
size_x = X / dx + 1; // set the size of image
size_y = Y / dy + 1;
size_z = Z / dz + 1;
/// initialize image stack object
I.init(1, size_x, size_y, size_z);
I.set_dim(dx, dy, dz);
// because of lack of memory, we have to computer one slice of stack per time
// allocate vertex, edge and bus
stim::sphere<T> *d_V;
stim::cone<T> *d_E;
stim::cuboid<T> *d_B;
HANDLE_ERROR(cudaMalloc((void**)&d_V, A.size() * sizeof(stim::sphere<T>)));
HANDLE_ERROR(cudaMalloc((void**)&d_E, B.size() * sizeof(stim::cone<T>)));
HANDLE_ERROR(cudaMalloc((void**)&d_B, CU.size() * sizeof(stim::cuboid<T>)));
HANDLE_ERROR(cudaMemcpy(d_V, &A[0], A.size() * sizeof(stim::sphere<T>), cudaMemcpyHostToDevice));
HANDLE_ERROR(cudaMemcpy(d_E, &B[0], B.size() * sizeof(stim::cone<T>), cudaMemcpyHostToDevice));
HANDLE_ERROR(cudaMemcpy(d_B, &CU[0], CU.size() * sizeof(stim::cuboid<T>), cudaMemcpyHostToDevice));
// allocate image stack information memory
size_t* d_R;
T *d_S;
size_t* R = (size_t*)malloc(4 * sizeof(size_t)); // size in 4 dimension
R[0] = 1;
R[1] = (size_t)size_x;
R[2] = (size_t)size_y;
R[3] = (size_t)size_z;
T *S = (T*)malloc(4 * sizeof(T)); // spacing in 4 dimension
S[0] = 1.0f;
S[1] = dx;
S[2] = dy;
S[3] = dz;
size_t num = size_x * size_y;
HANDLE_ERROR(cudaMalloc((void**)&d_R, 4 * sizeof(size_t)));
HANDLE_ERROR(cudaMalloc((void**)&d_S, 4 * sizeof(T)));
HANDLE_ERROR(cudaMemcpy(d_R, R, 4 * sizeof(size_t), cudaMemcpyHostToDevice));
HANDLE_ERROR(cudaMemcpy(d_S, S, 4 * sizeof(T), cudaMemcpyHostToDevice));
// for every slice of image
unsigned p = 0; // percentage of progress
for (unsigned i = 0; i < size_z; i++) {
int x = 0 - (int)Xl; // translate whole network(including inlet/outlet) to origin
int y = 0 - (int)Yb;
int z = i + (int)center[2]; // box symmetric along z-axis
// allocate image slice memory
unsigned char* d_ptr;
unsigned char* ptr = (unsigned char*)malloc(num * sizeof(unsigned char));
memset(ptr, 0, num * sizeof(unsigned char));
HANDLE_ERROR(cudaMalloc((void**)&d_ptr, num * sizeof(unsigned char)));
cudaDeviceProp prop;
cudaGetDeviceProperties(&prop, 0); // get cuda device properties structure
size_t max_thread = sqrt(prop.maxThreadsPerBlock); // get the maximum number of thread per block
dim3 block(size_x / max_thread + 1, size_y / max_thread + 1);
dim3 thread(max_thread, max_thread);
inside_sphere << <block, thread >> > (d_V, A.size(), d_R, d_S, d_ptr, x, y, z);
cudaDeviceSynchronize();
inside_cone << <block, thread >> > (d_E, B.size(), d_R, d_S, d_ptr, x, y, z);
cudaDeviceSynchronize();
inside_cuboid << <block, thread >> > (d_B, CU.size(), d_R, d_S, d_ptr, x, y, z);
HANDLE_ERROR(cudaMemcpy(ptr, d_ptr, num * sizeof(unsigned char), cudaMemcpyDeviceToHost));
I.set(ptr, i);
free(ptr);
HANDLE_ERROR(cudaFree(d_ptr));
// print progress bar
p = (float)(i + 1) / (float)size_z * 100;
rtsProgressBar(p);
}
// clear up
free(R);
free(S);
HANDLE_ERROR(cudaFree(d_R));
HANDLE_ERROR(cudaFree(d_S));
HANDLE_ERROR(cudaFree(d_V));
HANDLE_ERROR(cudaFree(d_E));
HANDLE_ERROR(cudaFree(d_B));
if (stackdir == "")
I.save_images("image????.bmp");
else
I.save_images(stackdir + "/image????.bmp");
}
/// Calculate the inverse of A and store the result in C
void inversion(T** A, int order, T* C) {
#ifdef __CUDACC__
// convert from double pointer to single pointer, make it flat
T* Aflat = (T*)malloc(order * order * sizeof(T));
for (unsigned i = 0; i < order; i++)
for (unsigned j = 0; j < order; j++)
Aflat[i * order + j] = A[i][j];
// create device pointer
T* d_Aflat; // flat original matrix
T* d_Cflat; // flat inverse matrix
T** d_A; // put the flat original matrix into another array of pointer
T** d_C;
int *d_P;
int *d_INFO;
// allocate memory on device
HANDLE_ERROR(cudaMalloc((void**)&d_Aflat, order * order * sizeof(T)));
HANDLE_ERROR(cudaMalloc((void**)&d_Cflat, order * order * sizeof(T)));
HANDLE_ERROR(cudaMalloc((void**)&d_A, sizeof(T*)));
HANDLE_ERROR(cudaMalloc((void**)&d_C, sizeof(T*)));
HANDLE_ERROR(cudaMalloc((void**)&d_P, order * 1 * sizeof(int)));
HANDLE_ERROR(cudaMalloc((void**)&d_INFO, 1 * sizeof(int)));
// copy matrix from host to device
HANDLE_ERROR(cudaMemcpy(d_Aflat, Aflat, order * order * sizeof(T), cudaMemcpyHostToDevice));
// copy matrix from device to device
HANDLE_ERROR(cudaMemcpy(d_A, &d_Aflat, sizeof(T*), cudaMemcpyHostToDevice));
HANDLE_ERROR(cudaMemcpy(d_C, &d_Cflat, sizeof(T*), cudaMemcpyHostToDevice));
// calculate the inverse of matrix based on cuBLAS
cublasHandle_t handle;
CUBLAS_HANDLE_ERROR(cublasCreate_v2(&handle)); // create cuBLAS handle object
CUBLAS_HANDLE_ERROR(cublasSgetrfBatched(handle, order, d_A, order, d_P, d_INFO, 1));
int INFO = 0;
HANDLE_ERROR(cudaMemcpy(&INFO, d_INFO, sizeof(int), cudaMemcpyDeviceToHost));
if (INFO == order)
{
std::cout << "Factorization Failed : Matrix is singular." << std::endl;
cudaDeviceReset();
exit(1);
}
CUBLAS_HANDLE_ERROR(cublasSgetriBatched(handle, order, (const T **)d_A, order, d_P, d_C, order, d_INFO, 1));
CUBLAS_HANDLE_ERROR(cublasDestroy_v2(handle));
// copy inverse matrix from device to device
HANDLE_ERROR(cudaMemcpy(&d_Cflat, d_C, sizeof(T*), cudaMemcpyDeviceToHost));
// copy inverse matrix from device to host
HANDLE_ERROR(cudaMemcpy(C, d_Cflat, order * order * sizeof(T), cudaMemcpyDeviceToHost));
// clear up
free(Aflat);
HANDLE_ERROR(cudaFree(d_Aflat));
HANDLE_ERROR(cudaFree(d_Cflat));
HANDLE_ERROR(cudaFree(d_A));
HANDLE_ERROR(cudaFree(d_C));
HANDLE_ERROR(cudaFree(d_P));
HANDLE_ERROR(cudaFree(d_INFO));
#else
// get the determinant of a
double det = 1.0 / determinant(A, order);
// memory allocation
T* tmp = (T*)malloc((order - 1)*(order - 1) * sizeof(T));
T** minor = (T**)malloc((order - 1) * sizeof(T*));
for (int i = 0; i < order - 1; i++)
minor[i] = tmp + (i * (order - 1));
for (int j = 0; j < order; j++) {
for (int i = 0; i < order; i++) {
// get the co-factor (matrix) of A(j,i)
get_minor(A, minor, j, i, order);
C[i][j] = det * determinant(minor, order - 1);
if ((i + j) % 2 == 1)
C[i][j] = -C[i][j];
}
}
// release memory
free(tmp);
free(minor);
#endif
}
};
}
#endif