main.cu
31.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
#include <stdlib.h>
#include <string>
#include <fstream>
#include <algorithm>
// CUDA include
#ifdef __CUDACC__
#include "device_launch_parameters.h"
#include <cuda.h>
#include <cuda_runtime_api.h>
#include "cuda_runtime.h"
#endif
// OPENGL include
#include <GL/glut.h>
#include <GL/freeglut.h>
#include "flow.h"
// STIM include
#include <stim/visualization/gl_aaboundingbox.h>
#include <stim/parser/arguments.h>
#include <stim/visualization/camera.h>
#include <stim/visualization/colormap.h>
#include <stim/cuda/cudatools/error.h>
//********************parameter setting********************
// overall parameters
int vX, vY;
float dx, dy, dz; // x, y and z image scaling(units/pixel)
std::string stackdir = ""; // directory where image stacks will be stored
stim::arglist args; // create an instance of arglist
stim::gl_aaboundingbox<float> bb; // axis-aligned bounding box object
stim::camera cam; // camera object
unsigned num_edge; // number of edges in the network
unsigned num_vertex; // number of vertex in the network
std::vector<unsigned> pendant_vertex; // list of pendant vertex index in GT
std::vector<std::string> menu_option = { "simulation", "build inlet/outlet", "manufacture" };
stim::flow<float> flow; // flow object
float move_pace; // camera moving parameter
float u; // viscosity
float rou; // density
float max_v;
float min_v;
int mods; // special keyboard input
std::vector<unsigned char> color; // velocity color map
std::vector<int> velocity_bar; // velocity bar
float length = 40.0f; // cuboid length
float scale = 1.0f; // render scale factor
// hard-coded parameters
float camera_factor = 1.2f; // start point of the camera as a function of X and Y size
float orbit_factor = 0.01f; // degrees per pixel used to orbit the camera
float zoom_factor = 10.0f; // zooming factor
float border_factor = 20.0f; // border
float radii_factor = 1.0f; // radii changing factor
GLint subdivision = 20; // slices and stacks
float default_radius = 5.0f; // default radii of network vertex
float delta = 0.01f; // small discrepancy
float eps = 20.0f; // epsilon threshold
float max_pressure = 0.0f; // maximum pressure that the channel can bear
float height_threshold = 100.0f; // connection height constraint
float fragment_ratio = 0.0f; // fragment ratio
// glut event parameters
int mouse_x; // window x-coordinate
int mouse_y; // window y-coordinate
int picked_x; // picked window x-coordinate
int picked_y; // picked window y-coordinate
bool LTbutton = false; // true means down while false means up
// simulation parameters
bool render_direction = false; // flag indicates rendering flow direction for one edge
bool simulation = false; // flag indicates simulation mode
bool color_bound = false; // flag indicates velocity color map bound
bool to_select_pressure = false; // flag indicates having selected a vertex to modify pressure
bool mark_index = true; // flag indicates marking the index near the vertex
unsigned pressure_index; // the index of vertex that is clicked
unsigned direction_index = -1; // the index of edge that is pointed at
unsigned index_index = -1; // the index of the vertex
// build inlet/outlet parameters
bool build_inlet_outlet = false; // flag indicates building inlets and outlets
bool modified_bridge = false; // flag indicates having modified inlet/outlet connection
bool hilbert_curve = false; // flag indicates enabling hilbert curves constructions
bool change_fragment = false; // flag indicates changing fragment for square wave connections
bool picked_connection = false; // flag indicates picked one connection
bool render_new_connection = false; // flag indicates rendering new line connection in trasparency
bool redisplay = false; // flag indicates redisplay rendering
bool connection_done = false; // flag indicates finishing connections
unsigned connection_index = -1; // the index of connection that is picked
unsigned port_index = 0; // inlet (0) or outlet (1)
stim::vec3<float> tmp_v1, tmp_v2; // temp vertex
int coef; // computational coefficient factor
// manufacture parameters
bool manufacture = false; // flag indicates manufacture mode
//********************helper function*********************
// get the network basic information
inline void get_background() {
pendant_vertex = flow.get_boundary_vertex();
num_edge = flow.edges();
num_vertex = flow.vertices();
// set the initial radii
flow.init(num_edge, num_vertex); // initialize flow object
// if no radius information laoded
if (!flow.get_radius(0, 0))
for (unsigned i = 0; i < num_edge; i++)
flow.set_r(i, default_radius);
}
// convert from window coordinates to world coordinates
inline void window_to_world(GLdouble &x, GLdouble &y, GLdouble &z) {
GLint viewport[4];
GLdouble modelview[16];
GLdouble projection[16];
GLdouble winX, winY;
GLfloat winZ;
glGetIntegerv(GL_VIEWPORT, viewport);
glGetDoublev(GL_MODELVIEW_MATRIX, modelview);
glGetDoublev(GL_PROJECTION_MATRIX, projection);
winX = (GLdouble)mouse_x;
winY = viewport[3] - (GLdouble)mouse_y;
glReadPixels((GLint)winX, (GLint)winY, (GLsizei)1, (GLsizei)1, GL_DEPTH_COMPONENT, GL_FLOAT, &winZ);
gluUnProject(winX, winY, winZ, modelview, projection, viewport, &x, &y, &z);
}
//********************simulation function**********************
// initialize flow object
void flow_initialize() {
flow.set = true;
stim::vec3<float> center = bb.center();
for (unsigned i = 0; i < pendant_vertex.size(); i++) {
if (flow.get_vertex(pendant_vertex[i])[0] <= center[0])
flow.P[pendant_vertex[i]] = max_pressure - i * delta; // should set minor discrepancy
else
flow.P[pendant_vertex[i]] = (i + 1) * delta; // algorithm treat 0 as no initial pressure
}
}
// find the stable flow state
void flow_stable_state() {
flow.solve_flow(u);
flow.get_color_map(max_v, min_v, color, pendant_vertex);
color_bound = true;
velocity_bar.resize(num_edge);
for (unsigned i = 0; i < num_edge; i++)
velocity_bar[i] = i;
std::sort(velocity_bar.begin(), velocity_bar.end(), [&](int x, int y) {return abs(flow.v[x]) < abs(flow.v[y]); });
}
//********************glut function********************
// dynamically set menu
// @param num: number of current menu options
// @param range: range of option to be set from menu_option list
void glut_set_menu(int num, int range) {
// remove last time menu options
for (int i = 1; i < num + 1; i++)
glutRemoveMenuItem(1);
// set new menu options
std::string menu_name;
for (int i = 1; i < range + 1; i++) {
menu_name = menu_option[i - 1];
glutAddMenuEntry(menu_name.c_str(), i);
}
}
// set up the squash transform to whole screen
void glut_projection() {
glMatrixMode(GL_PROJECTION); // load the projection matrix for editing
glLoadIdentity(); // start with the identity matrix
vX = glutGet(GLUT_WINDOW_WIDTH); // use the whole screen for rendering
vY = glutGet(GLUT_WINDOW_HEIGHT);
glViewport(0, 0, vX, vY); // specify a viewport for the entire window
float aspect = (float)vX / (float)vY; // calculate the aspect ratio
gluPerspective(60, aspect, 0.1, 1000000); // set up a perspective projection
}
// translate camera to origin
void glut_modelview() {
glMatrixMode(GL_MODELVIEW); // load the modelview matrix for editing
glLoadIdentity(); // start with the identity matrix
stim::vec3<float> eye = cam.getPosition(); // get the camera position (eye point)
stim::vec3<float> focus = cam.getLookAt(); // get the camera focal point
stim::vec3<float> up = cam.getUp(); // get the camera "up" orientation
gluLookAt(eye[0], eye[1], eye[2], focus[0], focus[1], focus[2], up[0], up[1], up[2]); // set up the OpenGL camera
}
// glut render function
void glut_render() {
glEnable(GL_DEPTH_TEST);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glClearColor(1.0f, 1.0f, 1.0f, 1.0f);
glut_projection();
glut_modelview();
if (!simulation && !build_inlet_outlet || manufacture) {
glColor3f(0.0f, 0.0f, 0.0f);
flow.glCylinder0();
}
else {
flow.bounding_box();
flow.glSolidSphere(max_pressure, scale, subdivision);
if (mark_index)
flow.mark_vertex(scale);
//flow.glSolidCone(subdivision);
flow.glSolidCylinder(direction_index, color, scale, subdivision);
flow.glSolidCuboid(length);
if (render_direction)
flow.glSolidCone(direction_index, scale, subdivision);
}
if (build_inlet_outlet) {
flow.line_bridge(redisplay);
}
if (manufacture) {
flow.glSolidCuboid();
flow.tube_bridge(subdivision);
}
if (picked_connection && render_new_connection) {
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glColor4f(0.0f, 0.0f, 0.0f, 0.4f);
glBegin(GL_LINE_STRIP);
if (!port_index) {
glVertex3f(flow.inlet[connection_index].V[1][0], flow.inlet[connection_index].V[1][1], flow.inlet[connection_index].V[1][2]);
glVertex3f(tmp_v1[0], tmp_v1[1], tmp_v1[2]);
glVertex3f(tmp_v2[0], tmp_v2[1], tmp_v2[2]);
glVertex3f(flow.inlet[connection_index].V[2][0], flow.inlet[connection_index].V[2][1], flow.inlet[connection_index].V[2][2]);
}
else {
glVertex3f(flow.outlet[connection_index].V[1][0], flow.outlet[connection_index].V[1][1], flow.outlet[connection_index].V[1][2]);
glVertex3f(tmp_v1[0], tmp_v1[1], tmp_v1[2]);
glVertex3f(tmp_v2[0], tmp_v2[1], tmp_v2[2]);
glVertex3f(flow.outlet[connection_index].V[2][0], flow.outlet[connection_index].V[2][1], flow.outlet[connection_index].V[2][2]);
}
glEnd();
glFlush();
glDisable(GL_BLEND);
}
// render bars
// bring up a pressure bar on left
if (to_select_pressure) {
glMatrixMode(GL_PROJECTION); // set up the 2d viewport for mode text printing
glPushMatrix();
glLoadIdentity();
vX = glutGet(GLUT_WINDOW_WIDTH); // get the current window width
vY = glutGet(GLUT_WINDOW_HEIGHT); // get the current window height
glViewport(0, 0, vX, vY); // locate to left bottom corner
gluOrtho2D(0, vX, 0, vY); // define othogonal aspect
glMatrixMode(GL_MODELVIEW);
glPushMatrix();
glLoadIdentity();
glLineWidth(border_factor);
glBegin(GL_LINES);
glColor3f(0.0, 0.0, 1.0); // blue to red
glVertex2f(border_factor, border_factor);
glColor3f(1.0, 0.0, 0.0);
glVertex2f(border_factor, (vY - 2.0f * border_factor));
glEnd();
glFlush();
// pressure bar text
glColor3f(0.0f, 0.0f, 0.0f);
glRasterPos2f(0.0f, vY - border_factor);
std::stringstream ss_p;
ss_p << "Pressure Bar";
glutBitmapString(GLUT_BITMAP_HELVETICA_18, (const unsigned char*)(ss_p.str().c_str()));
// pressure range text
float step = vY - 3.0f * border_factor;
step /= 10;
for (unsigned i = 0; i < 11; i++) {
glRasterPos2f((border_factor * 1.5f), (border_factor + i * step));
std::stringstream ss_n;
ss_n << (float)i * max_pressure / 10;
glutBitmapString(GLUT_BITMAP_HELVETICA_18, (const unsigned char*)(ss_n.str().c_str()));
}
glPopMatrix();
glMatrixMode(GL_PROJECTION);
glPopMatrix();
}
// bring up a velocity bar on left
if (simulation && !to_select_pressure) {
glMatrixMode(GL_PROJECTION); // set up the 2d viewport for mode text printing
glPushMatrix();
glLoadIdentity();
vX = glutGet(GLUT_WINDOW_WIDTH); // get the current window width
vY = glutGet(GLUT_WINDOW_HEIGHT); // get the current window height
glViewport(0, 0, vX, vY); // locate to left bottom corner
gluOrtho2D(0, vX, 0, vY); // define othogonal aspect
glMatrixMode(GL_MODELVIEW);
glPushMatrix();
glLoadIdentity();
float step = (vY - 3 * border_factor);
step /= BREWER_CTRL_PTS - 1;
for (unsigned i = 0; i < BREWER_CTRL_PTS - 1; i++) {
glLineWidth(border_factor);
glBegin(GL_LINES);
glColor3f(BREWERCP[i * 4 + 0], BREWERCP[i * 4 + 1], BREWERCP[i * 4 + 2]);
glVertex2f(border_factor, border_factor + i * step);
glColor3f(BREWERCP[(i + 1) * 4 + 0], BREWERCP[(i + 1) * 4 + 1], BREWERCP[(i + 1) * 4 + 2]);
glVertex2f(border_factor, border_factor + (i + 1) * step);
glEnd();
}
glFlush();
// pressure bar text
glColor3f(0.0f, 0.0f, 0.0f);
glRasterPos2f(0.0f, vY - border_factor);
std::stringstream ss_p;
ss_p << "Velocity range";
glutBitmapString(GLUT_BITMAP_HELVETICA_18, (const unsigned char*)(ss_p.str().c_str()));
// pressure range text
step = vY - 3 * border_factor;
step /= 10;
for (unsigned i = 0; i < 11; i++) {
glRasterPos2f(border_factor * 1.5f, border_factor + i * step);
std::stringstream ss_n;
ss_n << min_v + i * (max_v - min_v) / 10;
glutBitmapString(GLUT_BITMAP_HELVETICA_18, (const unsigned char*)(ss_n.str().c_str()));
}
glPopMatrix();
glMatrixMode(GL_PROJECTION);
glPopMatrix();
}
// bring up a ratio bar on the left
if (change_fragment) {
glMatrixMode(GL_PROJECTION); // set up the 2d viewport for mode text printing
glPushMatrix();
glLoadIdentity();
vX = glutGet(GLUT_WINDOW_WIDTH); // get the current window width
vY = glutGet(GLUT_WINDOW_HEIGHT); // get the current window height
glViewport(0, 0, vX, vY); // locate to left bottom corner
gluOrtho2D(0, vX, 0, vY); // define othogonal aspect
glMatrixMode(GL_MODELVIEW);
glPushMatrix();
glLoadIdentity();
glLineWidth(border_factor);
glBegin(GL_LINES);
glColor3f(0.0, 0.0, 1.0); // blue to red
glVertex2f(border_factor, border_factor);
glColor3f(1.0, 0.0, 0.0);
glVertex2f(border_factor, (vY - 2.0f * border_factor));
glEnd();
glFlush();
// pressure bar text
glColor3f(0.0f, 0.0f, 0.0f);
glRasterPos2f(0.0f, vY - border_factor);
std::stringstream ss_p;
ss_p << "Ratio bar";
glutBitmapString(GLUT_BITMAP_HELVETICA_18, (const unsigned char*)(ss_p.str().c_str()));
// pressure range text
float step = vY - 3.0f * border_factor;
step /= 10;
for (unsigned i = 0; i < 11; i++) {
glRasterPos2f((border_factor * 1.5f), (border_factor + i * step));
std::stringstream ss_n;
ss_n << (float)i * 1.0f / 10;
glutBitmapString(GLUT_BITMAP_HELVETICA_18, (const unsigned char*)(ss_n.str().c_str()));
}
glPopMatrix();
glMatrixMode(GL_PROJECTION);
glPopMatrix();
}
glutSwapBuffers();
}
// register glut menu options
void glut_menu(int value) {
int num = glutGet(GLUT_MENU_NUM_ITEMS);
if (value == 1) {
simulation = true;
build_inlet_outlet = false;
manufacture = false;
modified_bridge = false;
connection_done = false;
// first time
if (!flow.set) {
flow_initialize();
menu_option[0] = "resimulation";
}
// simulation / resimulation
flow_stable_state(); // main function of solving the linear system
flow.print_flow();
glut_set_menu(num, 2);
}
if (value == 2) {
simulation = false;
build_inlet_outlet = true;
manufacture = false;
if (!modified_bridge && !connection_done) {
flow.set_main_feeder();
flow.build_synthetic_connection(u, default_radius);
flow.check_direct_connection(); // check whether direct connections intersect each other
connection_done = true;
}
else if (modified_bridge) {
modified_bridge = false;
redisplay = true;
flow.clear_synthetic_connection();
}
glut_set_menu(num, 3);
}
if (value == 3) {
simulation = false;
build_inlet_outlet = false;
manufacture = true;
}
glutPostRedisplay();
}
// defines camera motion based on mouse dragging
void glut_motion(int x, int y) {
mods = glutGetModifiers();
if (LTbutton && mods == 0) {
float theta = orbit_factor * (mouse_x - x); // determine the number of degrees along the x-axis to rotate
float phi = orbit_factor * (y - mouse_y); // number of degrees along the y-axis to rotate
cam.OrbitFocus(theta, phi); // rotate the camera around the focal point
}
mouse_x = x; // update the mouse position
mouse_y = y;
glutPostRedisplay(); // re-draw the visualization
}
// defines passive mouse motion function
void glut_passive_motion(int x, int y) {
mods = glutGetModifiers();
// check whether the mouse point near to an edge
GLdouble posX, posY, posZ;
window_to_world(posX, posY, posZ); // get the world coordinates
if (simulation || build_inlet_outlet && !mods) {
bool flag = flow.epsilon_edge((float)posX, (float)posY, (float)posZ, eps, direction_index);
if (flag)
render_direction = true;
else {
if (render_direction) // if the direction is displaying currently, do a short delay
Sleep(300);
render_direction = false;
direction_index = -1;
}
}
if (mods == GLUT_ACTIVE_SHIFT && picked_connection) {
render_new_connection = true;
unsigned i;
if (!port_index) {
tmp_v1 = stim::vec3<float>(flow.inlet[connection_index].V[1][0], flow.inlet[connection_index].V[1][1] + (float)(picked_y - y), flow.inlet[connection_index].V[1][2]);
tmp_v2 = stim::vec3<float>(flow.inlet[connection_index].V[2][0], flow.inlet[connection_index].V[2][1] + (float)(picked_y - y), flow.inlet[connection_index].V[2][2]);
i = flow.inlet[connection_index].V.size();
if (coef * tmp_v1[1] < coef * flow.inlet[connection_index].V[i - 1][1]) {
tmp_v1[1] = flow.inlet[connection_index].V[i - 1][1];
tmp_v2[1] = flow.inlet[connection_index].V[i - 1][1];
}
}
else {
tmp_v1 = stim::vec3<float>(flow.outlet[connection_index].V[1][0], flow.outlet[connection_index].V[1][1] + (float)(picked_y - y), flow.outlet[connection_index].V[1][2]);
tmp_v2 = stim::vec3<float>(flow.outlet[connection_index].V[2][0], flow.outlet[connection_index].V[2][1] + (float)(picked_y - y), flow.outlet[connection_index].V[2][2]);
i = flow.outlet[connection_index].V.size();
if (coef * tmp_v1[1] < coef * flow.outlet[connection_index].V[i - 1][1]) {
tmp_v1[1] = flow.outlet[connection_index].V[i - 1][1];
tmp_v2[1] = flow.outlet[connection_index].V[i - 1][1];
}
}
}
else if (mods == GLUT_ACTIVE_CTRL && picked_connection) {
render_new_connection = true;
if (!port_index) {
tmp_v1 = stim::vec3<float>(flow.inlet[connection_index].V[0][0] + (float)(x - picked_x), flow.inlet[connection_index].V[0][1], flow.inlet[connection_index].V[0][2]);
tmp_v2 = stim::vec3<float>(flow.inlet[connection_index].V[1][0] + (float)(x - picked_x), flow.inlet[connection_index].V[1][1], flow.inlet[connection_index].V[1][2]);
if (tmp_v1[0] < flow.main_feeder[port_index][0] - length / 2) {
tmp_v1[0] = flow.main_feeder[port_index][0] - length / 2;
tmp_v2[0] = flow.main_feeder[port_index][0] - length / 2;
}
else if (tmp_v1[0] > flow.main_feeder[port_index][0] + length / 2) {
tmp_v1[0] = flow.main_feeder[port_index][0] + length / 2;
tmp_v2[0] = flow.main_feeder[port_index][0] + length / 2;
}
}
else {
tmp_v1 = stim::vec3<float>(flow.outlet[connection_index].V[0][0] + (float)(x - picked_x), flow.outlet[connection_index].V[0][1], flow.outlet[connection_index].V[0][2]);
tmp_v2 = stim::vec3<float>(flow.outlet[connection_index].V[1][0] + (float)(x - picked_x), flow.outlet[connection_index].V[1][1], flow.outlet[connection_index].V[1][2]);
if (tmp_v1[0] > flow.main_feeder[port_index][0] + length / 2) {
tmp_v1[0] = flow.main_feeder[port_index][0] + length / 2;
tmp_v2[0] = flow.main_feeder[port_index][0] + length / 2;
}
else if (tmp_v1[0] < flow.main_feeder[port_index][0] - length / 2) {
tmp_v1[0] = flow.main_feeder[port_index][0] - length / 2;
tmp_v2[0] = flow.main_feeder[port_index][0] - length / 2;
}
}
}
else
render_new_connection = false;
mouse_x = x;
mouse_y = y;
glutPostRedisplay(); // re-draw the visualization
}
// get click window coordinates
void glut_mouse(int button, int state, int x, int y) {
mods = glutGetModifiers(); // get special keyboard input
mouse_x = x;
mouse_y = y;
if (!mods) {
picked_connection = false;
render_new_connection = false;
}
if (button == GLUT_LEFT_BUTTON && state == GLUT_DOWN)
LTbutton = true;
else if (button == GLUT_LEFT_BUTTON && state == GLUT_UP)
LTbutton = false;
if (button == GLUT_LEFT_BUTTON && state == GLUT_DOWN && !mods && simulation && !to_select_pressure) {
GLdouble posX, posY, posZ;
window_to_world(posX, posY, posZ); // get the world coordinates
bool flag = flow.epsilon_vertex((float)posX, (float)posY, (float)posZ, eps, scale, pressure_index);
if (flag) {
std::vector<unsigned>::iterator it = std::find(pendant_vertex.begin(), pendant_vertex.end(), pressure_index);
if (it != pendant_vertex.end()) // if it is dangle vertex
to_select_pressure = true;
}
}
else if (button == GLUT_LEFT_BUTTON && state == GLUT_DOWN && !mods && simulation && to_select_pressure) {
if (y > 2 * border_factor || y < vY - border_factor) { // within the pressure bar range
to_select_pressure = false;
float tmp_pressure = (float)(vY - y - border_factor) / ((float)vY - border_factor) * max_pressure;
flow.set_pressure(pressure_index, tmp_pressure);
//flow_stable_state(); // main function of solving the linear system
//flow.print_flow();
}
}
else if (button == GLUT_LEFT_BUTTON && state == GLUT_DOWN && !mods && modified_bridge && change_fragment) {
if (y > 2 * border_factor || y < vY - border_factor) { // within the ratio bar range
fragment_ratio = (float)(vY - y - border_factor) / ((float)vY - border_factor) * 1.0f;
flow.modify_synthetic_connection(u, rou, hilbert_curve, height_threshold, fragment_ratio, default_radius);
change_fragment = false;
}
}
// move connections along y-axis
else if (button == GLUT_LEFT_BUTTON && state == GLUT_DOWN && mods == GLUT_ACTIVE_SHIFT && !modified_bridge && !picked_connection) {
GLdouble posX, posY, posZ;
window_to_world(posX, posY, posZ); // get the world coordinates
bool flag = flow.epsilon_edge((float)posX, (float)posY, (float)posZ, eps, connection_index, port_index);
if (flag) {
picked_connection = true;
picked_x = x;
picked_y = y;
if (!port_index)
if (flow.inlet[connection_index].V[2][1] > flow.main_feeder[port_index][1])
coef = 1;
else
coef = -1;
else
if (flow.outlet[connection_index].V[2][1] > flow.main_feeder[port_index][1])
coef = 1;
else
coef = -1;
}
else
picked_connection = false;
}
else if (button == GLUT_LEFT_BUTTON && state == GLUT_DOWN && mods == GLUT_ACTIVE_SHIFT && !modified_bridge && render_new_connection) {
float l = 0.0f;
std::vector<typename stim::vec3<float> > V;
unsigned i;
if (!port_index) {
i = flow.inlet[connection_index].V.size();
if (tmp_v2[1] != flow.inlet[connection_index].V[i - 1][1]) {
V.resize(4);
V[0] = flow.inlet[connection_index].V[0];
V[1] = tmp_v1;
V[2] = tmp_v2;
V[3] = flow.inlet[connection_index].V[i - 1];
std::swap(flow.inlet[connection_index].V, V);
}
else {
V.resize(3);
V[0] = flow.inlet[connection_index].V[0];
V[1] = tmp_v1;
V[2] = tmp_v2;
std::swap(flow.inlet[connection_index].V, V);
}
// calculate new length
for (unsigned i = 0; i < flow.inlet[connection_index].V.size() - 1; i++) {
l += (flow.inlet[connection_index].V[i + 1] - flow.inlet[connection_index].V[i]).len();
}
flow.inlet[connection_index].l = l;
}
else {
i = flow.outlet[connection_index].V.size();
if (tmp_v2[1] != flow.outlet[connection_index].V[i - 1][1]) {
V.resize(4);
V[0] = flow.outlet[connection_index].V[0];
V[1] = tmp_v1;
V[2] = tmp_v2;
V[3] = flow.outlet[connection_index].V[i - 1];
std::swap(flow.outlet[connection_index].V, V);
}
else {
V.resize(3);
V[0] = flow.outlet[connection_index].V[0];
V[1] = tmp_v1;
V[2] = tmp_v2;
std::swap(flow.outlet[connection_index].V, V);
}
// calculate new length
for (unsigned i = 0; i < flow.outlet[connection_index].V.size() - 1; i++) {
l += (flow.outlet[connection_index].V[i + 1] - flow.outlet[connection_index].V[i]).len();
}
flow.outlet[connection_index].l = l;
}
redisplay = true;
render_new_connection = false;
picked_connection = false;
flow.check_direct_connection();
flow.backup(); // back up direct synthetic connections
}
// move connections along x-axis
else if (button == GLUT_LEFT_BUTTON && state == GLUT_DOWN && mods == GLUT_ACTIVE_CTRL && !modified_bridge && !picked_connection) {
GLdouble posX, posY, posZ;
window_to_world(posX, posY, posZ); // get the world coordinates
bool flag = flow.epsilon_edge((float)posX, (float)posY, (float)posZ, eps, connection_index, port_index);
if (flag) {
picked_connection = true;
picked_x = x;
picked_y = y;
if (!port_index)
coef = 1;
else
coef = -1;
}
else
picked_connection = false;
}
else if (button == GLUT_LEFT_BUTTON && state == GLUT_DOWN && mods == GLUT_ACTIVE_CTRL && !modified_bridge && render_new_connection) {
float l = 0.0f;
if (!port_index) {
flow.inlet[connection_index].V[0] = tmp_v1;
flow.inlet[connection_index].V[1] = tmp_v2;
// calculate new length
for (unsigned i = 0; i < flow.inlet[connection_index].V.size() - 1; i++) {
l += (flow.inlet[connection_index].V[i + 1] - flow.inlet[connection_index].V[i]).len();
}
flow.inlet[connection_index].l = l;
}
else {
flow.outlet[connection_index].V[0] = tmp_v1;
flow.outlet[connection_index].V[1] = tmp_v2;
// calculate new length
for (unsigned i = 0; i < flow.outlet[connection_index].V.size() - 1; i++) {
l += (flow.outlet[connection_index].V[i + 1] - flow.outlet[connection_index].V[i]).len();
}
flow.outlet[connection_index].l = l;
}
redisplay = true;
render_new_connection = false;
picked_connection = false;
flow.check_direct_connection();
flow.backup();
}
}
// define camera move based on mouse wheel move
void glut_wheel(int wheel, int direction, int x, int y) {
mods = glutGetModifiers();
mouse_x = x;
mouse_y = y;
GLdouble posX, posY, posZ;
window_to_world(posX, posY, posZ); // get the world coordinates
if (!to_select_pressure) {
bool flag = flow.epsilon_vertex((float)posX, (float)posY, (float)posZ, eps, scale, pressure_index);
if (flag && simulation) {
float tmp_r;
if (direction > 0) { // increase radii
tmp_r = flow.get_radius(pressure_index);
tmp_r += radii_factor;
}
else {
tmp_r = flow.get_radius(pressure_index);
tmp_r -= radii_factor;
if (tmp_r <= 0)
tmp_r = default_radius;
}
flow.set_radius(pressure_index, tmp_r);
}
else if (!mods) {
if (direction > 0) // if it is button 3(up), move closer
move_pace = zoom_factor;
else // if it is button 4(down), leave farther
move_pace = -zoom_factor;
cam.Push(move_pace);
}
}
// rescale
if (mods == GLUT_ACTIVE_CTRL) {
if (direction > 0) {
if (scale >= 1)
scale += 1.0f;
else
scale += 0.1f;
}
else {
if (scale > 1)
scale -= 1.0f;
else if (scale <= 1 && scale > 0.1f)
scale -= 0.1f;
else
scale = 1.0f;
}
}
glutPostRedisplay();
}
// define keyboard inputs
void glut_keyboard(unsigned char key, int x, int y) {
// register different keyboard operation
switch (key) {
// zooming
case 'w': // if keyboard 'w' is pressed, then move closer
move_pace = zoom_factor;
cam.Push(move_pace);
break;
case 's': // if keyboard 's' is pressed, then leave farther
move_pace = -zoom_factor;
cam.Push(move_pace);
break;
// open/close index marks
case 'e':
if (mark_index)
mark_index = false;
else
mark_index = true;
break;
// output image stack
case 'm':
if (manufacture) {
#ifdef __CUDACC__
flow.make_image_stack(dx, dy, dz, stackdir);
#else
std::cout << "You need to have a gpu to make image stack, sorry." << std::endl;
#endif
}
else if (build_inlet_outlet && !modified_bridge) {
modified_bridge = true;
if (hilbert_curve)
flow.modify_synthetic_connection(u, rou, hilbert_curve, height_threshold);
else
change_fragment = true;
}
break;
}
glutPostRedisplay();
}
// glut initialization
void glut_initialize() {
int myargc = 1;
char* myargv[1];
myargv[0] = strdup("generate_network_network");
glutInit(&myargc, myargv);
glutInitDisplayMode(GLUT_DEPTH | GLUT_DOUBLE | GLUT_RGBA);
glutInitWindowPosition(100, 100); // set the initial window position
glutInitWindowSize(1000, 1000);
glutCreateWindow("3D flow simulation");
glutDisplayFunc(glut_render);
glutMouseFunc(glut_mouse);
glutMotionFunc(glut_motion);
glutPassiveMotionFunc(glut_passive_motion);
glutMouseWheelFunc(glut_wheel);
glutKeyboardFunc(glut_keyboard);
glutCreateMenu(glut_menu); // create a menu object
glut_set_menu(0, 1);
glutAttachMenu(GLUT_RIGHT_BUTTON); // register right mouse to open menu option
stim::vec3<float> c = bb.center(); // get the center of the network bounding box
// place the camera along the z-axis at a distance determined by the network size along x and y
cam.setPosition(c + stim::vec<float>(0, 0, camera_factor * std::max(bb.size()[0], bb.size()[1])));
cam.LookAt(c[0], c[1], c[2]);
}
// output an advertisement for the lab, authors and usage information
void advertise() {
std::cout << std::endl << std::endl;
std::cout << " =======================================================================================" << std::endl;
std::cout << "|Thank you for using the synthetic microvascular model generator for microfluidics tool!|" << std::endl;
std::cout << "|Scalable Tissue Imaging and Modeling (STIM) Lab, University of Houston |" << std::endl;
std::cout << "|Developers: Jiaming Guo, David Mayerich |" << std::endl;
std::cout << "|Source: https://git.stim.ee.uh.edu/Jack/flow3.git |" << std::endl;
std::cout << " =======================================================================================" << std::endl << std::endl;
std::cout << args.str();
}
// main function: parse arguments and initialize GLUT
int main(int argc, char* argv[]) {
// add arguments
args.add("help", "prints the help");
//args.add("network", "load network from .obj or .swc file");
args.add("maxpress", "maximum allowed pressure in g / units / s^2, default 2 is for blood when units = um", "2", "real value > 0");
args.add("viscosity", "set the viscosity of the fluid (in g / units / s), default .00001 is for blood when units = um", ".00001", "real value > 0");
args.add("rou", "set the desity of the fluid (in g / units^3), default 1.06*10^-12 is for blood when units = um", ".00000000000106", "real value > 0");
args.add("hilbert", "activate hilbert curves connections", "0", "value 1 for enablement");
args.add("stackres", "spacing between pixel samples in each dimension(in units/pixel)", "1 1 1", "real value > 0");
args.add("stackdir", "set the directory of the output image stack", "", "any existing directory (ex. /home/name/network)");
args.parse(argc, argv); // parse the command line
if (args["help"].is_set()) {
advertise();
std::exit(1);
}
// load network
if (args.nargs() == 0) {
std::cout << "Network file required." << std::endl;
return 1;
}
else { // load network from user
std::vector<std::string> tmp = stim::parser::split(args.arg(0), '.');
if ("obj" == tmp[1])
flow.load_obj(args.arg(0));
else if ("swc" == tmp[1])
flow.load_swc(args.arg(0));
else {
std::cout << "Invalid file type" << std::endl;
std::exit(1);
}
}
get_background();
// blood pressure in capillaries range from 15 - 35 torr
// 1 torr = 133.3 Pa
max_pressure = args["maxpress"].as_float();
// normal blood viscosity range from 4 - 15 mPa·s(cP)
// 1 Pa·s = 1 g / mm / s
u = args["viscosity"].as_float(); // g / units / s
// normally the blood density in capillaries: 1060 kg/m^3 = 1.06*10^-12 g/um^3
rou = args["rou"].as_float();
// check whether to enable hilbert curves or not
hilbert_curve = args["hilbert"].as_int();
// get the vexel and image stack size
dx = args["stackres"].as_float(0);
dy = args["stackres"].as_float(1);
dz = args["stackres"].as_float(2);
// get the save directory of image stack
if (args["stackdir"].is_set())
stackdir = args["stackdir"].as_string();
// glut main loop
bb = flow.boundingbox();
glut_initialize();
glutMainLoop();
}