main.cu 30.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
#include <stdlib.h>
#include <string>
#include <fstream>
#include <algorithm>

// CUDA include
#ifdef __CUDACC__
#include "device_launch_parameters.h"
#include <cuda.h>
#include <cuda_runtime_api.h>
#include "cuda_runtime.h"
#endif

// OPENGL include
#include <GL/glut.h>
#include <GL/freeglut.h>

#include "flow.h"

// STIM include
#include <stim/visualization/gl_aaboundingbox.h>
#include <stim/parser/arguments.h>
#include <stim/visualization/camera.h>
#include <stim/visualization/colormap.h>
#include <stim/cuda/cudatools/error.h>


//********************parameter setting********************
// overall parameters
int vX, vY;
float dx, dy, dz;										// x, y and z image scaling(units/pixel)
std::string stackdir = "";								// directory where image stacks will be stored
stim::arglist args;										// create an instance of arglist
stim::gl_aaboundingbox<float> bb;						// axis-aligned bounding box object
stim::camera cam;										// camera object
unsigned num_edge;										// number of edges in the network
unsigned num_vertex;									// number of vertex in the network
std::vector<unsigned> pendant_vertex;					// list of pendant vertex index in GT
std::vector<std::string> menu_option = { "simulation", "build inlet/outlet", "manufacture" };
stim::flow<float> flow;									// flow object
float move_pace;										// camera moving parameter
float u;												// viscosity
float rou;												// density
float max_v;
float min_v;
int mods;												// special keyboard input
std::vector<unsigned char> color;						// velocity color map
std::vector<int> velocity_bar;							// velocity bar
float length = 210.0f;									// cuboid length

// hard-coded parameters
float camera_factor = 1.2f;			// start point of the camera as a function of X and Y size
float orbit_factor = 0.01f;			// degrees per pixel used to orbit the camera
float zoom_factor = 10.0f;			// zooming factor
float border_factor = 20.0f;		// border
float radii_factor = 1.0f;			// radii changing factor
GLint subdivision = 20;				// slices and stacks
float default_radius = 5.0f;		// default radii of network vertex
float delta = 0.01f;				// small discrepancy
float eps = 20.0f;					// epsilon threshold
float max_pressure = 0.0f;			// maximum pressure that the channel can bear
float height_threshold = 100.0f;	// connection height constraint
float fragment_ratio = 0.0f;		// fragment ratio

// glut event parameters
int mouse_x;						// window x-coordinate
int mouse_y;						// window y-coordinate
int picked_x;						// picked window x-coordinate
int picked_y;						// picked window y-coordinate
bool LTbutton = false;				// true means down while false means up			

// simulation parameters
bool render_direction = false;		// flag indicates rendering flow direction for one edge
bool simulation = false;			// flag indicates simulation mode
bool color_bound = false;			// flag indicates velocity color map bound
bool to_select_pressure = false;	// flag indicates having selected a vertex to modify pressure
unsigned pressure_index;			// the index of vertex that is clicked
unsigned direction_index = -1;		// the index of edge that is pointed at

// build inlet/outlet parameters
bool build_inlet_outlet = false;	// flag indicates building inlets and outlets
bool modified_bridge = false;		// flag indicates having modified inlet/outlet connection
bool hilbert_curve = false;			// flag indicates enabling hilbert curves constructions
bool change_fragment = false;		// flag indicates changing fragment for square wave connections
bool picked_connection = false;		// flag indicates picked one connection
bool render_new_connection = false;	// flag indicates rendering new line connection in trasparency
bool redisplay = false;				// flag indicates redisplay rendering
bool connection_done = false;		// flag indicates finishing connections
unsigned connection_index = -1;		// the index of connection that is picked
unsigned port_index = 0;			// inlet (0) or outlet (1)
stim::vec3<float> tmp_v1, tmp_v2;	// temp vertex
int coef;							// computational coefficient factor

// manufacture parameters
bool manufacture = false;			// flag indicates manufacture mode


//********************helper function*********************
// get the network basic information
inline void get_background() {

	pendant_vertex = flow.get_boundary_vertex();
	num_edge = flow.edges();
	num_vertex = flow.vertices();

	// set the initial radii
	flow.init(num_edge, num_vertex);			// initialize flow object
	
	// if no radius information laoded
	if (!flow.get_radius(0, 0))
		for (unsigned i = 0; i < num_edge; i++)
			flow.set_r(i, default_radius);
}

// convert from window coordinates to world coordinates
inline void window_to_world(GLdouble &x, GLdouble &y, GLdouble &z) {

	GLint    viewport[4];
	GLdouble modelview[16];
	GLdouble projection[16];
	GLdouble winX, winY;
	GLfloat  winZ;

	glGetIntegerv(GL_VIEWPORT, viewport);
	glGetDoublev(GL_MODELVIEW_MATRIX, modelview);
	glGetDoublev(GL_PROJECTION_MATRIX, projection);

	winX = (GLdouble)mouse_x;
	winY = viewport[3] - (GLdouble)mouse_y;
	glReadPixels((GLint)winX, (GLint)winY, (GLsizei)1, (GLsizei)1, GL_DEPTH_COMPONENT, GL_FLOAT, &winZ);
	gluUnProject(winX, winY, winZ, modelview, projection, viewport, &x, &y, &z);
}


//********************simulation function**********************
// initialize flow object
void flow_initialize() {

	flow.set = true;
	stim::vec3<float> center = bb.center();

	for (unsigned i = 0; i < pendant_vertex.size(); i++) {
		if (flow.get_vertex(pendant_vertex[i])[0] <= center[0])
			flow.P[pendant_vertex[i]] = max_pressure - i * delta;	// should set minor discrepancy
		else
			flow.P[pendant_vertex[i]] = (i + 1) * delta;			// algorithm treat 0 as no initial pressure
	}
}

// find the stable flow state
void flow_stable_state() {
	
	flow.solve_flow(u);
	flow.get_color_map(max_v, min_v, color, pendant_vertex);
	color_bound = true;

	velocity_bar.resize(num_edge);
	for (unsigned i = 0; i < num_edge; i++)
		velocity_bar[i] = i;
	std::sort(velocity_bar.begin(), velocity_bar.end(), [&](int x, int y) {return abs(flow.v[x]) < abs(flow.v[y]); });
}


//********************glut function********************
// dynamically set menu
// @param num: number of current menu options
// @param range: range of option to be set from menu_option list
void glut_set_menu(int num, int range) {

	// remove last time menu options
	for (int i = 1; i < num + 1; i++)
		glutRemoveMenuItem(1);

	// set new menu options
	std::string menu_name;
	for (int i = 1; i < range + 1; i++) {
		menu_name = menu_option[i - 1];
		glutAddMenuEntry(menu_name.c_str(), i);
	}
}

// set up the squash transform to whole screen
void glut_projection() {

	glMatrixMode(GL_PROJECTION);					// load the projection matrix for editing
	glLoadIdentity();								// start with the identity matrix
	vX = glutGet(GLUT_WINDOW_WIDTH);				// use the whole screen for rendering
	vY = glutGet(GLUT_WINDOW_HEIGHT);
	glViewport(0, 0, vX, vY);						// specify a viewport for the entire window
	float aspect = (float)vX / (float)vY;			// calculate the aspect ratio
	gluPerspective(60, aspect, 0.1, 1000000);		// set up a perspective projection
}

// translate camera to origin
void glut_modelview() {

	glMatrixMode(GL_MODELVIEW);						// load the modelview matrix for editing
	glLoadIdentity();								// start with the identity matrix
	stim::vec3<float> eye = cam.getPosition();		// get the camera position (eye point)
	stim::vec3<float> focus = cam.getLookAt();		// get the camera focal point
	stim::vec3<float> up = cam.getUp();				// get the camera "up" orientation

	gluLookAt(eye[0], eye[1], eye[2], focus[0], focus[1], focus[2], up[0], up[1], up[2]);	// set up the OpenGL camera
}

// glut render function
void glut_render() {

	glEnable(GL_DEPTH_TEST);
	glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
	glClearColor(1.0f, 1.0f, 1.0f, 1.0f);
	glut_projection();
	glut_modelview();

	if (!simulation && !build_inlet_outlet || manufacture) {
		glColor3f(0.0f, 0.0f, 0.0f);
		flow.glCylinder0();
	}
	else {
		flow.bounding_box();
		flow.glSolidSphere(max_pressure, subdivision);
		flow.mark_vertex();
		//flow.glSolidCone(subdivision);
		flow.glSolidCylinder(direction_index, color, subdivision);
		flow.glSolidCuboid(length);
		if (render_direction)
			flow.glSolidCone(direction_index, subdivision);
	}

	if (build_inlet_outlet) {
		flow.line_bridge(redisplay);
	}
	
	if (manufacture) {
		flow.glSolidCuboid();
		flow.tube_bridge(subdivision);
	}

	if (picked_connection && render_new_connection) {
		glEnable(GL_BLEND);
		glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
		glColor4f(0.0f, 0.0f, 0.0f, 0.4f);
		glBegin(GL_LINE_STRIP);
		if (!port_index) {
			glVertex3f(flow.inlet[connection_index].V[1][0], flow.inlet[connection_index].V[1][1], flow.inlet[connection_index].V[1][2]);
			glVertex3f(tmp_v1[0], tmp_v1[1], tmp_v1[2]);
			glVertex3f(tmp_v2[0], tmp_v2[1], tmp_v2[2]);
			glVertex3f(flow.inlet[connection_index].V[2][0], flow.inlet[connection_index].V[2][1], flow.inlet[connection_index].V[2][2]);
		}
		else {
			glVertex3f(flow.outlet[connection_index].V[1][0], flow.outlet[connection_index].V[1][1], flow.outlet[connection_index].V[1][2]);
			glVertex3f(tmp_v1[0], tmp_v1[1], tmp_v1[2]);
			glVertex3f(tmp_v2[0], tmp_v2[1], tmp_v2[2]);
			glVertex3f(flow.outlet[connection_index].V[2][0], flow.outlet[connection_index].V[2][1], flow.outlet[connection_index].V[2][2]);
		}
		glEnd();
		glFlush();
		glDisable(GL_BLEND);
	}
	
	// render bars
	// bring up a pressure bar on left
	if (to_select_pressure) {
		
		glMatrixMode(GL_PROJECTION);									// set up the 2d viewport for mode text printing
		glPushMatrix();
		glLoadIdentity();
		vX = glutGet(GLUT_WINDOW_WIDTH);								// get the current window width
		vY = glutGet(GLUT_WINDOW_HEIGHT);								// get the current window height
		glViewport(0, 0, vX, vY);										// locate to left bottom corner
		gluOrtho2D(0, vX, 0, vY);										// define othogonal aspect

		glMatrixMode(GL_MODELVIEW);
		glPushMatrix();
		glLoadIdentity();

		glLineWidth(border_factor);
		glBegin(GL_LINES);
		glColor3f(0.0, 0.0, 1.0);										// blue to red
		glVertex2f(border_factor, border_factor);
		glColor3f(1.0, 0.0, 0.0);
		glVertex2f(border_factor, (vY - 2.0f * border_factor));
		glEnd();
		glFlush();

		// pressure bar text
		glColor3f(0.0f, 0.0f, 0.0f);
		glRasterPos2f(0.0f, vY - border_factor);
		std::stringstream ss_p;
		ss_p << "Pressure Bar";
		glutBitmapString(GLUT_BITMAP_HELVETICA_18, (const unsigned char*)(ss_p.str().c_str()));

		// pressure range text
		float step = vY - 3.0f * border_factor;
		step /= 10;
		for (unsigned i = 0; i < 11; i++) {
			glRasterPos2f((border_factor * 1.5f), (border_factor + i * step));
			std::stringstream ss_n;
			ss_n << (float)i * max_pressure / 10;
			glutBitmapString(GLUT_BITMAP_HELVETICA_18, (const unsigned char*)(ss_n.str().c_str()));
		}
		glPopMatrix();
		glMatrixMode(GL_PROJECTION);
		glPopMatrix();
	}

	// bring up a velocity bar on left
	if (simulation && !to_select_pressure) {
		
		glMatrixMode(GL_PROJECTION);									// set up the 2d viewport for mode text printing
		glPushMatrix();
		glLoadIdentity();
		vX = glutGet(GLUT_WINDOW_WIDTH);								// get the current window width
		vY = glutGet(GLUT_WINDOW_HEIGHT);								// get the current window height
		glViewport(0, 0, vX, vY);										// locate to left bottom corner
		gluOrtho2D(0, vX, 0, vY);										// define othogonal aspect

		glMatrixMode(GL_MODELVIEW);
		glPushMatrix();
		glLoadIdentity();

		float step = (vY - 3 * border_factor);
		step /= BREWER_CTRL_PTS - 1;
		for (unsigned i = 0; i < BREWER_CTRL_PTS - 1; i++) {
			glLineWidth(border_factor);
			glBegin(GL_LINES);
			glColor3f(BREWERCP[i * 4 + 0], BREWERCP[i * 4 + 1], BREWERCP[i * 4 + 2]);
			glVertex2f(border_factor, border_factor + i * step);
			glColor3f(BREWERCP[(i + 1) * 4 + 0], BREWERCP[(i + 1) * 4 + 1], BREWERCP[(i + 1) * 4 + 2]);
			glVertex2f(border_factor, border_factor + (i + 1) * step);
			glEnd();
		}
		glFlush();

		// pressure bar text
		glColor3f(0.0f, 0.0f, 0.0f);
		glRasterPos2f(0.0f, vY - border_factor);
		std::stringstream ss_p;
		ss_p << "Velocity range";
		glutBitmapString(GLUT_BITMAP_HELVETICA_18, (const unsigned char*)(ss_p.str().c_str()));

		// pressure range text
		step = vY - 3 * border_factor;
		step /= 10;
		for (unsigned i = 0; i < 11; i++) {
			glRasterPos2f(border_factor * 1.5f, border_factor + i * step);
			std::stringstream ss_n;
			ss_n << min_v + i * (max_v - min_v) / 10;
			glutBitmapString(GLUT_BITMAP_HELVETICA_18, (const unsigned char*)(ss_n.str().c_str()));
		}
		glPopMatrix();
		glMatrixMode(GL_PROJECTION);
		glPopMatrix();
	}

	// bring up a ratio bar on the left
	if (change_fragment) {
		
		glMatrixMode(GL_PROJECTION);									// set up the 2d viewport for mode text printing
		glPushMatrix();
		glLoadIdentity();
		vX = glutGet(GLUT_WINDOW_WIDTH);								// get the current window width
		vY = glutGet(GLUT_WINDOW_HEIGHT);								// get the current window height
		glViewport(0, 0, vX, vY);										// locate to left bottom corner
		gluOrtho2D(0, vX, 0, vY);										// define othogonal aspect

		glMatrixMode(GL_MODELVIEW);
		glPushMatrix();
		glLoadIdentity();

		glLineWidth(border_factor);
		glBegin(GL_LINES);
		glColor3f(0.0, 0.0, 1.0);										// blue to red
		glVertex2f(border_factor, border_factor);
		glColor3f(1.0, 0.0, 0.0);
		glVertex2f(border_factor, (vY - 2.0f * border_factor));
		glEnd();
		glFlush();

		// pressure bar text
		glColor3f(0.0f, 0.0f, 0.0f);
		glRasterPos2f(0.0f, vY - border_factor);
		std::stringstream ss_p;
		ss_p << "Ratio bar";
		glutBitmapString(GLUT_BITMAP_HELVETICA_18, (const unsigned char*)(ss_p.str().c_str()));

		// pressure range text
		float step = vY - 3.0f * border_factor;
		step /= 10;
		for (unsigned i = 0; i < 11; i++) {
			glRasterPos2f((border_factor * 1.5f), (border_factor + i * step));
			std::stringstream ss_n;
			ss_n << (float)i * 1.0f / 10;
			glutBitmapString(GLUT_BITMAP_HELVETICA_18, (const unsigned char*)(ss_n.str().c_str()));
		}
		glPopMatrix();
		glMatrixMode(GL_PROJECTION);
		glPopMatrix();
	}

	glutSwapBuffers();
}

// register glut menu options
void glut_menu(int value) {

	int num = glutGet(GLUT_MENU_NUM_ITEMS);
	if (value == 1) {
		simulation = true;
		build_inlet_outlet = false;
		manufacture = false;
		modified_bridge = false;
		connection_done = false;
		if (!flow.set)
			flow_initialize();
		flow_stable_state();					// main function of solving the linear system
		flow.print_flow();
		
		glut_set_menu(num, 2);
	}

	if (value == 2) {
		simulation = false;
		build_inlet_outlet = true;
		manufacture = false;
		if (!modified_bridge && !connection_done) {
			flow.set_main_feeder();
			flow.build_synthetic_connection(u, default_radius);
			flow.check_direct_connection();	// check whether direct connections intersect each other
			connection_done = true;
		}
		else if (modified_bridge) {
			modified_bridge = false;
			redisplay = true;
			flow.clear_synthetic_connection();
		}

		glut_set_menu(num, 3);
	}

	if (value == 3) {
		simulation = false;
		build_inlet_outlet = false;
		manufacture = true;
	}

	glutPostRedisplay();
}

// defines camera motion based on mouse dragging
void glut_motion(int x, int y) {

	mods = glutGetModifiers();
	if (LTbutton && mods == 0) {

		float theta = orbit_factor * (mouse_x - x);		// determine the number of degrees along the x-axis to rotate
		float phi = orbit_factor * (y - mouse_y);		// number of degrees along the y-axis to rotate

		cam.OrbitFocus(theta, phi);						// rotate the camera around the focal point
	}
	mouse_x = x;										// update the mouse position
	mouse_y = y;

	glutPostRedisplay();								// re-draw the visualization
}

// defines passive mouse motion function
void glut_passive_motion(int x, int y) {

	mods = glutGetModifiers();

	// check whether the mouse point near to an edge
	GLdouble posX, posY, posZ;
	window_to_world(posX, posY, posZ);			// get the world coordinates

	if (simulation || build_inlet_outlet && !mods) {
		bool flag = flow.epsilon_edge((float)posX, (float)posY, (float)posZ, eps, direction_index);
		if (flag)
			render_direction = true;
		else {
			if (render_direction)				// if the direction is displaying currently, do a short delay
				Sleep(300);
			render_direction = false;
			direction_index = -1;
		}
	}

	if (mods == GLUT_ACTIVE_SHIFT && picked_connection) {
		render_new_connection = true;
		unsigned i;
		if (!port_index) {
			tmp_v1 = stim::vec3<float>(flow.inlet[connection_index].V[1][0], flow.inlet[connection_index].V[1][1] + (float)(picked_y - y), flow.inlet[connection_index].V[1][2]);
			tmp_v2 = stim::vec3<float>(flow.inlet[connection_index].V[2][0], flow.inlet[connection_index].V[2][1] + (float)(picked_y - y), flow.inlet[connection_index].V[2][2]);
			i = flow.inlet[connection_index].V.size();
			if (coef * tmp_v1[1] < coef * flow.inlet[connection_index].V[i - 1][1]) {
				tmp_v1[1] = flow.inlet[connection_index].V[i - 1][1];
				tmp_v2[1] = flow.inlet[connection_index].V[i - 1][1];
			}
		}
		else {
			tmp_v1 = stim::vec3<float>(flow.outlet[connection_index].V[1][0], flow.outlet[connection_index].V[1][1] + (float)(picked_y - y), flow.outlet[connection_index].V[1][2]);
			tmp_v2 = stim::vec3<float>(flow.outlet[connection_index].V[2][0], flow.outlet[connection_index].V[2][1] + (float)(picked_y - y), flow.outlet[connection_index].V[2][2]);
			i = flow.outlet[connection_index].V.size();
			if (coef * tmp_v1[1] < coef * flow.outlet[connection_index].V[i - 1][1]) {
				tmp_v1[1] = flow.outlet[connection_index].V[i - 1][1];
				tmp_v2[1] = flow.outlet[connection_index].V[i - 1][1];
			}
		}	
	}
	else if (mods == GLUT_ACTIVE_CTRL && picked_connection) {
		render_new_connection = true;
		if (!port_index) {
			tmp_v1 = stim::vec3<float>(flow.inlet[connection_index].V[0][0] + (float)(x - picked_x), flow.inlet[connection_index].V[0][1], flow.inlet[connection_index].V[0][2]);
			tmp_v2 = stim::vec3<float>(flow.inlet[connection_index].V[1][0] + (float)(x - picked_x), flow.inlet[connection_index].V[1][1], flow.inlet[connection_index].V[1][2]);
			if (tmp_v1[0] < flow.main_feeder[port_index][0] - length / 2) {
				tmp_v1[0] = flow.main_feeder[port_index][0] - length / 2;
				tmp_v2[0] = flow.main_feeder[port_index][0] - length / 2;
			}
			else if (tmp_v1[0] > flow.main_feeder[port_index][0] + length / 2) {
				tmp_v1[0] = flow.main_feeder[port_index][0] + length / 2;
				tmp_v2[0] = flow.main_feeder[port_index][0] + length / 2;
			}
		}
		else {
			tmp_v1 = stim::vec3<float>(flow.outlet[connection_index].V[0][0] + (float)(x - picked_x), flow.outlet[connection_index].V[0][1], flow.outlet[connection_index].V[0][2]);
			tmp_v2 = stim::vec3<float>(flow.outlet[connection_index].V[1][0] + (float)(x - picked_x), flow.outlet[connection_index].V[1][1], flow.outlet[connection_index].V[1][2]);
			if (tmp_v1[0] > flow.main_feeder[port_index][0] + length / 2) {
				tmp_v1[0] = flow.main_feeder[port_index][0] + length / 2;
				tmp_v2[0] = flow.main_feeder[port_index][0] + length / 2;
			}
			else if (tmp_v1[0] < flow.main_feeder[port_index][0] - length / 2) {
				tmp_v1[0] = flow.main_feeder[port_index][0] - length / 2;
				tmp_v2[0] = flow.main_feeder[port_index][0] - length / 2;
			}
		}
	}
	else
		render_new_connection = false;

	mouse_x = x;
	mouse_y = y;

	glutPostRedisplay();							// re-draw the visualization
}

// get click window coordinates
void glut_mouse(int button, int state, int x, int y) {

	mods = glutGetModifiers();						// get special keyboard input

	mouse_x = x;
	mouse_y = y;
	if (!mods) {
		picked_connection = false;
		render_new_connection = false;
	}
	if (button == GLUT_LEFT_BUTTON && state == GLUT_DOWN)
		LTbutton = true;
	else if (button == GLUT_LEFT_BUTTON && state == GLUT_UP)
		LTbutton = false;

	if (button == GLUT_LEFT_BUTTON && state == GLUT_DOWN && !mods && simulation && !to_select_pressure) {
		GLdouble posX, posY, posZ;
		window_to_world(posX, posY, posZ);			// get the world coordinates

		bool flag = flow.epsilon_vertex((float)posX, (float)posY, (float)posZ, eps, pressure_index);
		if (flag) {
			std::vector<unsigned>::iterator it = std::find(pendant_vertex.begin(), pendant_vertex.end(), pressure_index);
			if (it != pendant_vertex.end()) 		// if it is dangle vertex
				to_select_pressure = true;
		}
	}
	else if (button == GLUT_LEFT_BUTTON && state == GLUT_DOWN && !mods && simulation && to_select_pressure) {
		if (y > 2 * border_factor || y < vY - border_factor) {		// within the pressure bar range
			to_select_pressure = false;
			float tmp_pressure = (float)(vY - y - border_factor) / ((float)vY - border_factor) * max_pressure;
			flow.set_pressure(pressure_index, tmp_pressure);

			flow_stable_state();									// main function of solving the linear system
			flow.print_flow();
		}
	}
	else if (button == GLUT_LEFT_BUTTON && state == GLUT_DOWN && !mods && modified_bridge && change_fragment) {
		if (y > 2 * border_factor || y < vY - border_factor) {		// within the ratio bar range
			fragment_ratio = (float)(vY - y - border_factor) / ((float)vY - border_factor) * 1.0f;
			flow.modify_synthetic_connection(u, rou, hilbert_curve, height_threshold, fragment_ratio, default_radius);
			change_fragment = false;
		}
	}
	// move connections along y-axis
	else if (button == GLUT_LEFT_BUTTON && state == GLUT_DOWN && mods == GLUT_ACTIVE_SHIFT && !modified_bridge && !picked_connection) {	
		GLdouble posX, posY, posZ;
		window_to_world(posX, posY, posZ);			// get the world coordinates

		bool flag = flow.epsilon_edge((float)posX, (float)posY, (float)posZ, eps, connection_index, port_index);
		if (flag) {
			picked_connection = true;
			picked_x = x;
			picked_y = y;
			if (!port_index)
				if (flow.inlet[connection_index].V[2][1] > flow.main_feeder[port_index][1])
					coef = 1;
				else
					coef = -1;
			else
				if (flow.outlet[connection_index].V[2][1] > flow.main_feeder[port_index][1])
					coef = 1;
				else
					coef = -1;
		}
		else
			picked_connection = false;
	}
	else if (button == GLUT_LEFT_BUTTON && state == GLUT_DOWN && mods == GLUT_ACTIVE_SHIFT && !modified_bridge && render_new_connection) {
		float l = 0.0f;
		std::vector<typename stim::vec3<float> > V;
		unsigned i;
		if (!port_index) {
			i = flow.inlet[connection_index].V.size();
			if (tmp_v2[1] != flow.inlet[connection_index].V[i - 1][1]) {
				V.resize(4);
				V[0] = flow.inlet[connection_index].V[0];
				V[1] = tmp_v1;
				V[2] = tmp_v2;
				V[3] = flow.inlet[connection_index].V[i - 1];
				std::swap(flow.inlet[connection_index].V, V);
			}
			else {
				V.resize(3);
				V[0] = flow.inlet[connection_index].V[0];
				V[1] = tmp_v1;
				V[2] = tmp_v2;
				std::swap(flow.inlet[connection_index].V, V);
			}
			// calculate new length
			for (unsigned i = 0; i < flow.inlet[connection_index].V.size() - 1; i++) {
				l += (flow.inlet[connection_index].V[i + 1] - flow.inlet[connection_index].V[i]).len();
			}
			flow.inlet[connection_index].l = l;
		}
		else {
			i = flow.outlet[connection_index].V.size();
			if (tmp_v2[1] != flow.outlet[connection_index].V[i - 1][1]) {
				V.resize(4);
				V[0] = flow.outlet[connection_index].V[0];
				V[1] = tmp_v1;
				V[2] = tmp_v2;
				V[3] = flow.outlet[connection_index].V[i - 1];
				std::swap(flow.outlet[connection_index].V, V);
			}
			else {
				V.resize(3);
				V[0] = flow.outlet[connection_index].V[0];
				V[1] = tmp_v1;
				V[2] = tmp_v2;
				std::swap(flow.outlet[connection_index].V, V);
			}
			// calculate new length
			for (unsigned i = 0; i < flow.outlet[connection_index].V.size() - 1; i++) {
				l += (flow.outlet[connection_index].V[i + 1] - flow.outlet[connection_index].V[i]).len();
			}
			flow.outlet[connection_index].l = l;
		}

		redisplay = true;
		render_new_connection = false;
		picked_connection = false;

		flow.check_direct_connection();
		flow.backup();								// back up direct synthetic connections
	}
	// move connections along x-axis
	else if (button == GLUT_LEFT_BUTTON && state == GLUT_DOWN && mods == GLUT_ACTIVE_CTRL && !modified_bridge && !picked_connection) {
		GLdouble posX, posY, posZ;
		window_to_world(posX, posY, posZ);			// get the world coordinates

		bool flag = flow.epsilon_edge((float)posX, (float)posY, (float)posZ, eps, connection_index, port_index);
		if (flag) {
			picked_connection = true;
			picked_x = x;
			picked_y = y;
			if (!port_index)
				coef = 1;
			else
				coef = -1;
		}
		else
			picked_connection = false;
	}
	else if (button == GLUT_LEFT_BUTTON && state == GLUT_DOWN && mods == GLUT_ACTIVE_CTRL && !modified_bridge && render_new_connection) {
		float l = 0.0f;
		if (!port_index) {
			flow.inlet[connection_index].V[0] = tmp_v1;
			flow.inlet[connection_index].V[1] = tmp_v2;
			// calculate new length
			for (unsigned i = 0; i < flow.inlet[connection_index].V.size() - 1; i++) {
				l += (flow.inlet[connection_index].V[i + 1] - flow.inlet[connection_index].V[i]).len();
			}
			flow.inlet[connection_index].l = l;
		}
		else {
			flow.outlet[connection_index].V[0] = tmp_v1;
			flow.outlet[connection_index].V[1] = tmp_v2;
			// calculate new length
			for (unsigned i = 0; i < flow.outlet[connection_index].V.size() - 1; i++) {
				l += (flow.outlet[connection_index].V[i + 1] - flow.outlet[connection_index].V[i]).len();
			}
			flow.outlet[connection_index].l = l;
		}

		redisplay = true;
		render_new_connection = false;
		picked_connection = false;

		flow.check_direct_connection();
		flow.backup();
	}
}

// define camera move based on mouse wheel move
void glut_wheel(int wheel, int direction, int x, int y) {
	
	mouse_x = x;
	mouse_y = y;

	GLdouble posX, posY, posZ;
	window_to_world(posX, posY, posZ);			// get the world coordinates

	if (!to_select_pressure) {
		bool flag = flow.epsilon_vertex((float)posX, (float)posY, (float)posZ, eps, pressure_index);
		if (flag && simulation) {
			float tmp_r;
			if (direction > 0) {				// increase radii
				tmp_r = flow.get_radius(pressure_index);
				tmp_r += radii_factor;
			}
			else {
				tmp_r = flow.get_radius(pressure_index);
				tmp_r -= radii_factor;
				if (tmp_r <= 0)
					tmp_r = default_radius;
			}
			flow.set_radius(pressure_index, tmp_r);
			flow_stable_state();
			flow.print_flow();
		}
		else {
			if (direction > 0)								// if it is button 3(up), move closer
				move_pace = zoom_factor;
			else											// if it is button 4(down), leave farther
				move_pace = -zoom_factor;

			cam.Push(move_pace);
		}
	}
	
	glutPostRedisplay();
}

// define keyboard inputs
void glut_keyboard(unsigned char key, int x, int y) {

	// register different keyboard operation
	switch (key) {

		// zooming
	case 'w':						// if keyboard 'w' is pressed, then move closer
		move_pace = zoom_factor;
		cam.Push(move_pace);
		break;
	case 's':						// if keyboard 's' is pressed, then leave farther
		move_pace = -zoom_factor;
		cam.Push(move_pace);
		break;

		// output image stack
	case 'm':
		if (manufacture) {
#ifdef __CUDACC__
			flow.make_image_stack(dx, dy, dz, stackdir);
#else
			std::cout << "You need to have a gpu to make image stack, sorry." << std::endl;
#endif
		}
		else if (build_inlet_outlet && !modified_bridge) {
			modified_bridge = true;

			if (hilbert_curve)
				flow.modify_synthetic_connection(u, rou, hilbert_curve, height_threshold);
			else
				change_fragment = true;
		}
		break;
	}
	
	glutPostRedisplay();
}

// glut initialization
void glut_initialize() {

	int myargc = 1;
	char* myargv[1];
	myargv[0] = strdup("generate_network_network");

	glutInit(&myargc, myargv);
	glutInitDisplayMode(GLUT_DEPTH | GLUT_DOUBLE | GLUT_RGBA);
	glutInitWindowPosition(100, 100);							// set the initial window position
	glutInitWindowSize(1000, 1000);
	glutCreateWindow("3D flow simulation");

	glutDisplayFunc(glut_render);
	glutMouseFunc(glut_mouse);
	glutMotionFunc(glut_motion);
	glutPassiveMotionFunc(glut_passive_motion);
	glutMouseWheelFunc(glut_wheel);
	glutKeyboardFunc(glut_keyboard);

	glutCreateMenu(glut_menu);					// create a menu object 
	glut_set_menu(0, 1);
	glutAttachMenu(GLUT_RIGHT_BUTTON);			// register right mouse to open menu option

	stim::vec3<float> c = bb.center();			// get the center of the network bounding box
	// place the camera along the z-axis at a distance determined by the network size along x and y
	cam.setPosition(c + stim::vec<float>(0, 0, camera_factor * std::max(bb.size()[0], bb.size()[1])));
	cam.LookAt(c[0], c[1], c[2]);
}

// output an advertisement for the lab, authors and usage information
void advertise() {
	std::cout << std::endl << std::endl;
	std::cout << " =======================================================================================" << std::endl;
	std::cout << "|Thank you for using the synthetic microvascular model generator for microfluidics tool!|" << std::endl;
	std::cout << "|Scalable Tissue Imaging and Modeling (STIM) Lab, University of Houston                 |" << std::endl;
	std::cout << "|Developers: Jiaming Guo, David Mayerich                                                |" << std::endl;
	std::cout << "|Source: https://git.stim.ee.uh.edu/Jack/flow3.git									  |" << std::endl;
	std::cout << " =======================================================================================" << std::endl << std::endl;

	std::cout << args.str();
}

// main function: parse arguments and initialize GLUT
int main(int argc, char* argv[]) {
	
	// add arguments
	args.add("help", "prints the help");
	//args.add("network", "load network from .obj or .swc file");
	args.add("maxpress", "maximum allowed pressure in g / units / s^2, default 2 is for blood when units = um", "2", "real value > 0");
	args.add("viscosity", "set the viscosity of the fluid (in g / units / s), default .00001 is for blood when units = um", ".00001", "real value > 0");
	args.add("rou", "set the desity of the fluid (in g / units^3), default 1.06*10^-12 is for blood when units = um", ".00000000000106", "real value > 0");
	args.add("hilbert", "activate hilbert curves connections", "0", "value 1 for enablement");
	args.add("stackres", "spacing between pixel samples in each dimension(in units/pixel)", "1 1 1", "real value > 0");
	args.add("stackdir", "set the directory of the output image stack", "", "any existing directory (ex. /home/name/network)");
	
	args.parse(argc, argv);								// parse the command line

	if (args["help"].is_set()) {
		advertise();
		std::exit(1);
	}

	// load network
	if (args.nargs() == 0) {
		std::cout << "Network file required." << std::endl;
		return 1;
	}	
	else {						// load network from user 
		std::vector<std::string> tmp = stim::parser::split(args.arg(0), '.');
		if ("obj" == tmp[1])
			flow.load_obj(args.arg(0));
		else if ("swc" == tmp[1])
			flow.load_swc(args.arg(0));
		else {
			std::cout << "Invalid file type" << std::endl;
			std::exit(1);
		}
	}
	get_background();

	// blood pressure in capillaries range from 15 - 35 torr
	// 1 torr = 133.3 Pa
	max_pressure = args["maxpress"].as_float();

	// normal blood viscosity range from 4 - 15 mPa·s(cP)
	// 1 Pa·s = 1 g / mm / s
	u = args["viscosity"].as_float();			// g / units / s

	// normally the blood density in capillaries: 1060 kg/m^3 = 1.06*10^-12 g/um^3
	rou = args["rou"].as_float();

	// check whether to enable hilbert curves or not
	hilbert_curve = args["hilbert"].as_int();

	// get the vexel and image stack size
	dx = args["stackres"].as_float(0);
	dy = args["stackres"].as_float(1);
	dz = args["stackres"].as_float(2);

	// get the save directory of image stack
	if (args["stackdir"].is_set())
		stackdir = args["stackdir"].as_string();

	// glut main loop
	bb = flow.boundingbox();
	glut_initialize();
	glutMainLoop();
}