flow.h 56.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
#ifndef FLOW3_H
#define FLOW3_H

#include <algorithm>

//STIM include
#include <stim/parser/arguments.h>
#include <stim/visualization/gl_network.h>
#include <stim/visualization/colormap.h>
#include <stim/math/matrix.h>
#include <stim/visualization/gl_aaboundingbox.h>
#include <stim/ui/progressbar.h>
#include <stim/grids/image_stack.h>

#ifdef __CUDACC__
#include <cublas_v2.h>
#include <stim/cuda/cudatools/error.h>
#endif

namespace stim {
	template <typename A, typename B, typename C>
	struct triple {
		A first;
		B second;
		C third;
	};

	template <typename T>
	struct bridge {
		std::vector<unsigned> v;				// vertices' indices
		std::vector<typename stim::vec3<T> > V;	// vertices' coordinates
		T l;		// length
		T r;		// radii
		T deltaP;	// pressure drop
		T Q;		// volume flow rate
	};

	template <typename T>
	struct sphere {
		stim::vec3<T> c;		// center of sphere
		T r;					// radii
	};

	template <typename T>
	struct cone {				// radii changes gradually
		stim::vec3<T> c1;		// center of geometry start hat
		stim::vec3<T> c2;		// center of geometry end hat
		T r1;					// radii at start hat
		T r2;					// radii at end hat
	};

	template <typename T>
	struct cuboid {
		stim::vec3<T> c;
		T l;					// length
		T w;					// width
		T h;					// height
	};

	/// indicator function
#ifdef __CUDACC__
	// for sphere
	template <typename T>
	__global__ void inside_sphere(const stim::sphere<T> *V, unsigned num, size_t *R, T *S, unsigned char *ptr, int x, int y, int z) {

		unsigned ix = blockDim.x * blockIdx.x + threadIdx.x;
		unsigned iy = blockDim.y * blockIdx.y + threadIdx.y;

		if (ix >= R[1] || iy >= R[2]) return;		// avoid seg-fault

		// find world_pixel coordinates
		stim::vec3<T> world_pixel;
		world_pixel[0] = (T)ix * S[1] - x;			// translate origin to center of the network
		world_pixel[1] = (T)iy * S[2] - y;
		world_pixel[2] = ((T)z - R[3] / 2) * S[3];	// ???center of box minus half width

		float distance = FLT_MAX;
		float tmp_distance;
		unsigned idx;

		for (unsigned i = 0; i < num; i++) {
			tmp_distance = (V[i].c - world_pixel).len();
			if (tmp_distance <= distance) {
				distance = tmp_distance;
				idx = i;
			}
		}
		if (distance <= V[idx].r)
			ptr[(R[2] - 1 - iy) * R[0] * R[1] + ix * R[0]] = 255;
	}

	// for cone
	template <typename T>
	__global__ void inside_cone(const stim::cone<T> *E, unsigned num, size_t *R, T *S, unsigned char *ptr, int x, int y, int z) {

		unsigned ix = blockDim.x * blockIdx.x + threadIdx.x;
		unsigned iy = blockDim.y * blockIdx.y + threadIdx.y;

		if (ix >= R[1] || iy >= R[2]) return;			// avoid segfault

		stim::vec3<T> world_pixel;
		world_pixel[0] = (T)ix * S[1] - x;
		world_pixel[1] = (T)iy * S[2] - y;
		world_pixel[2] = ((T)z - R[3] / 2) * S[3];

		float distance = FLT_MAX;
		float tmp_distance;
		float rr;										// radii at the surface where projection meets

		for (unsigned i = 0; i < num; i++) {			// find the nearest cylinder
			tmp_distance = ((world_pixel - E[i].c1).cross(world_pixel - E[i].c2)).len() / (E[i].c2 - E[i].c1).len();
			if (tmp_distance <= distance) {
				// we only focus on point to line segment
				// check to see whether projection is lying outside the line segment
				float a = (world_pixel - E[i].c1).dot((E[i].c2 - E[i].c1).norm());
				float b = (world_pixel - E[i].c2).dot((E[i].c1 - E[i].c2).norm());
				float length = (E[i].c1 - E[i].c2).len();
				if (a <= length && b <= length) {		// projection lying inside the line segment
					distance = tmp_distance;
					rr = E[i].r1 + (E[i].r2 - E[i].r1) * a / (length);		// linear change
				}
			}
		}
		if (distance <= rr)
			ptr[(R[2] - 1 - iy) * R[0] * R[1] + ix * R[0]] = 255;
	}

	// for source bus
	template <typename T>
	__global__ void inside_cuboid(const stim::cuboid<T> *B, unsigned num, size_t *R, T *S, unsigned char *ptr, int x, int y, int z) {

		unsigned ix = blockDim.x * blockIdx.x + threadIdx.x;
		unsigned iy = blockDim.y * blockIdx.y + threadIdx.y;

		if (ix >= R[1] || iy >= R[2]) return;			// avoid segfault

		stim::vec3<T> world_pixel;
		world_pixel[0] = (T)ix * S[1] - x;
		world_pixel[1] = (T)iy * S[2] - y;
		world_pixel[2] = ((T)z - R[3] / 2) * S[3];

		for (unsigned i = 0; i < num; i++) {
			bool left_outside = false;					// flag indicates point is outside the left bound
			bool right_outside = false;

			stim::vec3<T> tmp = B[i].c;
			stim::vec3<T> L = stim::vec3<T>(tmp[0] - B[i].l / 2.0f, tmp[1] - B[i].h / 2.0f, tmp[2] - B[i].w / 2.0f);
			stim::vec3<T> U = stim::vec3<T>(tmp[0] + B[i].l / 2.0f, tmp[1] + B[i].h / 2.0f, tmp[2] + B[i].w / 2.0f);

			for (unsigned d = 0; d < 3; d++) {
				if (world_pixel[d] < L[d])				// if the point is less than the minimum bound
					left_outside = true;
				if (world_pixel[d] > U[d])				// if the point is greater than the maximum bound
					right_outside = true;
			}
			if (!left_outside && !right_outside)
				ptr[(R[2] - 1 - iy) * R[0] * R[1] + ix * R[0]] = 255;
		}
	}
#endif

	template <typename T>
	class flow : public stim::gl_network<T>{

	private:
		
		unsigned num_edge;
		unsigned num_vertex;
		
		enum direction {UP, LEFT, DOWN, RIGHT};

		// calculate the cofactor of elemen[row][col]
		void get_minor(T** src, T** dest, int row, int col, int order) {

			// index of element to be copied
			int rowCount = 0;
			int colCount = 0;

			for (int i = 0; i < order; i++) {
				if (i != row) {
					colCount = 0;
					for (int j = 0; j < order; j++) {
						// when j is not the element
						if (j != col) {
							dest[rowCount][colCount] = src[i][j];
							colCount++;
						}
					}
					rowCount++;
				}
			}
		}

		// calculate the det()
		T determinant(T** mat, int order) {

			// degenate case when n = 1
			if (order == 1)
				return mat[0][0];

			T det = 0.0;		// determinant value

								// allocate the cofactor matrix
			T** minor = (T**)malloc((order - 1) * sizeof(T*));
			for (int i = 0; i < order - 1; i++)
				minor[i] = (T*)malloc((order - 1) * sizeof(T));


			for (int i = 0; i < order; i++) {

				// get minor of element(0, i)
				get_minor(mat, minor, 0, i, order);

				// recursion
				det += (i % 2 == 1 ? -1.0 : 1.0) * mat[0][i] * determinant(minor, order - 1);
			}

			// release memory
			for (int i = 0; i < order - 1; i++)
				free(minor[i]);
			free(minor);

			return det;
		}

	protected:

		using stim::network<T>::E;
		using stim::network<T>::V;
		using stim::network<T>::get_start_vertex;
		using stim::network<T>::get_end_vertex;
		using stim::network<T>::get_r;
		using stim::network<T>::get_average_r;
		using stim::network<T>::get_l;
		
		T** C;																	// Conductance
		std::vector<typename stim::triple<unsigned, unsigned, float> > Q;		// volume flow rate
		std::vector<T> QQ;														// Q' vector
		std::vector<T> pressure;												// final pressure

	public:

		std::vector<T> P;														// initial pressure
		std::vector<T> v;														// velocity
		std::vector<typename stim::vec3<T> > main_feeder;						// inlet/outlet main feeder
		std::vector<unsigned> pendant_vertex;
		std::vector<typename stim::triple<unsigned, unsigned, T> > input;		// first one store which vertex, second one stores which edge, third one stores in/out volume flow rate of that vertex
		std::vector<typename stim::triple<unsigned, unsigned, T> > output;
		std::vector<typename stim::bridge<T> > inlet;							// input bridge
		std::vector<typename stim::bridge<T> > outlet;							// output bridge
		std::vector<typename stim::sphere<T> > A;			// sphere model for making image stack
		std::vector<typename stim::cone<T> > B;				// cone(cylinder) model for making image stack
		std::vector<typename stim::cuboid<T> > CU;			// cuboid model for making image stack
		stim::gl_aaboundingbox<T> bb;						// bounding box

		flow() {}				// default constructor
		~flow() {
			for (unsigned i = 0; i < num_vertex; i++)
				delete[] C[i];
			delete[] C;
		}

		void init(unsigned n_e, unsigned n_v) {

			num_edge = n_e;
			num_vertex = n_v;

			C = new T*[n_v]();
			for (unsigned i = 0; i < n_v; i++) {
				C[i] = new T[n_v]();
			}

			QQ.resize(n_v);
			P.resize(n_v);
			pressure.resize(n_v);

			Q.resize(n_e);
			v.resize(n_e);
		}

		void clear() {

			for (unsigned i = 0; i < num_vertex; i++) {
				QQ[i] = 0;
				pressure[i] = 0;
				for (unsigned j = 0; j < num_vertex; j++) {
					C[i][j] = 0;
				}
			}
			main_feeder.clear();
			input.clear();
			output.clear();
			inlet.clear();
			outlet.clear();
		}

		// copy radius from cylinder to flow
		void set_radius(unsigned i, T radius) {
			
			for (unsigned j = 0; j < num_edge; j++) {
				if (E[j].v[0] == i)
					E[j].cylinder<T>::set_r(0, radius);
				else if (E[j].v[1] == i)
					E[j].cylinder<T>::set_r(E[j].size() - 1, radius);
			}
		}

		// get the radii of vertex i
		T get_radius(unsigned i) {
			
			unsigned tmp_e;				// edge index
			unsigned tmp_v;				// vertex index in that edge
			for (unsigned j = 0; j < num_edge; j++) {
				if (E[j].v[0] == i) {
					tmp_e = j;
					tmp_v = 0;
				}
				else if (E[j].v[1] == i) {
					tmp_e = j;
					tmp_v = E[j].size() - 1;
				}
			}

			return E[tmp_e].r(tmp_v);
		}

		// get the velocity of pendant vertex i
		T get_velocity(unsigned i) {
		
			unsigned tmp_e;				// edge index
			for (unsigned j = 0; j < num_edge; j++) {
				if (E[j].v[0] == i) {
					tmp_e = j;
					break;
				}
				else if (E[j].v[1] == i) {
					tmp_e = j;
					break;
				}
			}

			return v[tmp_e];
		}

		// set pressure at specifi vertex
		void set_pressure(unsigned i, T value) {
			P[i] = value;
		}

		// solve the linear system to get stable flow state
		void solve_flow(T viscosity) {

			// clear up last time simulation
			clear();

			// get the pendant vertex indices
			pendant_vertex = get_boundary_vertex();

			// get bounding box
			bb = (*this).boundingbox();

			// set the conductance matrix of flow object
			unsigned start_vertex = 0;
			unsigned end_vertex = 0;
			for (unsigned i = 0; i < num_edge; i++) {
				start_vertex = get_start_vertex(i);		// get the start vertex index of current edge
				end_vertex = get_end_vertex(i);			// get the end vertex index of current edge

				C[start_vertex][end_vertex] = -((float)stim::PI * std::pow(get_average_r(i), 4)) / (8 * u * get_l(i));

				C[end_vertex][start_vertex] = C[start_vertex][end_vertex];
			}
			// set the diagonal to the negative sum of row element
			float sum = 0.0;
			for (unsigned i = 0; i < num_vertex; i++) {
				for (unsigned j = 0; j < num_vertex; j++) {
					sum += C[i][j];
				}
				C[i][i] = -sum;
				sum = 0.0;
			}

			// get the Q' vector QQ
			// matrix manipulation to zero out the conductance matrix as defined by the boundary values that were enterd
			for (unsigned i = 0; i < num_vertex; i++) {
				if (P[i] != 0) {			// for every dangle vertex
					for (unsigned j = 0; j < num_vertex; j++) {
						if (j == i) {
							QQ[i] = C[i][i] * P[i];
						}
						else {
							C[i][j] = 0;
							QQ[j] = QQ[j] - C[j][i] * P[i];
							C[j][i] = 0;
						}
					}
				}
			}

			// get the inverse of conductance matrix
			stim::matrix<float> _C(num_vertex, num_vertex);
			inversion(C, num_vertex, _C.data());
		
			// get the pressure in the network
			for (unsigned i = 0; i < num_vertex; i++) {
				for (unsigned j = 0; j < num_vertex; j++) {
					pressure[i] += _C(i, j) * QQ[j];
				}
			}

			// get the flow state from known pressure
			float start_pressure = 0.0;
			float end_pressure = 0.0;
			float deltaP = 0.0;
			for (unsigned i = 0; i < num_edge; i++) {
				start_vertex = get_start_vertex(i);
				end_vertex = get_end_vertex(i);
				start_pressure = pressure[start_vertex];		// get the start vertex pressure of current edge
				end_pressure = pressure[end_vertex];			// get the end vertex pressure of current edge
				deltaP = start_pressure - end_pressure;				// deltaP = Pa - Pb

				Q[i].first = start_vertex;
				Q[i].second = end_vertex;
				
				Q[i].third = ((float)stim::PI * std::pow(get_average_r(i), 4) * deltaP) / (8 * u * get_l(i));
				v[i] = Q[i].third / ((float)stim::PI * std::pow(get_average_r(i), 2));
			}
		}

		// get the brewer color map based on velocity
		void get_color_map(T& max_v, T& min_v, std::vector<unsigned char>& color, std::vector<unsigned> pendant_vertex) {
			
			unsigned num_edge = Q.size();
			unsigned num_vertex = QQ.size();

			// find the absolute maximum velocity and minimum velocity
			std::vector<float> abs_V(num_edge);
			for (unsigned i = 0; i < num_edge; i++) {
				abs_V[i] = std::fabsf(v[i]);
			}

			max_v = *std::max_element(abs_V.begin(), abs_V.end());
			min_v = *std::min_element(abs_V.begin(), abs_V.end());
			
			// get the color map based on velocity range along the network
			color.clear();
			if (pendant_vertex.size() == 2 && num_edge - num_vertex + 1 <= 0) 		// only one inlet and one outlet
				color.resize(num_edge * 3, (unsigned char)255);
			else {
				color.resize(num_edge * 3);
				stim::cpu2cpu<float>(&abs_V[0], &color[0], num_edge, min_v, max_v, stim::cmBrewer);
			}
		}

		// print flow
		void print_flow() {

			// show the pressure information in console box
			std::cout << "PRESSURE(g/um/s^2):" << std::endl;
			for (unsigned i = 0; i < num_vertex; i++) {
				std::cout << "[" << i << "] " << pressure[i] << std::endl;
			}
			// show the flow rate information in console box
			std::cout << "VOLUME FLOW RATE(um^3/s):" << std::endl;
			for (unsigned i = 0; i < num_edge; i++) {
				std::cout << "(" << Q[i].first << "," << Q[i].second << ")" << Q[i].third << std::endl;
			}
		}

		/// helper function
		// find hilbert curve order
		// @param: current direct length between two vertices
		// @param: desire length
		void find_hilbert_order(T l, T d, int &order) {
			
			bool flag = false;
			int o = 1;
			T tmp;					// temp of length
			while (!flag) {
				// convert from cartesian length to hilbert length
				// l -> l * (4 ^ order - 1)/(2 ^ order - 1)
				tmp = l * (std::pow(4, o) - 1) / (std::pow(2, o) - 1);
				if (tmp >= d)
					flag = true;
				else
					o++;
			}
			order = o;
		}

		void move(unsigned i, T *c, direction dir, T dl, int feeder, bool invert) {
			
			int cof = (invert) ? -1 : 1;

			switch (dir) {
			case UP:
				c[1] += dl;
				break;
			case LEFT:
				c[0] -= cof * dl;
				break;
			case DOWN:
				c[1] -= dl;
				break;
			case RIGHT:
				c[0] += cof * dl;
				break;
			}

			stim::vec3<T> tmp;
			for (unsigned i = 0; i < 3; i++)
				tmp[i] = c[i];
			
			if (feeder == 1)					// inlet main feeder
				inlet[i].V.push_back(tmp);
			else if (feeder == 0)				// outlet main feeder
				outlet[i].V.push_back(tmp);
		}

		void hilbert_curve(unsigned i, T *c, int order, T dl, int feeder, bool invert, direction dir = DOWN) {
			
			if (order == 1) {			
				switch (dir) {
				case UP:
					move(i, c, DOWN, dl, feeder, invert);
					move(i, c, RIGHT, dl, feeder, invert);
					move(i, c, UP, dl, feeder, invert);
					break;
				case LEFT:
					move(i, c, RIGHT, dl, feeder, invert);
					move(i, c, DOWN, dl, feeder, invert);
					move(i, c, LEFT, dl, feeder, invert);
					break;
				case DOWN:
					move(i, c, UP, dl, feeder, invert);
					move(i, c, LEFT, dl, feeder, invert);
					move(i, c, DOWN, dl, feeder, invert);
					break;
				case RIGHT:
					move(i, c, LEFT, dl, feeder, invert);
					move(i, c, UP, dl, feeder, invert);
					move(i, c, RIGHT, dl, feeder, invert);
					break;
				}
				
			}
			else if (order > 1) {
				switch (dir) {
				case UP:
					hilbert_curve(i, c, order - 1, dl, feeder, invert, LEFT);
					move(i, c, DOWN, dl, feeder, invert);
					hilbert_curve(i, c, order - 1, dl, feeder, invert, UP);
					move(i, c, RIGHT, dl, feeder, invert);
					hilbert_curve(i, c, order - 1, dl, feeder, invert, UP);
					move(i, c, UP, dl, feeder, invert);
					hilbert_curve(i, c, order - 1, dl, feeder, invert, RIGHT);
					break;
				case LEFT:
					hilbert_curve(i, c, order - 1, dl, feeder, invert, UP);
					move(i, c, RIGHT, dl, feeder, invert);
					hilbert_curve(i, c, order - 1, dl, feeder, invert, LEFT);
					move(i, c, DOWN, dl, feeder, invert);
					hilbert_curve(i, c, order - 1, dl, feeder, invert, LEFT);
					move(i, c, LEFT, dl, feeder, invert);
					hilbert_curve(i, c, order - 1, dl, feeder, invert, DOWN);
					break;
				case DOWN:
					hilbert_curve(i, c, order - 1, dl, feeder, invert, RIGHT);
					move(i, c, UP, dl, feeder, invert);
					hilbert_curve(i, c, order - 1, dl, feeder, invert, DOWN);
					move(i, c, LEFT, dl, feeder, invert);
					hilbert_curve(i, c, order - 1, dl, feeder, invert, DOWN);
					move(i, c, DOWN, dl, feeder, invert);
					hilbert_curve(i, c, order - 1, dl, feeder, invert, LEFT);
					break;
				case RIGHT:
					hilbert_curve(i, c, order - 1, dl, feeder, invert, DOWN);
					move(i, c, LEFT, dl, feeder, invert);
					hilbert_curve(i, c, order - 1, dl, feeder, invert, RIGHT);
					move(i, c, UP, dl, feeder, invert);
					hilbert_curve(i, c, order - 1, dl, feeder, invert, RIGHT);
					move(i, c, RIGHT, dl, feeder, invert);
					hilbert_curve(i, c, order - 1, dl, feeder, invert, UP);
					break;
				}
			}
		}

		/// render function
		// find two envelope caps for two spheres
		// @param cp1, cp2: list of points on the cap
		// @param center1, center2: center point of cap
		// @param r1, r2: radii of cap
		void find_envelope(std::vector<typename stim::vec3<float> > &cp1, std::vector<typename stim::vec3<float> > &cp2, stim::vec3<float> center1, stim::vec3<float> center2, float r1, float r2, GLint subdivision) {

			stim::vec3<float> tmp_d;
			if (r1 == r2) {						// two vertices have the same radius
				tmp_d = center2 - center1;		// calculate the direction vector
				tmp_d = tmp_d.norm();
				stim::circle<float> tmp_c;		// in order to get zero direction vector
				tmp_c.rotate(tmp_d);

				stim::circle<float> c1(center1, r1, tmp_d, tmp_c.U);
				stim::circle<float> c2(center2, r2, tmp_d, tmp_c.U);
				cp1 = c1.glpoints(subdivision);
				cp2 = c2.glpoints(subdivision);
			}
			else {
				if (r1 < r2) {					// switch index, we always want r1 to be larger than r2
					stim::vec3<float> tmp_c = center2;
					center2 = center1;
					center1 = tmp_c;
					float tmp_r = r2;
					r2 = r1;
					r1 = tmp_r;
				}
				tmp_d = center2 - center1;		// bigger one points to smaller one
				tmp_d = tmp_d.norm();

				float D = (center1 - center2).len();
				stim::vec3<float> exp;
				exp[0] = (center2[0] * r1 - center1[0] * r2) / (r1 - r2);
				exp[1] = (center2[1] * r1 - center1[1] * r2) / (r1 - r2);

				stim::vec3<float> t1, t2, t3, t4;
				t1[2] = t2[2] = center1[2];		// decide the specific plane to work on
				t3[2] = t4[2] = center2[2];

				// first two
				t1[0] = pow(r1, 2)*(exp[0] - center1[0]);
				t1[0] += r1*(exp[1] - center1[1])*sqrt(pow((exp[0] - center1[0]), 2) + pow((exp[1] - center1[1]), 2) - pow(r1, 2));
				t1[0] /= (pow((exp[0] - center1[0]), 2) + pow((exp[1] - center1[1]), 2));
				t1[0] += center1[0];

				t2[0] = pow(r1, 2)*(exp[0] - center1[0]);
				t2[0] -= r1*(exp[1] - center1[1])*sqrt(pow((exp[0] - center1[0]), 2) + pow((exp[1] - center1[1]), 2) - pow(r1, 2));
				t2[0] /= (pow((exp[0] - center1[0]), 2) + pow((exp[1] - center1[1]), 2));
				t2[0] += center1[0];

				t1[1] = pow(r1, 2)*(exp[1] - center1[1]);
				t1[1] -= r1*(exp[0] - center1[0])*sqrt(pow((exp[0] - center1[0]), 2) + pow((exp[1] - center1[1]), 2) - pow(r1, 2));
				t1[1] /= (pow((exp[0] - center1[0]), 2) + pow((exp[1] - center1[1]), 2));
				t1[1] += center1[1];

				t2[1] = pow(r1, 2)*(exp[1] - center1[1]);
				t2[1] += r1*(exp[0] - center1[0])*sqrt(pow((exp[0] - center1[0]), 2) + pow((exp[1] - center1[1]), 2) - pow(r1, 2));
				t2[1] /= (pow((exp[0] - center1[0]), 2) + pow((exp[1] - center1[1]), 2));
				t2[1] += center1[1];

				// check the correctness of the points
				//float s = (center1[1] - t1[1])*(exp[1] - t1[1]) / ((t1[0] - center1[0])*(t1[0] - exp[0]));
				//if (s != 1) {			// swap t1[1] and t2[1]
				//	float tmp_t = t2[1];
				//	t2[1] = t1[1];
				//	t1[1] = tmp_t;
				//}

				// second two
				t3[0] = pow(r2, 2)*(exp[0] - center2[0]);
				t3[0] += r2*(exp[1] - center2[1])*sqrt(pow((exp[0] - center2[0]), 2) + pow((exp[1] - center2[1]), 2) - pow(r2, 2));
				t3[0] /= (pow((exp[0] - center2[0]), 2) + pow((exp[1] - center2[1]), 2));
				t3[0] += center2[0];

				t4[0] = pow(r2, 2)*(exp[0] - center2[0]);
				t4[0] -= r2*(exp[1] - center2[1])*sqrt(pow((exp[0] - center2[0]), 2) + pow((exp[1] - center2[1]), 2) - pow(r2, 2));
				t4[0] /= (pow((exp[0] - center2[0]), 2) + pow((exp[1] - center2[1]), 2));
				t4[0] += center2[0];

				t3[1] = pow(r2, 2)*(exp[1] - center2[1]);
				t3[1] -= r2*(exp[0] - center2[0])*sqrt(pow((exp[0] - center2[0]), 2) + pow((exp[1] - center2[1]), 2) - pow(r2, 2));
				t3[1] /= (pow((exp[0] - center2[0]), 2) + pow((exp[1] - center2[1]), 2));
				t3[1] += center2[1];

				t4[1] = pow(r2, 2)*(exp[1] - center2[1]);
				t4[1] += r2*(exp[0] - center2[0])*sqrt(pow((exp[0] - center2[0]), 2) + pow((exp[1] - center2[1]), 2) - pow(r2, 2));
				t4[1] /= (pow((exp[0] - center2[0]), 2) + pow((exp[1] - center2[1]), 2));
				t4[1] += center2[1];

				// check the correctness of the points
				//s = (center2[1] - t3[1])*(exp[1] - t3[1]) / ((t3[0] - center2[0])*(t3[0] - exp[0]));
				//if (s != 1) {			// swap t1[1] and t2[1]
				//	float tmp_t = t4[1];
				//	t4[1] = t3[1];
				//	t3[1] = tmp_t;
				//}

				stim::vec3<float> d1;
				float dot;
				float a;
				float new_r;
				stim::vec3<float> new_u;
				stim::vec3<float> new_c;

				// calculate the bigger circle
				d1 = t1 - center1;
				dot = d1.dot(tmp_d);
				a = dot / (r1 * 1) * r1;			// a = cos(alpha) * radii
				new_c = center1 + a * tmp_d;
				new_r = sqrt(pow(r1, 2) - pow(a, 2));
				new_u = t1 - new_c;

				stim::circle<float> c1(new_c, new_r, tmp_d, new_u);
				cp1 = c1.glpoints(subdivision);

				// calculate the smaller circle
				d1 = t3 - center2;
				dot = d1.dot(tmp_d);
				a = dot / (r2 * 1) * r2;
				new_c = center2 + a * tmp_d;
				new_r = sqrt(pow(r2, 2) - pow(a, 2));
				new_u = t3 - new_c;

				stim::circle<float> c2(new_c, new_r, tmp_d, new_u);
				cp2 = c2.glpoints(subdivision);
			}
		}

		// draw solid sphere at every vertex
		void glSolidSphere(T max_pressure, GLint subdivision) {
			
			// waste?
			for (unsigned i = 0; i < num_edge; i++) {
				for (unsigned j = 0; j < E[i].size(); j++) {
					if (j == 0) {						// for start vertex
						if (P[E[i].v[0]] != 0) {
							stim::vec3<float> new_color;
							new_color[0] = (P[E[i].v[0]] / max_pressure) > 0.5f ? 1.0f : 2.0f * P[E[i].v[0]] / max_pressure;						// red
							new_color[1] = 0.0f;																					// green
							new_color[2] = (P[E[i].v[0]] / max_pressure) > 0.5f ? 1.0f - 2.0f * (P[E[i].v[0]] / max_pressure - 0.5f) : 1.0f;		// blue
							glColor3f(new_color[0], new_color[1], new_color[2]);
						}
					}
					else if (j == E[i].size() - 1) {	// for end vertex
						if (P[E[i].v[1]] != 0) {
							stim::vec3<float> new_color;
							new_color[0] = (P[E[i].v[1]] / max_pressure) > 0.5f ? 1.0f : 2.0f * P[E[i].v[1]] / max_pressure;						// red
							new_color[1] = 0.0f;																					// green
							new_color[2] = (P[E[i].v[1]] / max_pressure) > 0.5f ? 1.0f - 2.0f * (P[E[i].v[1]] / max_pressure - 0.5f) : 1.0f;		// blue
							glColor3f(new_color[0], new_color[1], new_color[2]);
						}
					}
					else
						glColor3f(0.5f, 0.5f, 0.5f);						// gray point

					glPushMatrix();
					glTranslatef(E[i][j][0], E[i][j][1], E[i][j][2]);
					glutSolidSphere(get_r(i, j), subdivision, subdivision);
					glPopMatrix();
				}
			}
		}

		// draw edges as series of cylinders
		void glSolidCylinder(GLint subdivision, std::vector<unsigned char> color) {

			stim::vec3<float> tmp_d;
			stim::vec3<float> center1;
			stim::vec3<float> center2;
			float r1;
			float r2;
			std::vector<typename stim::vec3<float> > cp1(subdivision + 1);
			std::vector<typename stim::vec3<float> > cp2(subdivision + 1);
			for (unsigned i = 0; i < num_edge; i++) {							// for every edge
				glEnable(GL_BLEND);												// enable color blend
				glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);				// set blend function
				glDisable(GL_DEPTH_TEST);
				glColor4f((float)color[i * 3 + 0] / 255, (float)color[i * 3 + 1] / 255, (float)color[i * 3 + 2] / 255, 0.5f);
				for (unsigned j = 0; j < E[i].size() - 1; j++) {				// for every point on the edge
					center1 = E[i][j];
					center2 = E[i][j + 1];

					r1 = get_r(i, j);
					r2 = get_r(i, j + 1);
					
					// calculate the envelope caps
					find_envelope(cp1, cp2, center1, center2, r1, r2, subdivision);

					glBegin(GL_QUAD_STRIP);
					for (unsigned j = 0; j < cp1.size(); j++) {
						glVertex3f(cp1[j][0], cp1[j][1], cp1[j][2]);
						glVertex3f(cp2[j][0], cp2[j][1], cp2[j][2]);
					}
					glEnd();
				}
			}
			glFlush();
			glDisable(GL_BLEND);
		}

		// draw the flow direction as cone
		void glSolidCone(GLint subdivision) {
			
			stim::vec3<T> tmp_d;									// direction
			stim::vec3<T> center;									// cone hat center
			stim::vec3<T> head;										// cone hat top
			stim::circle<T> tmp_c;
			std::vector<typename stim::vec3<T> > cp;
			T radius;

			glColor3f(1.0f, 1.0f, 1.0f);
			for (unsigned i = 0; i < num_edge; i++) {				// for every edge
				for (unsigned j = 0; j < E[i].size() - 1; j++) {	// for every point on current edge
					tmp_d = E[i][j + 1] - E[i][j];
					tmp_d = tmp_d.norm();
					center = (E[i][j + 1] + E[i][j]) / 2;
					tmp_c.rotate(tmp_d);
					radius = (E[i].r(j + 1) + E[i].r(j)) / 2;
					if (v[i] > 0)									// if flow flows from j to j+1
						head = center + tmp_d * sqrt(3) * radius;
					else
						head = center - tmp_d * sqrt(3) * radius;

					stim::circle<float> c(center, radius, tmp_d, tmp_c.U);
					cp = c.glpoints(subdivision);

					glBegin(GL_TRIANGLE_FAN);
					glVertex3f(head[0], head[1], head[2]);
					for (unsigned k = 0; k < cp.size(); k++)
						glVertex3f(cp[k][0], cp[k][1], cp[k][2]);
					glEnd();
				}
			}
			glFlush();
		}

		// draw main feeder as solid cube
		void glSolidCuboid(T length = 210.0f, T height = 10.0f) {
			
			T width;
			stim::vec3<T> L = bb.A;						// get the bottom left corner
			stim::vec3<T> U = bb.B;						// get the top right corner
			width = U[2] - L[2] + 10.0f;

			glColor3f(1.0f, 1.0f, 1.0f);
			for (unsigned i = 0; i < main_feeder.size(); i++) {
				// front face
				glBegin(GL_QUADS);
				glVertex3f(main_feeder[i][0] - length / 2, main_feeder[i][1] - height / 2, main_feeder[i][2] - width / 2);
				glVertex3f(main_feeder[i][0] + length / 2, main_feeder[i][1] - height / 2, main_feeder[i][2] - width / 2);
				glVertex3f(main_feeder[i][0] + length / 2, main_feeder[i][1] + height / 2, main_feeder[i][2] - width / 2);
				glVertex3f(main_feeder[i][0] - length / 2, main_feeder[i][1] + height / 2, main_feeder[i][2] - width / 2);
				glEnd();

				// back face
				glBegin(GL_QUADS);
				glVertex3f(main_feeder[i][0] - length / 2, main_feeder[i][1] - height / 2, main_feeder[i][2] + width / 2);
				glVertex3f(main_feeder[i][0] + length / 2, main_feeder[i][1] - height / 2, main_feeder[i][2] + width / 2);
				glVertex3f(main_feeder[i][0] + length / 2, main_feeder[i][1] + height / 2, main_feeder[i][2] + width / 2);
				glVertex3f(main_feeder[i][0] - length / 2, main_feeder[i][1] + height / 2, main_feeder[i][2] + width / 2);
				glEnd();

				// top face
				glBegin(GL_QUADS);
				glVertex3f(main_feeder[i][0] - length / 2, main_feeder[i][1] + height / 2, main_feeder[i][2] - width / 2);
				glVertex3f(main_feeder[i][0] + length / 2, main_feeder[i][1] + height / 2, main_feeder[i][2] - width / 2);
				glVertex3f(main_feeder[i][0] + length / 2, main_feeder[i][1] + height / 2, main_feeder[i][2] + width / 2);
				glVertex3f(main_feeder[i][0] - length / 2, main_feeder[i][1] + height / 2, main_feeder[i][2] + width / 2);
				glEnd();

				// bottom face
				glBegin(GL_QUADS);
				glVertex3f(main_feeder[i][0] - length / 2, main_feeder[i][1] - height / 2, main_feeder[i][2] - width / 2);
				glVertex3f(main_feeder[i][0] + length / 2, main_feeder[i][1] - height / 2, main_feeder[i][2] - width / 2);
				glVertex3f(main_feeder[i][0] + length / 2, main_feeder[i][1] - height / 2, main_feeder[i][2] + width / 2);
				glVertex3f(main_feeder[i][0] - length / 2, main_feeder[i][1] - height / 2, main_feeder[i][2] + width / 2);
				glEnd();

				// left face
				glBegin(GL_QUADS);
				glVertex3f(main_feeder[i][0] - length / 2, main_feeder[i][1] - height / 2, main_feeder[i][2] - width / 2);
				glVertex3f(main_feeder[i][0] - length / 2, main_feeder[i][1] - height / 2, main_feeder[i][2] + width / 2);
				glVertex3f(main_feeder[i][0] - length / 2, main_feeder[i][1] + height / 2, main_feeder[i][2] + width / 2);
				glVertex3f(main_feeder[i][0] - length / 2, main_feeder[i][1] + height / 2, main_feeder[i][2] - width / 2);
				glEnd();

				// right face
				glBegin(GL_QUADS);
				glVertex3f(main_feeder[i][0] + length / 2, main_feeder[i][1] - height / 2, main_feeder[i][2] - width / 2);
				glVertex3f(main_feeder[i][0] + length / 2, main_feeder[i][1] + height / 2, main_feeder[i][2] - width / 2);
				glVertex3f(main_feeder[i][0] + length / 2, main_feeder[i][1] + height / 2, main_feeder[i][2] + width / 2);
				glVertex3f(main_feeder[i][0] + length / 2, main_feeder[i][1] - height / 2, main_feeder[i][2] + width / 2);
				glEnd();
			}
			glFlush();
		}

		// draw the bridge as lines
		void line_bridge() {
			
			for (unsigned i = 0; i < inlet.size(); i++) {
				glBegin(GL_LINE_STRIP);
				for (unsigned j = 0; j < inlet[i].V.size(); j++)
					glVertex3f(inlet[i].V[j][0], inlet[i].V[j][1], inlet[i].V[j][2]);
				glEnd();
			}
			for (unsigned i = 0; i < outlet.size(); i++) {
				glBegin(GL_LINE_STRIP);
				for (unsigned j = 0; j < outlet[i].V.size(); j++)
					glVertex3f(outlet[i].V[j][0], outlet[i].V[j][1], outlet[i].V[j][2]);
				glEnd();
			}
			glFlush();
		}

		// draw the bridge as tubes
		void tube_bridge(T subdivision, T radii = 5.0f) {

			stim::vec3<T> dir;							// direction vector
			stim::circle<T> unit_c;						// unit circle for finding the rotation start direction
			std::vector<typename stim::vec3<T> > cp1;
			std::vector<typename stim::vec3<T> > cp2;

			for (unsigned i = 0; i < inlet.size(); i++) {
				// render vertex as sphere
				for (unsigned j = 1; j < inlet[i].V.size() - 1; j++) {
					glPushMatrix();
					glTranslatef(inlet[i].V[j][0], inlet[i].V[j][1], inlet[i].V[j][2]);
					glutSolidSphere(radii, subdivision, subdivision);
					glPopMatrix();
				}
				// render edge as cylinder
				for (unsigned j = 0; j < inlet[i].V.size() - 1; j++) {
					dir = inlet[i].V[j] - inlet[i].V[j + 1];
					dir = dir.norm();
					unit_c.rotate(dir);
					stim::circle<T> c1(inlet[i].V[j], inlet[i].r, dir, unit_c.U);
					stim::circle<T> c2(inlet[i].V[j + 1], inlet[i].r, dir, unit_c.U);
					cp1 = c1.glpoints(subdivision);
					cp2 = c2.glpoints(subdivision);

					glBegin(GL_QUAD_STRIP);
					for (unsigned k = 0; k < cp1.size(); k++) {
						glVertex3f(cp1[k][0], cp1[k][1], cp1[k][2]);
						glVertex3f(cp2[k][0], cp2[k][1], cp2[k][2]);
					}
					glEnd();
				}
			}

			for (unsigned i = 0; i < outlet.size(); i++) {
				// render vertex as sphere
				for (unsigned j = 1; j < outlet[i].V.size() - 1; j++) {
					glPushMatrix();
					glTranslatef(outlet[i].V[j][0], outlet[i].V[j][1], outlet[i].V[j][2]);
					glutSolidSphere(radii, subdivision, subdivision);
					glPopMatrix();
				}
				// render edge as cylinder
				for (unsigned j = 0; j < outlet[i].V.size() - 1; j++) {
					dir = outlet[i].V[j] - outlet[i].V[j + 1];
					dir = dir.norm();
					unit_c.rotate(dir);
					stim::circle<T> c1(outlet[i].V[j], outlet[i].r, dir, unit_c.U);
					stim::circle<T> c2(outlet[i].V[j + 1], outlet[i].r, dir, unit_c.U);
					cp1 = c1.glpoints(subdivision);
					cp2 = c2.glpoints(subdivision);

					glBegin(GL_QUAD_STRIP);
					for (unsigned k = 0; k < cp1.size(); k++) {
						glVertex3f(cp1[k][0], cp1[k][1], cp1[k][2]);
						glVertex3f(cp2[k][0], cp2[k][1], cp2[k][2]);
					}
					glEnd();
				}
			}
		}

		// draw gradient color bounding box outside the object
		void bounding_box() {

			stim::vec3<T> L = bb.A;						// get the bottom left corner
			stim::vec3<T> U = bb.B;						// get the top right corner
			
			glLineWidth(1);
			// front face of the box (in L[2])
			glBegin(GL_LINE_LOOP);
			glColor3f(0.0f, 0.0f, 0.0f);
			glVertex3f(L[0], L[1], L[2]);
			glColor3f(0.0f, 1.0f, 0.0f);
			glVertex3f(L[0], U[1], L[2]);
			glColor3f(1.0f, 1.0f, 0.0f);
			glVertex3f(U[0], U[1], L[2]);
			glColor3f(1.0f, 0.0f, 0.0f);
			glVertex3f(U[0], L[1], L[2]);
			glEnd();

			// back face of the box (in U[2])
			glBegin(GL_LINE_LOOP);
			glColor3f(1.0f, 1.0f, 1.0f);
			glVertex3f(U[0], U[1], U[2]);
			glColor3f(0.0f, 1.0f, 1.0f);
			glVertex3f(L[0], U[1], U[2]);
			glColor3f(0.0f, 0.0f, 1.0f);
			glVertex3f(L[0], L[1], U[2]);
			glColor3f(1.0f, 0.0f, 1.0f);
			glVertex3f(U[0], L[1], U[2]);
			glEnd();

			// fill out the rest of the lines to connect the two faces
			glBegin(GL_LINES);
			glColor3f(0.0f, 1.0f, 0.0f);
			glVertex3f(L[0], U[1], L[2]);
			glColor3f(0.0f, 1.0f, 1.0f);
			glVertex3f(L[0], U[1], U[2]);
			glColor3f(1.0f, 1.0f, 1.0f);
			glVertex3f(U[0], U[1], U[2]);
			glColor3f(1.0f, 1.0f, 0.0f);
			glVertex3f(U[0], U[1], L[2]);
			glColor3f(1.0f, 0.0f, 0.0f);
			glVertex3f(U[0], L[1], L[2]);
			glColor3f(1.0f, 0.0f, 1.0f);
			glVertex3f(U[0], L[1], U[2]);
			glColor3f(0.0f, 0.0f, 1.0f);
			glVertex3f(L[0], L[1], U[2]);
			glColor3f(0.0f, 0.0f, 0.0f);
			glVertex3f(L[0], L[1], L[2]);
			glEnd();
		}

		// mark the vertex
		void mark_vertex() {
			
			glColor3f(1.0f, 1.0f, 1.0f);
			for (unsigned i = 0; i < num_vertex; i++) {
				glRasterPos3f(V[i][0], V[i][1] + get_radius(i), V[i][2]);
				std::stringstream ss;
				ss << i;
				glutBitmapString(GLUT_BITMAP_HELVETICA_18, (const unsigned char*)(ss.str().c_str()));
			}
		}

		// find the nearest vertex of current click position
		// return true and a value if found
		inline bool epsilon_vertex(T x, T y, T z, T eps, unsigned& v) {

			float d = FLT_MAX;									// minimum distance between 2 vertices
			float tmp_d = 0.0f;									// temporary stores distance for loop
			unsigned tmp_i = 0;									// temporary stores connection index for loop
			stim::vec3<float> tmp_v;							// temporary stores current loop point
			d = FLT_MAX;										// set to max of float number

			for (unsigned i = 0; i < V.size(); i++) {
				tmp_v = stim::vec3<float>(x, y, z);
	
				tmp_v = tmp_v - V[i];							// calculate a vector between two vertices
				tmp_d = tmp_v.len();							// calculate length of that vector
				if (tmp_d < d) {
					d = tmp_d;									// if found a nearer vertex 
					tmp_i = i;									// get the index of that vertex
				}
			}
			eps += get_radius(tmp_i);							// increase epsilon accordingly
			if (d < eps) {										// if current click is close to any vertex
				v = tmp_i;										// copy the extant vertex's index to v
				return true;
			}

			return false;
		}

		/// build main feeder connection
		// set up main feeder and main port of both input and output
		void set_main_feeder(T border = 400.0f) {
			
			// 0 means outgoing while 1 means incoming
			stim::vec3<T> inlet_main_feeder;
			stim::vec3<T> outlet_main_feeder;

			inlet_main_feeder = stim::vec3<T>(bb.A[0] - border, bb.center()[1], bb.center()[2]);
			outlet_main_feeder = stim::vec3<T>(bb.B[0] + border, bb.center()[1], bb.center()[2]);
			
			main_feeder.push_back(inlet_main_feeder);
			main_feeder.push_back(outlet_main_feeder);

			// find both input and output vertex
			stim::triple<unsigned, unsigned, float> tmp;
			unsigned N = pendant_vertex.size();				// get the number of dangle vertex
			unsigned idx = 0;
			for (unsigned i = 0; i < N; i++) {				// for every boundary vertex
				idx = pendant_vertex[i];
				for (unsigned j = 0; j < num_edge; j++) {	// for every edge
					if (Q[j].first == idx) {			// starting vertex
						if (Q[j].third > 0) {			// flow comes in
							tmp.first = idx;
							tmp.second = j;
							tmp.third = Q[j].third;
							input.push_back(tmp);
							break;
						}
						// their might be a degenerate case that it equals to 0?
						else if (Q[j].third < 0) {		// flow comes out
							tmp.first = idx;
							tmp.second = j;
							tmp.third = -Q[j].third;
							output.push_back(tmp);
							break;
						}
					}
					else if (Q[j].second == idx) {		// ending vertex
						if (Q[j].third > 0) {			// flow comes in
							tmp.first = idx;
							tmp.second = j;
							tmp.third = Q[j].third;
							output.push_back(tmp);
							break;
						}
						// their might be a degenerate case that it equals to 0?
						else if (Q[j].third < 0) {		// flow comes out
							tmp.first = idx;
							tmp.second = j;
							tmp.third = -Q[j].third;
							input.push_back(tmp);
							break;
						}
					}
				}
			}
		}

		// build connection between all inlets and outlets
		// connection will trail along one axis around the bounding box
		void build_synthetic_connection(T viscosity, T radii = 5.0f) {
			
			stim::vec3<T> L = bb.A;						// get the bottom left corner
			stim::vec3<T> U = bb.B;						// get the top right corner
			T box_length = U[0] - L[0];
			T x0, dx;

			stim::vec3<T> tmp_v;						// start vertex
			stim::vec3<T> mid_v;						// middle point of the bridge
			stim::vec3<T> bus_v;						// point on the bus
			x0 = main_feeder[0][0] + 100.0f;			// assume bus length is 210.0f
			for (unsigned i = 0; i < input.size(); i++) {
				
				tmp_v = V[input[i].first];
				dx = 200.0f * ((tmp_v[0] - L[0]) / box_length);		// the socket position depends on proximity
				bus_v = stim::vec3<T>(x0 - dx, main_feeder[0][1], tmp_v[2]);
				mid_v = stim::vec3<T>(x0 - dx, tmp_v[1], tmp_v[2]);

				stim::bridge<T> tmp_b;
				tmp_b.V.push_back(bus_v);
				tmp_b.V.push_back(mid_v);
				tmp_b.V.push_back(tmp_v);
				tmp_b.v.push_back(input[i].first);
				tmp_b.Q = input[i].third;
				tmp_b.l = (bus_v - mid_v).len() + (mid_v - tmp_v).len();
				tmp_b.r = radii;

				inlet.push_back(tmp_b);
			}

			x0 = main_feeder[1][0] - 100.0f;
			for (unsigned i = 0; i < output.size(); i++) {

				tmp_v = V[output[i].first];
				dx = 200.0f * ((U[0] - tmp_v[0]) / box_length);		// the socket position depends on proximity
				bus_v = stim::vec3<T>(x0 + dx, main_feeder[1][1], tmp_v[2]);
				mid_v = stim::vec3<T>(x0 + dx, tmp_v[1], tmp_v[2]);

				stim::bridge<T> tmp_b;
				tmp_b.V.push_back(bus_v);
				tmp_b.V.push_back(mid_v);
				tmp_b.V.push_back(tmp_v);
				tmp_b.v.push_back(output[i].first);
				tmp_b.Q = output[i].third;
				tmp_b.l = (bus_v - mid_v).len() + (mid_v - tmp_v).len();
				tmp_b.r = radii;

				outlet.push_back(tmp_b);
			}
		}

		// automatically modify bridge to make it feasible
		void modify_synthetic_connection(T viscosity, T rou, T radii = 5.0f) {
			
			// because of radii change at the port vertex, there will be a pressure drop at that port
			// it follows the bernoulli equation
			// p1 + 1/2*rou*v1^2 + rou*g*h1 = p2 + 1/2*rou*v2^2 + rou*g*h2
			// Q1 = Q2 -> v1*r1^2 = v2*r2^2
			std::vector<T> new_pressure = pressure;
			unsigned idx;
			for (unsigned i = 0; i < pendant_vertex.size(); i++) {
				idx = pendant_vertex[i];
				T tmp_v = get_velocity(idx);			// velocity at that pendant vertex
				T ar = get_radius(idx) / radii;
				new_pressure[idx] = pressure[idx] + 1.0f / 2.0f * rou * std::pow(tmp_v, 2) * (1.0f - std::pow(ar, 4));
			}

			// increase r -> increase Q -> decrease l
			// find maximum pressure inlet port
			T source_pressure = FLT_MIN;	// source pressure
			unsigned inlet_index;
			T tmp_p;
			for (unsigned i = 0; i < inlet.size(); i++) {
				tmp_p = new_pressure[inlet[i].v[0]] + ((8 * viscosity * inlet[i].l * inlet[i].Q) / ((float)stim::PI * std::pow(radii, 4)));
				if (tmp_p > source_pressure) {
					source_pressure = tmp_p;
					inlet_index = i;
				}
			}

			// automatically modify inlet bridge to make it feasible
			bool upper = false;						// flag indicates the whether the port is upper than main feeder
			bool invert = false;					// there are two version of hilbert curve depends on starting position with respect to the cup
			T new_l;
			stim::vec3<T> bus_v;					// the port point on the bus
			stim::vec3<T> mid_v;					// the original corner point
			stim::vec3<T> tmp_v;					// the pendant point
			int order = 0;							// order of hilbert curve (iteration)
			for (unsigned i = 0; i < inlet.size(); i++) {
				if (i != inlet_index) {
					new_l = (source_pressure - new_pressure[inlet[i].v[0]]) * ((float)stim::PI * std::pow(radii, 4)) / (8 * viscosity * inlet[i].Q);

					if (inlet[i].V[2][1] > main_feeder[0][1]) {		// check out upper side of lower side
						upper = true;
						invert = false;
					}
					else {
						upper = false;
						invert = true;
					}

					T origin_l = (inlet[i].V[1] - inlet[i].V[2]).len();
					T desire_l = new_l - (inlet[i].V[0] - inlet[i].V[1]).len();
					find_hilbert_order(origin_l, desire_l, order);

					bus_v = inlet[i].V[0];
					mid_v = inlet[i].V[1];
					tmp_v = inlet[i].V[2];
					inlet[i].V.clear();
					inlet[i].V.push_back(tmp_v);
					inlet[i].l = new_l;

					if (desire_l - origin_l < 2 * radii) {	// do not need to use hilbert curve, just increase the length by draging out
						T d = new_l - inlet[i].l;
						stim::vec3<T> corner = stim::vec3<T>(tmp_v[0], tmp_v[1] + d / 2.0f * (tmp_v[1] > main_feeder[0][1] ? 1 : -1), tmp_v[2]);
						inlet[i].V.push_back(corner);
						corner = stim::vec3<T>(mid_v[0], mid_v[1] + d / 2.0f * (tmp_v[1] > main_feeder[0][1] ? 1 : -1), mid_v[2]);
						inlet[i].V.push_back(corner);
						inlet[i].V.push_back(bus_v);
					}
					else {
						T fragment = (desire_l - origin_l) / ((std::pow(4, order) - 1) / (std::pow(2, order) - 1) - 1);	// the length of the opening of cup 		
						T dl = fragment / (std::pow(2, order) - 1);											// unit cup length

						if (dl > 2 * radii) {				// if the radii is feasible
							if (upper)
								hilbert_curve(i, &tmp_v[0], order, dl, 1, invert, DOWN);
							else
								hilbert_curve(i, &tmp_v[0], order, dl, 1, invert, UP);

							if (tmp_v[0] != mid_v[0])
								inlet[i].V.push_back(mid_v);
							inlet[i].V.push_back(bus_v);
						}
						else {								// if the radii is not feasible
							int count = 1;
							while (dl <= 2 * radii) {
								dl = origin_l / (std::pow(2, order - count) - 1);
								count++;
							}
							count--;

							if (upper)
								hilbert_curve(i, &tmp_v[0], order - count, dl, 1, invert, DOWN);
							else
								hilbert_curve(i, &tmp_v[0], order - count, dl, 1, invert, UP);

							desire_l -= origin_l * ((std::pow(4, order - count) - 1) / (std::pow(2, order - count) - 1));
							origin_l = (bus_v - mid_v).len();
							desire_l += origin_l;

							find_hilbert_order(origin_l, desire_l, order);

							fragment = (desire_l - origin_l) / ((std::pow(4, order) - 1) / (std::pow(2, order) - 1) - 1);
							dl = fragment / (std::pow(2, order) - 1);
							if (dl < 2 * radii)
								std::cout << "infeasible connection between inlets!" << std::endl;

							if (upper)
								hilbert_curve(i, &tmp_v[0], order, dl, 1, !invert, RIGHT);
							else
								hilbert_curve(i, &tmp_v[0], order, dl, 1, !invert, RIGHT);

							if (tmp_v[1] != bus_v[1])
								inlet[i].V.push_back(bus_v);
						}
					}
					std::reverse(inlet[i].V.begin(), inlet[i].V.end());			// from bus to pendant vertex
				}
			}

			// find minimum pressure outlet port
			source_pressure = FLT_MAX;
			unsigned outlet_index;
			for (unsigned i = 0; i < outlet.size(); i++) {
				tmp_p = new_pressure[outlet[i].v[0]] - ((8 * viscosity * outlet[i].l * outlet[i].Q) / ((float)stim::PI * std::pow(radii, 4)));
				if (tmp_p < source_pressure) {
					source_pressure = tmp_p;
					outlet_index = i;
				}
			}

			// automatically modify outlet bridge to make it feasible
			for (unsigned i = 0; i < outlet.size(); i++) {
				if (i != outlet_index) {
					new_l = (new_pressure[outlet[i].v[0]] - source_pressure) * ((float)stim::PI * std::pow(radii, 4)) / (8 * viscosity * outlet[i].Q);

					if (outlet[i].V[2][1] > main_feeder[1][1]) {
						upper = true;
						invert = true;
					}
					else {
						upper = false;
						invert = false;
					}

					T origin_l = (outlet[i].V[1] - outlet[i].V[2]).len();
					T desire_l = new_l - (outlet[i].V[0] - outlet[i].V[1]).len();
					find_hilbert_order(origin_l, desire_l, order);

					bus_v = outlet[i].V[0];
					mid_v = outlet[i].V[1];
					tmp_v = outlet[i].V[2];
					outlet[i].V.clear();
					outlet[i].V.push_back(tmp_v);
					outlet[i].l = new_l;

					if (desire_l - origin_l < 2 * radii) {	// do not need to use hilbert curve, just increase the length by draging out
						T d = new_l - outlet[i].l;
						stim::vec3<T> corner = stim::vec3<T>(tmp_v[0], tmp_v[1] + d / 2.0f * (tmp_v[1] > main_feeder[0][1] ? 1 : -1), tmp_v[2]);
						outlet[i].V.push_back(corner);
						corner = stim::vec3<T>(mid_v[0], mid_v[1] + d / 2.0f * (tmp_v[1] > main_feeder[0][1] ? 1 : -1), mid_v[2]);
						outlet[i].V.push_back(corner);
						outlet[i].V.push_back(bus_v);
					}
					else {
						T fragment = (desire_l - origin_l) / ((std::pow(4, order) - 1) / (std::pow(2, order) - 1) - 1);	// the length of the opening of cup 		
						T dl = fragment / (std::pow(2, order) - 1);											// unit cup length

						if (dl > 2 * radii) {				// if the radii is feasible
							if (upper)
								hilbert_curve(i, &tmp_v[0], order, dl, 0, invert, DOWN);
							else
								hilbert_curve(i, &tmp_v[0], order, dl, 0, invert, UP);

							if (tmp_v[0] != mid_v[0])
								outlet[i].V.push_back(mid_v);
							outlet[i].V.push_back(bus_v);
						}
						else {								// if the radii is not feasible
							int count = 1;
							while (dl <= 2 * radii) {
								dl = origin_l / (std::pow(2, order - count) - 1);
								count++;
							}
							count--;

							if (upper)
								hilbert_curve(i, &tmp_v[0], order - count, dl, 0, invert, DOWN);
							else
								hilbert_curve(i, &tmp_v[0], order - count, dl, 0, invert, UP);

							desire_l -= origin_l * ((std::pow(4, order - count) - 1) / (std::pow(2, order - count) - 1));
							origin_l = (bus_v - mid_v).len();
							desire_l += origin_l;

							find_hilbert_order(origin_l, desire_l, order);

							fragment = (desire_l - origin_l) / ((std::pow(4, order) - 1) / (std::pow(2, order) - 1) - 1);
							dl = fragment / (std::pow(2, order) - 1);
							if (dl < 2 * radii)
								std::cout << "infeasible connection between outlets!" << std::endl;

							if (upper)
								hilbert_curve(i, &tmp_v[0], order, dl, 0, !invert, LEFT);
							else
								hilbert_curve(i, &tmp_v[0], order, dl, 0, !invert, LEFT);

							if (tmp_v[1] != bus_v[1])
								outlet[i].V.push_back(bus_v);
						}
					}
					std::reverse(outlet[i].V.begin(), outlet[i].V.end());
				}
			}
		}

		// check current bridge to see feasibility
		void check_synthetic_connection(T viscosity, T radii = 5.0f) {
			
			T eps = 0.01f;
			T source_pressure = pressure[inlet[0].v[0]] + (8 * viscosity * inlet[0].l * inlet[0].Q) / ((float)stim::PI * std::pow(radii, 4));
			T tmp_p;
			for (unsigned i = 1; i < inlet.size(); i++) {
				tmp_p = pressure[inlet[i].v[0]] + (8 * viscosity * inlet[i].l * inlet[i].Q) / ((float)stim::PI * std::pow(radii, 4));
				T delta = fabs(tmp_p - source_pressure);
				if (delta > eps) {
					std::cout << "Nonfeasible connection!" << std::endl;
					break;
				}
			}
			source_pressure = pressure[outlet[0].v[0]] - (8 * viscosity * outlet[0].l * outlet[0].Q) / ((float)stim::PI * std::pow(radii, 4));
			for (unsigned i = 1; i < outlet.size(); i++) {
				tmp_p = pressure[outlet[i].v[0]] - (8 * viscosity * outlet[i].l * outlet[i].Q) / ((float)stim::PI * std::pow(radii, 4));
				T delta = fabs(tmp_p - source_pressure);
				if (delta > eps) {
					std::cout << "Nonfeasible connection!" << std::endl;
					break;
				}
			}
		}

		/// make binary image stack
		// prepare for image stack
		void preparation(T &Xl, T &Xr, T &Yt, T &Yb, T &Z, T length = 210.0f, T height = 10.0f) {
			
			T max_radii = 0.0f;
			T top = FLT_MIN;
			T bottom = FLT_MAX;

			// clear up last time result
			A.clear();
			B.clear();
			CU.clear();

			// firstly push back the original network
			stim::sphere<T> new_sphere;
			stim::cone<T> new_cone;
			stim::cuboid<T> new_cuboid;

			// take every source bus as cuboid
			new_cuboid.c = main_feeder[0];
			new_cuboid.l = length;
			new_cuboid.w = bb.B[2] - bb.A[2] + 10.0f;
			new_cuboid.h = height;
			CU.push_back(new_cuboid);
			new_cuboid.c = main_feeder[1];
			CU.push_back(new_cuboid);

			// take every point as sphere, every line as cone
			for (unsigned i = 0; i < num_edge; i++) {
				for (unsigned j = 0; j < E[i].size(); j++) {
					new_sphere.c = E[i][j];
					new_sphere.r = E[i].r(j);
					A.push_back(new_sphere);
					if (j != E[i].size() - 1) {
						new_cone.c1 = E[i][j];
						new_cone.c2 = E[i][j + 1];
						new_cone.r1 = E[i].r(j);
						new_cone.r2 = E[i].r(j + 1);
						B.push_back(new_cone);
					}
				}
			}

			// secondly push back outside connection
			for (unsigned i = 0; i < inlet.size(); i++) {
				for (unsigned j = 1; j < inlet[i].V.size() - 1; j++) {
					new_sphere.c = inlet[i].V[j];
					new_sphere.r = inlet[i].r;
					A.push_back(new_sphere);
				}
			}
			for (unsigned i = 0; i < outlet.size(); i++) {
				for (unsigned j = 1; j < outlet[i].V.size() - 1; j++) {
					new_sphere.c = outlet[i].V[j];
					new_sphere.r = outlet[i].r;
					A.push_back(new_sphere);
				}
			}

			for (unsigned i = 0; i < inlet.size(); i++) {
				for (unsigned j = 0; j < inlet[i].V.size() - 1; j++) {
					new_cone.c1 = inlet[i].V[j];
					new_cone.c2 = inlet[i].V[j + 1];
					new_cone.r1 = inlet[i].r;
					new_cone.r2 = inlet[i].r;
					B.push_back(new_cone);
				}
			}
			for (unsigned i = 0; i < outlet.size(); i++) {
				for (unsigned j = 0; j < outlet[i].V.size() - 1; j++) {
					new_cone.c1 = outlet[i].V[j];
					new_cone.c2 = outlet[i].V[j + 1];
					new_cone.r1 = outlet[i].r;
					new_cone.r2 = outlet[i].r;
					B.push_back(new_cone);
				}
			}

			// find out the image stack size
			Xl = main_feeder[0][0] - length / 2;			// left bound x coordinate
			Xr = main_feeder[1][0] + length / 2;			// right bound x coordinate

			for (unsigned i = 0; i < A.size(); i++) {
				if (A[i].c[1] > top)
					top = A[i].c[1];
				if (A[i].c[1] < bottom)
					bottom = A[i].c[1];
				if (A[i].r > max_radii)
					max_radii = A[i].r;
			}

			Yt = top;										// top bound y coordinate
			Yb = bottom;									// bottom bound y coordinate
			Z = (bb.B[2] - bb.A[2] + 2 * max_radii);		// bounding box width(along z-axis)
		}

		/// making image stack main function
		void make_image_stack(T dx, T dy, T dz, std::string stackdir, T radii = 5.0f) {
			
			/// preparation for making image stack
			T X, Xl, Xr, Y, Yt, Yb, Z;
			preparation(Xl, Xr, Yt, Yb, Z);
			X = Xr - Xl;								// bounding box length(along x-axis)
			Y = Yt - Yb;								// bounding box height(along y-axis)

			/// make
			stim::image_stack<unsigned char, T> I;
			T size_x, size_y, size_z;

			stim::vec3<T> center = bb.center();			// get the center of bounding box

			size_x = X / dx + 1;						// set the size of image
			size_y = Y / dy + 1;
			size_z = Z / dz + 1;

			///  initialize image stack object
			I.init(1, size_x, size_y, size_z);
			I.set_dim(dx, dy, dz);

			// because of lack of memory, we have to computer one slice of stack per time
			// allocate vertex, edge and bus
			stim::sphere<T> *d_V;
			stim::cone<T> *d_E;
			stim::cuboid<T> *d_B;

			HANDLE_ERROR(cudaMalloc((void**)&d_V, A.size() * sizeof(stim::sphere<T>)));
			HANDLE_ERROR(cudaMalloc((void**)&d_E, B.size() * sizeof(stim::cone<T>)));
			HANDLE_ERROR(cudaMalloc((void**)&d_B, CU.size() * sizeof(stim::cuboid<T>)));
			HANDLE_ERROR(cudaMemcpy(d_V, &A[0], A.size() * sizeof(stim::sphere<T>), cudaMemcpyHostToDevice));
			HANDLE_ERROR(cudaMemcpy(d_E, &B[0], B.size() * sizeof(stim::cone<T>), cudaMemcpyHostToDevice));
			HANDLE_ERROR(cudaMemcpy(d_B, &CU[0], CU.size() * sizeof(stim::cuboid<T>), cudaMemcpyHostToDevice));

			// allocate image stack information memory
			size_t* d_R;
			T *d_S;

			size_t* R = (size_t*)malloc(4 * sizeof(size_t));	// size in 4 dimension
			R[0] = 1;
			R[1] = (size_t)size_x;
			R[2] = (size_t)size_y;
			R[3] = (size_t)size_z;
			T *S = (T*)malloc(4 * sizeof(T));					// spacing in 4 dimension
			S[0] = 1.0f;
			S[1] = dx;
			S[2] = dy;
			S[3] = dz;
			size_t num = size_x * size_y;

			HANDLE_ERROR(cudaMalloc((void**)&d_R, 4 * sizeof(size_t)));
			HANDLE_ERROR(cudaMalloc((void**)&d_S, 4 * sizeof(T)));
			HANDLE_ERROR(cudaMemcpy(d_R, R, 4 * sizeof(size_t), cudaMemcpyHostToDevice));
			HANDLE_ERROR(cudaMemcpy(d_S, S, 4 * sizeof(T), cudaMemcpyHostToDevice));

			// for every slice of image
			unsigned p = 0;																// percentage of progress
			for (unsigned i = 0; i < size_z; i++) {

				int x = 0 - (int)Xl;					// translate whole network(including inlet/outlet) to origin
				int y = 0 - (int)Yb;
				int z = i + (int)center[2];				// box symmetric along z-axis
				// allocate image slice memory
				unsigned char* d_ptr;
				unsigned char* ptr = (unsigned char*)malloc(num * sizeof(unsigned char));
				memset(ptr, 0, num * sizeof(unsigned char));

				HANDLE_ERROR(cudaMalloc((void**)&d_ptr, num * sizeof(unsigned char)));

				cudaDeviceProp prop;
				cudaGetDeviceProperties(&prop, 0);										// get cuda device properties structure
				size_t max_thread = sqrt(prop.maxThreadsPerBlock);						// get the maximum number of thread per block

				dim3 block(size_x / max_thread + 1, size_y / max_thread + 1);
				dim3 thread(max_thread, max_thread);
				inside_sphere << <block, thread >> > (d_V, A.size(), d_R, d_S, d_ptr, x, y, z);
				cudaDeviceSynchronize();
				inside_cone << <block, thread >> > (d_E, B.size(), d_R, d_S, d_ptr, x, y, z);
				cudaDeviceSynchronize();
				inside_cuboid << <block, thread >> > (d_B, CU.size(), d_R, d_S, d_ptr, x, y, z);

				HANDLE_ERROR(cudaMemcpy(ptr, d_ptr, num * sizeof(unsigned char), cudaMemcpyDeviceToHost));

				I.set(ptr, i);

				free(ptr);
				HANDLE_ERROR(cudaFree(d_ptr));

				// print progress bar
				p = (float)(i + 1) / (float)size_z * 100;
				rtsProgressBar(p);
			}

			// clear up
			free(R);
			free(S);
			HANDLE_ERROR(cudaFree(d_R));
			HANDLE_ERROR(cudaFree(d_S));
			HANDLE_ERROR(cudaFree(d_V));
			HANDLE_ERROR(cudaFree(d_E));
			HANDLE_ERROR(cudaFree(d_B));

			if (stackdir == "")
				I.save_images("image????.bmp");
			else
				I.save_images(stackdir + "/image????.bmp");
		}

		/// Calculate the inverse of A and store the result in C
		void inversion(T** A, int order, T* C) {

#ifdef __CUDACC__

			// convert from double pointer to single pointer, make it flat
			T* Aflat = (T*)malloc(order * order * sizeof(T));
			for (unsigned i = 0; i < order; i++)
				for (unsigned j = 0; j < order; j++)
					Aflat[i * order + j] = A[i][j];

			// create device pointer
			T* d_Aflat;		// flat original matrix
			T* d_Cflat;	// flat inverse matrix
			T** d_A;		// put the flat original matrix into another array of pointer
			T** d_C;
			int *d_P;
			int *d_INFO;

			// allocate memory on device
			HANDLE_ERROR(cudaMalloc((void**)&d_Aflat, order * order * sizeof(T)));
			HANDLE_ERROR(cudaMalloc((void**)&d_Cflat, order * order * sizeof(T)));
			HANDLE_ERROR(cudaMalloc((void**)&d_A, sizeof(T*)));
			HANDLE_ERROR(cudaMalloc((void**)&d_C, sizeof(T*)));
			HANDLE_ERROR(cudaMalloc((void**)&d_P, order * 1 * sizeof(int)));
			HANDLE_ERROR(cudaMalloc((void**)&d_INFO, 1 * sizeof(int)));

			// copy matrix from host to device
			HANDLE_ERROR(cudaMemcpy(d_Aflat, Aflat, order * order * sizeof(T), cudaMemcpyHostToDevice));

			// copy matrix from device to device
			HANDLE_ERROR(cudaMemcpy(d_A, &d_Aflat, sizeof(T*), cudaMemcpyHostToDevice));
			HANDLE_ERROR(cudaMemcpy(d_C, &d_Cflat, sizeof(T*), cudaMemcpyHostToDevice));

			// calculate the inverse of matrix based on cuBLAS
			cublasHandle_t handle;
			CUBLAS_HANDLE_ERROR(cublasCreate_v2(&handle));	// create cuBLAS handle object

			CUBLAS_HANDLE_ERROR(cublasSgetrfBatched(handle, order, d_A, order, d_P, d_INFO, 1));

			int INFO = 0;
			HANDLE_ERROR(cudaMemcpy(&INFO, d_INFO, sizeof(int), cudaMemcpyDeviceToHost));
			if (INFO == order)
			{
				std::cout << "Factorization Failed : Matrix is singular." << std::endl;
				cudaDeviceReset();
				exit(1);
			}

			CUBLAS_HANDLE_ERROR(cublasSgetriBatched(handle, order, (const T **)d_A, order, d_P, d_C, order, d_INFO, 1));

			CUBLAS_HANDLE_ERROR(cublasDestroy_v2(handle));

			// copy inverse matrix from device to device
			HANDLE_ERROR(cudaMemcpy(&d_Cflat, d_C, sizeof(T*), cudaMemcpyDeviceToHost));

			// copy inverse matrix from device to host
			HANDLE_ERROR(cudaMemcpy(C, d_Cflat, order * order * sizeof(T), cudaMemcpyDeviceToHost));

			// clear up
			free(Aflat);
			HANDLE_ERROR(cudaFree(d_Aflat));
			HANDLE_ERROR(cudaFree(d_Cflat));
			HANDLE_ERROR(cudaFree(d_A));
			HANDLE_ERROR(cudaFree(d_C));
			HANDLE_ERROR(cudaFree(d_P));
			HANDLE_ERROR(cudaFree(d_INFO));

#else
			// get the determinant of a
			double det = 1.0 / determinant(A, order);

			// memory allocation
			T* tmp = (T*)malloc((order - 1)*(order - 1) * sizeof(T));
			T** minor = (T**)malloc((order - 1) * sizeof(T*));
			for (int i = 0; i < order - 1; i++)
				minor[i] = tmp + (i * (order - 1));

			for (int j = 0; j < order; j++) {
				for (int i = 0; i < order; i++) {
					// get the co-factor (matrix) of A(j,i)
					get_minor(A, minor, j, i, order);
					C[i][j] = det * determinant(minor, order - 1);
					if ((i + j) % 2 == 1)
						C[i][j] = -C[i][j];
				}
			}

			// release memory
			free(tmp);
			free(minor);
#endif
		}
	};
}

#endif