flow.h 87.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684
#ifndef FLOW3_H
#define FLOW3_H

#include <algorithm>

//STIM include
#include <stim/parser/arguments.h>
#include <stim/visualization/gl_network.h>
#include <stim/visualization/colormap.h>
#include <stim/math/matrix.h>
#include <stim/visualization/gl_aaboundingbox.h>
#include <stim/ui/progressbar.h>
#include <stim/grids/image_stack.h>

#ifdef __CUDACC__
#include <cublas_v2.h>
#include <stim/cuda/cudatools/error.h>
#endif

namespace stim {
	template <typename A, typename B, typename C>
	struct triple {
		A first;
		B second;
		C third;
	};

	template <typename T>
	struct bridge {
		std::vector<unsigned> v;				// vertices' indices
		std::vector<typename stim::vec3<T> > V;	// vertices' coordinates
		T l;		// length
		T r;		// radius
		T deltaP;	// pressure drop
		T Q;		// volume flow rate
	};

	template <typename T>
	struct sphere {
		stim::vec3<T> c;		// center of sphere
		T r;					// radius
	};

	template <typename T>
	struct cone {				// radius changes gradually
		stim::vec3<T> c1;		// center of geometry start hat
		stim::vec3<T> c2;		// center of geometry end hat
		T r1;					// radius at start hat
		T r2;					// radius at end hat
	};

	template <typename T>
	struct cuboid {
		stim::vec3<T> c;
		T l;					// length
		T w;					// width
		T h;					// height
	};

	template <typename T>
	struct circuit {
		std::vector<typename std::pair<unsigned, unsigned> > v;		// end vertex index
		std::vector<T> r;											// branch resistence
	};

	/// indicator function
#ifdef __CUDACC__
	// for sphere
	template <typename T>
	__global__ void inside_sphere(const stim::sphere<T> *V, unsigned num, size_t *R, T *S, unsigned char *ptr, int x, int y, int z) {

		unsigned ix = blockDim.x * blockIdx.x + threadIdx.x;
		unsigned iy = blockDim.y * blockIdx.y + threadIdx.y;

		if (ix >= R[1] || iy >= R[2]) return;		// avoid seg-fault

		// find world_pixel coordinates
		stim::vec3<T> world_pixel;
		world_pixel[0] = (T)ix * S[1] - x;			// translate origin to center of the network
		world_pixel[1] = (T)iy * S[2] - y;
		world_pixel[2] = ((T)z - R[3] / 2) * S[3];	// ???center of box minus half width

		float distance = FLT_MAX;
		float tmp_distance;
		unsigned idx;

		for (unsigned i = 0; i < num; i++) {
			tmp_distance = (V[i].c - world_pixel).len();
			if (tmp_distance <= distance) {
				distance = tmp_distance;
				idx = i;
			}
		}
		if (distance <= V[idx].r)
			ptr[(R[2] - 1 - iy) * R[0] * R[1] + ix * R[0]] = 255;
	}

	// for cone
	template <typename T>
	__global__ void inside_cone(const stim::cone<T> *E, unsigned num, size_t *R, T *S, unsigned char *ptr, int x, int y, int z) {

		unsigned ix = blockDim.x * blockIdx.x + threadIdx.x;
		unsigned iy = blockDim.y * blockIdx.y + threadIdx.y;

		if (ix >= R[1] || iy >= R[2]) return;			// avoid segfault

		stim::vec3<T> world_pixel;
		world_pixel[0] = (T)ix * S[1] - x;
		world_pixel[1] = (T)iy * S[2] - y;
		world_pixel[2] = ((T)z - R[3] / 2) * S[3];

		float distance = FLT_MAX;
		float tmp_distance;
		float rr;										// radius at the surface where projection meets

		for (unsigned i = 0; i < num; i++) {			// find the nearest cylinder
			tmp_distance = ((world_pixel - E[i].c1).cross(world_pixel - E[i].c2)).len() / (E[i].c2 - E[i].c1).len();
			if (tmp_distance <= distance) {
				// we only focus on point to line segment
				// check to see whether projection is lying outside the line segment
				float a = (world_pixel - E[i].c1).dot((E[i].c2 - E[i].c1).norm());
				float b = (world_pixel - E[i].c2).dot((E[i].c1 - E[i].c2).norm());
				float length = (E[i].c1 - E[i].c2).len();
				if (a <= length && b <= length) {		// projection lying inside the line segment
					distance = tmp_distance;
					rr = E[i].r1 + (E[i].r2 - E[i].r1) * a / (length);		// linear change
				}
			}
		}
		if (distance <= rr)
			ptr[(R[2] - 1 - iy) * R[0] * R[1] + ix * R[0]] = 255;
	}

	// for source bus
	template <typename T>
	__global__ void inside_cuboid(const stim::cuboid<T> *B, unsigned num, size_t *R, T *S, unsigned char *ptr, int x, int y, int z) {

		unsigned ix = blockDim.x * blockIdx.x + threadIdx.x;
		unsigned iy = blockDim.y * blockIdx.y + threadIdx.y;

		if (ix >= R[1] || iy >= R[2]) return;			// avoid segfault

		stim::vec3<T> world_pixel;
		world_pixel[0] = (T)ix * S[1] - x;
		world_pixel[1] = (T)iy * S[2] - y;
		world_pixel[2] = ((T)z - R[3] / 2) * S[3];

		for (unsigned i = 0; i < num; i++) {
			bool left_outside = false;					// flag indicates point is outside the left bound
			bool right_outside = false;

			stim::vec3<T> tmp = B[i].c;
			stim::vec3<T> L = stim::vec3<T>(tmp[0] - B[i].l / 2.0f, tmp[1] - B[i].h / 2.0f, tmp[2] - B[i].w / 2.0f);
			stim::vec3<T> U = stim::vec3<T>(tmp[0] + B[i].l / 2.0f, tmp[1] + B[i].h / 2.0f, tmp[2] + B[i].w / 2.0f);

			for (unsigned d = 0; d < 3; d++) {
				if (world_pixel[d] < L[d])				// if the point is less than the minimum bound
					left_outside = true;
				if (world_pixel[d] > U[d])				// if the point is greater than the maximum bound
					right_outside = true;
			}
			if (!left_outside && !right_outside)
				ptr[(R[2] - 1 - iy) * R[0] * R[1] + ix * R[0]] = 255;
		}
	}
#endif

	template <typename T>
	class flow : public stim::gl_network<T> {

	private:

		unsigned num_edge;
		unsigned num_vertex;
		GLuint dlist;					// display list for inlets/outlets connections

		enum direction { UP, LEFT, DOWN, RIGHT };

		// calculate the cofactor of elemen[row][col]
		void get_minor(T** src, T** dest, int row, int col, int order) {

			// index of element to be copied
			int rowCount = 0;
			int colCount = 0;

			for (int i = 0; i < order; i++) {
				if (i != row) {
					colCount = 0;
					for (int j = 0; j < order; j++) {
						// when j is not the element
						if (j != col) {
							dest[rowCount][colCount] = src[i][j];
							colCount++;
						}
					}
					rowCount++;
				}
			}
		}

		// calculate the det()
		T determinant(T** mat, int order) {

			// degenate case when n = 1
			if (order == 1)
				return mat[0][0];

			T det = 0.0;		// determinant value

								// allocate the cofactor matrix
			T** minor = (T**)malloc((order - 1) * sizeof(T*));
			for (int i = 0; i < order - 1; i++)
				minor[i] = (T*)malloc((order - 1) * sizeof(T));


			for (int i = 0; i < order; i++) {

				// get minor of element(0, i)
				get_minor(mat, minor, 0, i, order);

				// recursion
				det += (i % 2 == 1 ? -1.0 : 1.0) * mat[0][i] * determinant(minor, order - 1);
			}

			// release memory
			for (int i = 0; i < order - 1; i++)
				free(minor[i]);
			free(minor);

			return det;
		}

	protected:

		using stim::network<T>::E;
		using stim::network<T>::V;
		using stim::network<T>::get_start_vertex;
		using stim::network<T>::get_end_vertex;
		using stim::network<T>::get_r;
		using stim::network<T>::get_average_r;
		using stim::network<T>::get_l;

		T** C;																	// Conductance
		std::vector<typename stim::triple<unsigned, unsigned, float> > Q;		// volume flow rate
		std::vector<T> QQ;														// Q' vector
		std::vector<T> pressure;												// final pressure
		std::vector<typename std::vector<typename stim::vec3<T> > > in_backup;	// inlet connection back up
		std::vector<typename std::vector<typename stim::vec3<T> > > out_backup;
		std::string units;														// length units

	public:

		bool set = false;														// flag indicates the pressure has been set
		std::vector<T> P;														// initial pressure
		std::vector<T> v;														// velocity
		std::vector<typename stim::vec3<T> > main_feeder;						// inlet/outlet main feeder
		std::vector<unsigned> pendant_vertex;
		std::vector<typename stim::triple<unsigned, unsigned, T> > input;		// first one store which vertex, second one stores which edge, third one stores in/out volume flow rate of that vertex
		std::vector<typename stim::triple<unsigned, unsigned, T> > output;
		std::vector<typename stim::bridge<T> > inlet;							// input bridge
		std::vector<typename stim::bridge<T> > outlet;							// output bridge
		std::vector<typename stim::sphere<T> > A;			// sphere model for making image stack
		std::vector<typename stim::cone<T> > B;				// cone(cylinder) model for making image stack
		std::vector<typename stim::cuboid<T> > CU;			// cuboid model for making image stack
		stim::gl_aaboundingbox<T> bb;						// bounding box
		std::vector<bool> inlet_feasibility;				// list of flags indicate whether one inlet connection is feasible
		std::vector<bool> outlet_feasibility;
		std::vector<typename std::pair<stim::vec3<T>, stim::vec3<T> > > inbb;	// inlet connection bounding box
		std::vector<typename std::pair<stim::vec3<T>, stim::vec3<T> > > outbb;	// outlet connection bounding box
		T Ps;												// source and end pressure
		T Pe;

		flow() {}				// default constructor
		~flow() {
			for (unsigned i = 0; i < num_vertex; i++)
				delete[] C[i];
			delete[] C;
		}		// default destructor

		void init(unsigned n_e, unsigned n_v) {

			num_edge = n_e;
			num_vertex = n_v;

			C = new T*[n_v]();
			for (unsigned i = 0; i < n_v; i++) {
				C[i] = new T[n_v]();
			}

			QQ.resize(n_v);
			P.resize(n_v);
			pressure.resize(n_v);

			Q.resize(n_e);
			v.resize(n_e);
		}

		void clear() {

			for (unsigned i = 0; i < num_vertex; i++) {
				QQ[i] = 0;
				pressure[i] = 0;
				for (unsigned j = 0; j < num_vertex; j++) {
					C[i][j] = 0;
				}
			}
			main_feeder.clear();
			input.clear();
			output.clear();
			inlet.clear();
			outlet.clear();

			if (glIsList(dlist)) {
				glDeleteLists(dlist, 1);					// delete display list for modify
				glDeleteLists(dlist + 1, 1);
			}
		}

		void set_units(std::string u) {
			units = u;
		}

		// copy radius from cylinder to flow
		void set_radius(unsigned i, T radius) {

			for (unsigned j = 0; j < num_edge; j++) {
				if (E[j].v[0] == i)
					E[j].cylinder<T>::set_r(0, radius);
				else if (E[j].v[1] == i)
					E[j].cylinder<T>::set_r(E[j].size() - 1, radius);
			}
		}

		// get the radius of vertex i
		T get_radius(unsigned i) {

			unsigned tmp_e;				// edge index
			unsigned tmp_v;				// vertex index in that edge
			for (unsigned j = 0; j < num_edge; j++) {
				if (E[j].v[0] == i) {
					tmp_e = j;
					tmp_v = 0;
				}
				else if (E[j].v[1] == i) {
					tmp_e = j;
					tmp_v = E[j].size() - 1;
				}
			}

			return E[tmp_e].r(tmp_v);
		}

		// get the radius of index j of edge i
		T get_radius(unsigned i, unsigned j) {
			return E[i].r(j);
		}

		// get the velocity of pendant vertex i
		T get_velocity(unsigned i) {

			unsigned tmp_e;				// edge index
			for (unsigned j = 0; j < num_edge; j++) {
				if (E[j].v[0] == i) {
					tmp_e = j;
					break;
				}
				else if (E[j].v[1] == i) {
					tmp_e = j;
					break;
				}
			}

			return v[tmp_e];
		}

		// set pressure at specifi vertex
		void set_pressure(unsigned i, T value) {
			P[i] = value;
		}

		// solve the linear system to get stable flow state
		void solve_flow(T viscosity) {

			// clear up last time simulation
			clear();

			// get the pendant vertex indices
			pendant_vertex = get_boundary_vertex();

			// get bounding box
			bb = (*this).boundingbox();

			// set the conductance matrix of flow object
			unsigned start_vertex = 0;
			unsigned end_vertex = 0;
			for (unsigned i = 0; i < num_edge; i++) {
				start_vertex = get_start_vertex(i);		// get the start vertex index of current edge
				end_vertex = get_end_vertex(i);			// get the end vertex index of current edge

				C[start_vertex][end_vertex] = -((T)stim::PI * std::pow(get_average_r(i), 4)) / (8 * u * get_l(i));

				C[end_vertex][start_vertex] = C[start_vertex][end_vertex];
			}
			// set the diagonal to the negative sum of row element
			float sum = 0.0;
			for (unsigned i = 0; i < num_vertex; i++) {
				for (unsigned j = 0; j < num_vertex; j++) {
					sum += C[i][j];
				}
				C[i][i] = -sum;
				sum = 0.0;
			}

			// get the Q' vector QQ
			// matrix manipulation to zero out the conductance matrix as defined by the boundary values that were enterd
			for (unsigned i = 0; i < num_vertex; i++) {
				if (P[i] != 0) {			// for every dangle vertex
					for (unsigned j = 0; j < num_vertex; j++) {
						if (j == i) {
							QQ[i] = C[i][i] * P[i];
						}
						else {
							C[i][j] = 0;
							QQ[j] = QQ[j] - C[j][i] * P[i];
							C[j][i] = 0;
						}
					}
				}
			}

			// get the inverse of conductance matrix
			stim::matrix<float> _C(num_vertex, num_vertex);
			inversion(C, num_vertex, _C.data());

			// get the pressure in the network
			for (unsigned i = 0; i < num_vertex; i++) {
				for (unsigned j = 0; j < num_vertex; j++) {
					pressure[i] += _C(i, j) * QQ[j];
				}
			}

			// get the flow state from known pressure
			T start_pressure = 0.0;
			T end_pressure = 0.0;
			T deltaP = 0.0;
			for (unsigned i = 0; i < num_edge; i++) {
				start_vertex = get_start_vertex(i);
				end_vertex = get_end_vertex(i);
				start_pressure = pressure[start_vertex];		// get the start vertex pressure of current edge
				end_pressure = pressure[end_vertex];			// get the end vertex pressure of current edge
				deltaP = start_pressure - end_pressure;				// deltaP = Pa - Pb

				Q[i].first = start_vertex;
				Q[i].second = end_vertex;

				Q[i].third = ((T)stim::PI * std::pow(get_average_r(i), 4) * deltaP) / (8 * u * get_l(i));
				v[i] = Q[i].third / ((T)stim::PI * std::pow(get_average_r(i), 2));
			}
		}

		// get the brewer color map based on velocity
		void get_color_map(T& max_v, T& min_v, std::vector<unsigned char>& color, std::vector<unsigned> pendant_vertex) {

			unsigned num_edge = Q.size();
			unsigned num_vertex = QQ.size();

			// find the absolute maximum velocity and minimum velocity
			std::vector<float> abs_V(num_edge);
			for (unsigned i = 0; i < num_edge; i++) {
				abs_V[i] = std::fabsf(v[i]);
			}

			max_v = *std::max_element(abs_V.begin(), abs_V.end());
			min_v = *std::min_element(abs_V.begin(), abs_V.end());

			// get the color map based on velocity range along the network
			color.clear();
			if (pendant_vertex.size() == 2 && num_edge - num_vertex + 1 <= 0) 		// only one inlet and one outlet
				color.resize(num_edge * 3, (unsigned char)128);
			else {
				color.resize(num_edge * 3);
				stim::cpu2cpu<float>(&abs_V[0], &color[0], num_edge, min_v, max_v, stim::cmBrewer);
			}
		}

		// print flow
		void print_flow() {

			// show the pressure information in console box
			std::cout << "PRESSURE(g/" << units << "/s^2):" << std::endl;
			for (unsigned i = 0; i < num_vertex; i++) {
				std::cout << "[" << i << "] " << pressure[i] << std::endl;
			}
			// show the flow rate information in console box
			std::cout << "VOLUME FLOW RATE(" << units << "^3/s):" << std::endl;
			for (unsigned i = 0; i < num_edge; i++) {
				std::cout << "(" << Q[i].first << "," << Q[i].second << ")" << Q[i].third << std::endl;
			}
		}

		/// helper function
		// find hilbert curve order
		// @param: current direct length between two vertices
		// @param: desire length
		void find_hilbert_order(T l, T d, int &order) {

			bool flag = false;
			int o = 1;
			T tmp;					// temp of length
			while (!flag) {
				// convert from cartesian length to hilbert length
				// l -> l * (4 ^ order - 1)/(2 ^ order - 1)
				tmp = l * (std::pow(4, o) - 1) / (std::pow(2, o) - 1);
				if (tmp >= d)
					flag = true;
				else
					o++;
			}
			order = o;
		}

		// move hilbert curves
		void move(unsigned i, T *c, direction dir, T dl, int feeder, bool invert) {

			int cof = (invert) ? -1 : 1;

			switch (dir) {
			case UP:
				c[1] += dl;
				break;
			case LEFT:
				c[0] -= cof * dl;
				break;
			case DOWN:
				c[1] -= dl;
				break;
			case RIGHT:
				c[0] += cof * dl;
				break;
			}

			stim::vec3<T> tmp;
			for (unsigned i = 0; i < 3; i++)
				tmp[i] = c[i];

			if (feeder == 1)					// inlet main feeder
				inlet[i].V.push_back(tmp);
			else if (feeder == 0)				// outlet main feeder
				outlet[i].V.push_back(tmp);
		}

		// form hilbert curves
		void hilbert_curve(unsigned i, T *c, int order, T dl, int feeder, bool invert, direction dir = DOWN) {

			if (order == 1) {
				switch (dir) {
				case UP:
					move(i, c, DOWN, dl, feeder, invert);
					move(i, c, RIGHT, dl, feeder, invert);
					move(i, c, UP, dl, feeder, invert);
					break;
				case LEFT:
					move(i, c, RIGHT, dl, feeder, invert);
					move(i, c, DOWN, dl, feeder, invert);
					move(i, c, LEFT, dl, feeder, invert);
					break;
				case DOWN:
					move(i, c, UP, dl, feeder, invert);
					move(i, c, LEFT, dl, feeder, invert);
					move(i, c, DOWN, dl, feeder, invert);
					break;
				case RIGHT:
					move(i, c, LEFT, dl, feeder, invert);
					move(i, c, UP, dl, feeder, invert);
					move(i, c, RIGHT, dl, feeder, invert);
					break;
				}

			}
			else if (order > 1) {
				switch (dir) {
				case UP:
					hilbert_curve(i, c, order - 1, dl, feeder, invert, LEFT);
					move(i, c, DOWN, dl, feeder, invert);
					hilbert_curve(i, c, order - 1, dl, feeder, invert, UP);
					move(i, c, RIGHT, dl, feeder, invert);
					hilbert_curve(i, c, order - 1, dl, feeder, invert, UP);
					move(i, c, UP, dl, feeder, invert);
					hilbert_curve(i, c, order - 1, dl, feeder, invert, RIGHT);
					break;
				case LEFT:
					hilbert_curve(i, c, order - 1, dl, feeder, invert, UP);
					move(i, c, RIGHT, dl, feeder, invert);
					hilbert_curve(i, c, order - 1, dl, feeder, invert, LEFT);
					move(i, c, DOWN, dl, feeder, invert);
					hilbert_curve(i, c, order - 1, dl, feeder, invert, LEFT);
					move(i, c, LEFT, dl, feeder, invert);
					hilbert_curve(i, c, order - 1, dl, feeder, invert, DOWN);
					break;
				case DOWN:
					hilbert_curve(i, c, order - 1, dl, feeder, invert, RIGHT);
					move(i, c, UP, dl, feeder, invert);
					hilbert_curve(i, c, order - 1, dl, feeder, invert, DOWN);
					move(i, c, LEFT, dl, feeder, invert);
					hilbert_curve(i, c, order - 1, dl, feeder, invert, DOWN);
					move(i, c, DOWN, dl, feeder, invert);
					hilbert_curve(i, c, order - 1, dl, feeder, invert, LEFT);
					break;
				case RIGHT:
					hilbert_curve(i, c, order - 1, dl, feeder, invert, DOWN);
					move(i, c, LEFT, dl, feeder, invert);
					hilbert_curve(i, c, order - 1, dl, feeder, invert, RIGHT);
					move(i, c, UP, dl, feeder, invert);
					hilbert_curve(i, c, order - 1, dl, feeder, invert, RIGHT);
					move(i, c, RIGHT, dl, feeder, invert);
					hilbert_curve(i, c, order - 1, dl, feeder, invert, UP);
					break;
				}
			}
		}

		/// render function
		// find two envelope caps for two spheres
		// @param cp1, cp2: list of points on the cap
		// @param center1, center2: center point of cap
		// @param r1, r2: radius of cap
		void find_envelope(std::vector<typename stim::vec3<float> > &cp1, std::vector<typename stim::vec3<float> > &cp2, stim::vec3<float> center1, stim::vec3<float> center2, float r1, float r2, GLint subdivision) {

			stim::vec3<float> tmp_d;
			if (r1 == r2) {						// two vertices have the same radius
				tmp_d = center2 - center1;		// calculate the direction vector
				tmp_d = tmp_d.norm();
				stim::circle<float> tmp_c;		// in order to get zero direction vector
				tmp_c.rotate(tmp_d);

				stim::circle<float> c1(center1, r1, tmp_d, tmp_c.U);
				stim::circle<float> c2(center2, r2, tmp_d, tmp_c.U);
				cp1 = c1.glpoints(subdivision);
				cp2 = c2.glpoints(subdivision);
			}
			else {
				if (r1 < r2) {					// switch index, we always want r1 to be larger than r2
					stim::vec3<float> tmp_c = center2;
					center2 = center1;
					center1 = tmp_c;
					float tmp_r = r2;
					r2 = r1;
					r1 = tmp_r;
				}
				tmp_d = center2 - center1;		// bigger one points to smaller one
				tmp_d = tmp_d.norm();

				float D = (center1 - center2).len();
				stim::vec3<float> exp;
				exp[0] = (center2[0] * r1 - center1[0] * r2) / (r1 - r2);
				exp[1] = (center2[1] * r1 - center1[1] * r2) / (r1 - r2);

				stim::vec3<float> t1, t2, t3, t4;
				t1[2] = t2[2] = center1[2];		// decide the specific plane to work on
				t3[2] = t4[2] = center2[2];

				// first two
				t1[0] = pow(r1, 2)*(exp[0] - center1[0]);
				t1[0] += r1*(exp[1] - center1[1])*sqrt(pow((exp[0] - center1[0]), 2) + pow((exp[1] - center1[1]), 2) - pow(r1, 2));
				t1[0] /= (pow((exp[0] - center1[0]), 2) + pow((exp[1] - center1[1]), 2));
				t1[0] += center1[0];

				t2[0] = pow(r1, 2)*(exp[0] - center1[0]);
				t2[0] -= r1*(exp[1] - center1[1])*sqrt(pow((exp[0] - center1[0]), 2) + pow((exp[1] - center1[1]), 2) - pow(r1, 2));
				t2[0] /= (pow((exp[0] - center1[0]), 2) + pow((exp[1] - center1[1]), 2));
				t2[0] += center1[0];

				t1[1] = pow(r1, 2)*(exp[1] - center1[1]);
				t1[1] -= r1*(exp[0] - center1[0])*sqrt(pow((exp[0] - center1[0]), 2) + pow((exp[1] - center1[1]), 2) - pow(r1, 2));
				t1[1] /= (pow((exp[0] - center1[0]), 2) + pow((exp[1] - center1[1]), 2));
				t1[1] += center1[1];

				t2[1] = pow(r1, 2)*(exp[1] - center1[1]);
				t2[1] += r1*(exp[0] - center1[0])*sqrt(pow((exp[0] - center1[0]), 2) + pow((exp[1] - center1[1]), 2) - pow(r1, 2));
				t2[1] /= (pow((exp[0] - center1[0]), 2) + pow((exp[1] - center1[1]), 2));
				t2[1] += center1[1];

				// check the correctness of the points
				//float s = (center1[1] - t1[1])*(exp[1] - t1[1]) / ((t1[0] - center1[0])*(t1[0] - exp[0]));
				//if (s != 1) {			// swap t1[1] and t2[1]
				//	float tmp_t = t2[1];
				//	t2[1] = t1[1];
				//	t1[1] = tmp_t;
				//}

				// second two
				t3[0] = pow(r2, 2)*(exp[0] - center2[0]);
				t3[0] += r2*(exp[1] - center2[1])*sqrt(pow((exp[0] - center2[0]), 2) + pow((exp[1] - center2[1]), 2) - pow(r2, 2));
				t3[0] /= (pow((exp[0] - center2[0]), 2) + pow((exp[1] - center2[1]), 2));
				t3[0] += center2[0];

				t4[0] = pow(r2, 2)*(exp[0] - center2[0]);
				t4[0] -= r2*(exp[1] - center2[1])*sqrt(pow((exp[0] - center2[0]), 2) + pow((exp[1] - center2[1]), 2) - pow(r2, 2));
				t4[0] /= (pow((exp[0] - center2[0]), 2) + pow((exp[1] - center2[1]), 2));
				t4[0] += center2[0];

				t3[1] = pow(r2, 2)*(exp[1] - center2[1]);
				t3[1] -= r2*(exp[0] - center2[0])*sqrt(pow((exp[0] - center2[0]), 2) + pow((exp[1] - center2[1]), 2) - pow(r2, 2));
				t3[1] /= (pow((exp[0] - center2[0]), 2) + pow((exp[1] - center2[1]), 2));
				t3[1] += center2[1];

				t4[1] = pow(r2, 2)*(exp[1] - center2[1]);
				t4[1] += r2*(exp[0] - center2[0])*sqrt(pow((exp[0] - center2[0]), 2) + pow((exp[1] - center2[1]), 2) - pow(r2, 2));
				t4[1] /= (pow((exp[0] - center2[0]), 2) + pow((exp[1] - center2[1]), 2));
				t4[1] += center2[1];

				// check the correctness of the points
				//s = (center2[1] - t3[1])*(exp[1] - t3[1]) / ((t3[0] - center2[0])*(t3[0] - exp[0]));
				//if (s != 1) {			// swap t1[1] and t2[1]
				//	float tmp_t = t4[1];
				//	t4[1] = t3[1];
				//	t3[1] = tmp_t;
				//}

				stim::vec3<float> d1;
				float dot;
				float a;
				float new_r;
				stim::vec3<float> new_u;
				stim::vec3<float> new_c;

				// calculate the bigger circle
				d1 = t1 - center1;
				dot = d1.dot(tmp_d);
				a = dot / (r1 * 1) * r1;			// a = cos(alpha) * radius
				new_c = center1 + a * tmp_d;
				new_r = sqrt(pow(r1, 2) - pow(a, 2));
				new_u = t1 - new_c;

				stim::circle<float> c1(new_c, new_r, tmp_d, new_u);
				cp1 = c1.glpoints(subdivision);

				// calculate the smaller circle
				d1 = t3 - center2;
				dot = d1.dot(tmp_d);
				a = dot / (r2 * 1) * r2;
				new_c = center2 + a * tmp_d;
				new_r = sqrt(pow(r2, 2) - pow(a, 2));
				new_u = t3 - new_c;

				stim::circle<float> c2(new_c, new_r, tmp_d, new_u);
				cp2 = c2.glpoints(subdivision);
			}
		}

		// draw solid sphere at every vertex
		void glSolidSphere(T max_pressure, T scale, GLint subdivision) {

			// waste?
			for (unsigned i = 0; i < num_edge; i++) {
				// draw the starting vertex
				if (P[E[i].v[0]] != 0) {
					stim::vec3<float> new_color;
					new_color[0] = (P[E[i].v[0]] / max_pressure) > 0.5f ? 1.0f : 2.0f * P[E[i].v[0]] / max_pressure;						// red
					new_color[1] = 0.0f;																									// green
					new_color[2] = (P[E[i].v[0]] / max_pressure) > 0.5f ? 1.0f - 2.0f * (P[E[i].v[0]] / max_pressure - 0.5f) : 1.0f;		// blue
					glColor3f(new_color[0], new_color[1], new_color[2]);

					glPushMatrix();
					glTranslatef(E[i][0][0], E[i][0][1], E[i][0][2]);
					glutSolidSphere(get_r(i, 0) * scale, subdivision, subdivision);
					glPopMatrix();
				}
				else {
					glEnable(GL_BLEND);											// enable color blend
					glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);			// set blend function
					glDisable(GL_DEPTH_TEST);
					glColor4f(0.7f, 0.7f, 0.7f, 0.7f);							// gray color
					glPushMatrix();
					glTranslatef(E[i][0][0], E[i][0][1], E[i][0][2]);
					glutSolidSphere(get_r(i, 0) * scale, subdivision, subdivision);
					glPopMatrix();
					glDisable(GL_BLEND);
					glEnable(GL_DEPTH_TEST);
				}

				// draw the ending vertex
				if (P[E[i].v[1]] != 0) {
					stim::vec3<float> new_color;
					new_color[0] = (P[E[i].v[1]] / max_pressure) > 0.5f ? 1.0f : 2.0f * P[E[i].v[1]] / max_pressure;						// red
					new_color[1] = 0.0f;																									// green
					new_color[2] = (P[E[i].v[1]] / max_pressure) > 0.5f ? 1.0f - 2.0f * (P[E[i].v[1]] / max_pressure - 0.5f) : 1.0f;		// blue
					glColor3f(new_color[0], new_color[1], new_color[2]);

					glPushMatrix();
					glTranslatef(E[i][E[i].size() - 1][0], E[i][E[i].size() - 1][1], E[i][E[i].size() - 1][2]);
					glutSolidSphere(get_r(i, E[i].size() - 1) * scale, subdivision, subdivision);
					glPopMatrix();
				}
				else {
					glEnable(GL_BLEND);											// enable color blend
					glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);			// set blend function
					glDisable(GL_DEPTH_TEST);
					glColor4f(0.7f, 0.7f, 0.7f, 0.7f);							// gray color
					glPushMatrix();
					glTranslatef(E[i][E[i].size() - 1][0], E[i][E[i].size() - 1][1], E[i][E[i].size() - 1][2]);
					glutSolidSphere(get_r(i, E[i].size() - 1) * scale, subdivision, subdivision);
					glPopMatrix();
					glDisable(GL_BLEND);
					glEnable(GL_DEPTH_TEST);
				}
			}
		}

		// draw edges as series of cylinders
		void glSolidCylinder(unsigned index, std::vector<unsigned char> color, T scale, GLint subdivision) {

			stim::vec3<float> tmp_d;
			stim::vec3<float> center1;
			stim::vec3<float> center2;
			stim::circle<float> tmp_c;
			float r1;
			float r2;
			std::vector<typename stim::vec3<float> > cp1(subdivision + 1);
			std::vector<typename stim::vec3<float> > cp2(subdivision + 1);
			for (unsigned i = 0; i < num_edge; i++) {							// for every edge
				if (i == index) {												// render in tranparency for direction indication
					glEnable(GL_BLEND);											// enable color blend
					glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);			// set blend function
					glDisable(GL_DEPTH_TEST);
					glColor4f((float)color[i * 3 + 0] / 255, (float)color[i * 3 + 1] / 255, (float)color[i * 3 + 2] / 255, 0.3f);
				}
				else 
					glColor3f((float)color[i * 3 + 0] / 255, (float)color[i * 3 + 1] / 255, (float)color[i * 3 + 2] / 255);
					
				for (unsigned j = 0; j < E[i].size() - 1; j++) {				// for every point on the edge
					center1 = E[i][j];
					center2 = E[i][j + 1];

					r1 = get_r(i, j) * scale;
					r2 = get_r(i, j + 1) * scale;

					//// calculate the envelope caps
					//find_envelope(cp1, cp2, center1, center2, r1, r2, subdivision);
					if (j == 0) {
						if (E[i].size() == 2)
							find_envelope(cp1, cp2, center1, center2, r1, r2, subdivision);
						else {
							tmp_d = center2 - center1;
							tmp_d = tmp_d.norm();
							tmp_c.rotate(tmp_d);
							stim::circle<float> c1(center1, r1, tmp_d, tmp_c.U);
							cp1 = c1.glpoints(subdivision);
							tmp_d = (E[i][j + 2] - center2) + (center2 - center1);
							tmp_d = tmp_d.norm();
							tmp_c.rotate(tmp_d);
							stim::circle<float> c2(center2, r2, tmp_d, tmp_c.U);
							cp2 = c2.glpoints(subdivision);
						}
					}
					else if (j == E[i].size() - 2) {
						tmp_d = (center2 - center1) + (center1 - E[i][j - 1]);
						tmp_d = tmp_d.norm();
						tmp_c.rotate(tmp_d);
						stim::circle<float> c1(center1, r1, tmp_d, tmp_c.U);
						cp1 = c1.glpoints(subdivision);
						tmp_d = center2 - center1;
						tmp_d = tmp_d.norm();
						tmp_c.rotate(tmp_d);
						stim::circle<float> c2(center2, r2, tmp_d, tmp_c.U);
						cp2 = c2.glpoints(subdivision);
					} 
					else {
						tmp_d = (center2 - center1) + (center1 - E[i][j - 1]);
						tmp_d = tmp_d.norm();
						tmp_c.rotate(tmp_d);
						stim::circle<float> c1(center1, r1, tmp_d, tmp_c.U);
						cp1 = c1.glpoints(subdivision);
						tmp_d = (E[i][j + 2] - center2) + (center2 - center1);
						tmp_d = tmp_d.norm();
						tmp_c.rotate(tmp_d);
						stim::circle<float> c2(center2, r2, tmp_d, tmp_c.U);
						cp2 = c2.glpoints(subdivision);
					}

					glBegin(GL_QUAD_STRIP);
					for (unsigned j = 0; j < cp1.size(); j++) {
						glVertex3f(cp1[j][0], cp1[j][1], cp1[j][2]);
						glVertex3f(cp2[j][0], cp2[j][1], cp2[j][2]);
					}
					glEnd();
				}
				if (i == index) {
					glDisable(GL_BLEND);
					glEnable(GL_DEPTH_TEST);
				}
					
			}
			glFlush();
		}

		// draw the flow direction as cone, the size of the cone depends on the length of that edge
		void glSolidCone(unsigned i, T scale, GLint subdivision) {

			stim::vec3<T> tmp_d;									// direction
			stim::vec3<T> center;									// cone hat center
			stim::vec3<T> head;										// cone hat top
			stim::circle<T> tmp_c;
			T h;													// height base of the cone
			std::vector<typename stim::vec3<T> > cp;
			T radius;

			glColor3f(0.0f, 0.0f, 0.0f);						// lime color

			unsigned index = E[i].size() / 2 - 1;
			tmp_d = E[i][index + 1] - E[i][index];
			h = tmp_d.len() / 3.0f;									// get the height base by factor 3
			tmp_d = tmp_d.norm();
			center = (E[i][index + 1] + E[i][index]) / 2;
			tmp_c.rotate(tmp_d);
			radius = (E[i].r(index + 1) + E[i].r(index)) / 2 * scale;
			radius = (h / sqrt(3) < radius) ? h / sqrt(3) : radius;	// update radius
			if (v[i] > 0)
				head = center + tmp_d * h;
			else
				head = center - tmp_d * h;
			
			stim::circle<float> c(center, radius, tmp_d, tmp_c.U);
			cp = c.glpoints(subdivision);

			glBegin(GL_TRIANGLE_FAN);
			glVertex3f(head[0], head[1], head[2]);
			for (unsigned k = 0; k < cp.size(); k++)
				glVertex3f(cp[k][0], cp[k][1], cp[k][2]);
			glEnd();
			glFlush();

			// draw a cone for every edge to indicate 
			//for (unsigned j = 0; j < E[i].size() - 1; j++) {	// for every point on current edge
			//	tmp_d = E[i][j + 1] - E[i][j];
			//	tmp_d = tmp_d.norm();
			//	center = (E[i][j + 1] + E[i][j]) / 2;
			//	tmp_c.rotate(tmp_d);
			//	radius = (E[i].r(j + 1) + E[i].r(j)) / 2;
			//	if (v[i] > 0)									// if flow flows from j to j+1
			//		head = center + tmp_d * 2 * sqrt(3) * radius;
			//	else
			//		head = center - tmp_d * 2 * sqrt(3) * radius;

			//	stim::circle<float> c(center, radius, tmp_d, tmp_c.U);
			//	cp = c.glpoints(subdivision);

			//	glBegin(GL_TRIANGLE_FAN);
			//	glVertex3f(head[0], head[1], head[2]);
			//	for (unsigned k = 0; k < cp.size(); k++)
			//		glVertex3f(cp[k][0], cp[k][1], cp[k][2]);
			//	glEnd();
			//}
			//glFlush();
		}
		void glSolidCone(GLint subdivision) {

			stim::vec3<T> tmp_d;									// direction
			stim::vec3<T> center;									// cone hat center
			stim::vec3<T> head;										// cone hat top
			stim::circle<T> tmp_c;
			std::vector<typename stim::vec3<T> > cp;
			T h;
			T radius;

			glColor3f(0.600f, 0.847f, 0.788f);
			// draw a cone for every edge to indicate 
			for (unsigned i = 0; i < num_edge; i++) {				// for every edge
				unsigned k1 = E[i].size() / 2 - 1;					// start and end index
				unsigned k2 = E[i].size() / 2;
				tmp_d = E[i][k2] - E[i][k1];
				h = tmp_d.len() / 3.0f;								// get the height base by factor 3
				tmp_d = tmp_d.norm();
				center = (E[i][k2] + E[i][k1]) / 2;
				tmp_c.rotate(tmp_d);
				radius = (E[i].r(k2) + E[i].r(k1)) / 2;
				radius = (h / sqrt(3) < radius) ? h / sqrt(3) : radius;	// update radius by height base if necessary
				if (v[i] > 0)										// if flow flows from k1 to k2
					head = center + tmp_d * h;
				else
					head = center - tmp_d * h;
				stim::circle<float> c(center, radius, tmp_d, tmp_c.U);
				cp = c.glpoints(subdivision);

				glBegin(GL_TRIANGLE_FAN);
				glVertex3f(head[0], head[1], head[2]);
				for (unsigned k = 0; k < cp.size(); k++)
					glVertex3f(cp[k][0], cp[k][1], cp[k][2]);
				glEnd();

				//for (unsigned j = 0; j < E[i].size() - 1; j++) {	// for every point on current edge
				//	tmp_d = E[i][j + 1] - E[i][j];
				//	tmp_d = tmp_d.norm();
				//	center = (E[i][j + 1] + E[i][j]) / 2;
				//	tmp_c.rotate(tmp_d);
				//	radius = (E[i].r(j + 1) + E[i].r(j)) / 2;
				//	if (v[i] > 0)									// if flow flows from j to j+1
				//		head = center + tmp_d * 2 * sqrt(3) * radius;
				//	else
				//		head = center - tmp_d * 2 * sqrt(3) * radius;

				//	stim::circle<float> c(center, radius, tmp_d, tmp_c.U);
				//	cp = c.glpoints(subdivision);

				//	glBegin(GL_TRIANGLE_FAN);
				//	glVertex3f(head[0], head[1], head[2]);
				//	for (unsigned k = 0; k < cp.size(); k++)
				//		glVertex3f(cp[k][0], cp[k][1], cp[k][2]);
				//	glEnd();
				//}
			}
			glFlush();
		}

		// draw main feeder as solid cube
		void glSolidCuboid(bool manufacture = false, T length = 40.0f, T height = 10.0f) {

			T width;
			stim::vec3<T> L = bb.A;						// get the bottom left corner
			stim::vec3<T> U = bb.B;						// get the top right corner
			width = U[2] - L[2] + 10.0f;

			if (manufacture)
				glColor3f(0.0f, 0.0f, 0.0f);			// black color
			else
				glColor3f(0.5f, 0.5f, 0.5f);			// gray color
			for (unsigned i = 0; i < main_feeder.size(); i++) {
				// front face
				glBegin(GL_QUADS);
				glVertex3f(main_feeder[i][0] - length / 2, main_feeder[i][1] - height / 2, main_feeder[i][2] - width / 2);
				glVertex3f(main_feeder[i][0] + length / 2, main_feeder[i][1] - height / 2, main_feeder[i][2] - width / 2);
				glVertex3f(main_feeder[i][0] + length / 2, main_feeder[i][1] + height / 2, main_feeder[i][2] - width / 2);
				glVertex3f(main_feeder[i][0] - length / 2, main_feeder[i][1] + height / 2, main_feeder[i][2] - width / 2);
				glEnd();

				// back face
				glBegin(GL_QUADS);
				glVertex3f(main_feeder[i][0] - length / 2, main_feeder[i][1] - height / 2, main_feeder[i][2] + width / 2);
				glVertex3f(main_feeder[i][0] + length / 2, main_feeder[i][1] - height / 2, main_feeder[i][2] + width / 2);
				glVertex3f(main_feeder[i][0] + length / 2, main_feeder[i][1] + height / 2, main_feeder[i][2] + width / 2);
				glVertex3f(main_feeder[i][0] - length / 2, main_feeder[i][1] + height / 2, main_feeder[i][2] + width / 2);
				glEnd();

				// top face
				glBegin(GL_QUADS);
				glVertex3f(main_feeder[i][0] - length / 2, main_feeder[i][1] + height / 2, main_feeder[i][2] - width / 2);
				glVertex3f(main_feeder[i][0] + length / 2, main_feeder[i][1] + height / 2, main_feeder[i][2] - width / 2);
				glVertex3f(main_feeder[i][0] + length / 2, main_feeder[i][1] + height / 2, main_feeder[i][2] + width / 2);
				glVertex3f(main_feeder[i][0] - length / 2, main_feeder[i][1] + height / 2, main_feeder[i][2] + width / 2);
				glEnd();

				// bottom face
				glBegin(GL_QUADS);
				glVertex3f(main_feeder[i][0] - length / 2, main_feeder[i][1] - height / 2, main_feeder[i][2] - width / 2);
				glVertex3f(main_feeder[i][0] + length / 2, main_feeder[i][1] - height / 2, main_feeder[i][2] - width / 2);
				glVertex3f(main_feeder[i][0] + length / 2, main_feeder[i][1] - height / 2, main_feeder[i][2] + width / 2);
				glVertex3f(main_feeder[i][0] - length / 2, main_feeder[i][1] - height / 2, main_feeder[i][2] + width / 2);
				glEnd();

				// left face
				glBegin(GL_QUADS);
				glVertex3f(main_feeder[i][0] - length / 2, main_feeder[i][1] - height / 2, main_feeder[i][2] - width / 2);
				glVertex3f(main_feeder[i][0] - length / 2, main_feeder[i][1] - height / 2, main_feeder[i][2] + width / 2);
				glVertex3f(main_feeder[i][0] - length / 2, main_feeder[i][1] + height / 2, main_feeder[i][2] + width / 2);
				glVertex3f(main_feeder[i][0] - length / 2, main_feeder[i][1] + height / 2, main_feeder[i][2] - width / 2);
				glEnd();

				// right face
				glBegin(GL_QUADS);
				glVertex3f(main_feeder[i][0] + length / 2, main_feeder[i][1] - height / 2, main_feeder[i][2] - width / 2);
				glVertex3f(main_feeder[i][0] + length / 2, main_feeder[i][1] + height / 2, main_feeder[i][2] - width / 2);
				glVertex3f(main_feeder[i][0] + length / 2, main_feeder[i][1] + height / 2, main_feeder[i][2] + width / 2);
				glVertex3f(main_feeder[i][0] + length / 2, main_feeder[i][1] - height / 2, main_feeder[i][2] + width / 2);
				glEnd();
			}
			glFlush();
		}

		// display the total volume flow rate
		void display_flow_rate(T in, T out) {
			
			glMatrixMode(GL_PROJECTION);									// set up the 2d viewport for mode text printing
			glPushMatrix();
			glLoadIdentity();
			int X = glutGet(GLUT_WINDOW_WIDTH);								// get the current window width
			int Y = glutGet(GLUT_WINDOW_HEIGHT);							// get the current window height
			glViewport(0, 0, X, Y);											// locate to left bottom corner
			gluOrtho2D(0, X, 0, Y);											// define othogonal aspect
			glColor3f(0.8f, 0.0f, 0.0f);									// using red to show mode
			glMatrixMode(GL_MODELVIEW);
			glPushMatrix();
			glLoadIdentity();

			glRasterPos2f(X / 2, 5);										// hard coded position!!!!!
			std::stringstream ss_p;
			ss_p << "Q = ";				// Q = * um^3/s
			ss_p << in;					
			ss_p << " ";
			ss_p << units;
			ss_p << "^3/s";
			glutBitmapString(GLUT_BITMAP_TIMES_ROMAN_24, (const unsigned char*)(ss_p.str().c_str()));

			glPopMatrix();
			glMatrixMode(GL_PROJECTION);
			glPopMatrix();
		}

		// draw the bridge as lines
		void line_bridge(bool &redisplay) {

			if (redisplay)
				glDeleteLists(dlist, 1);
			redisplay = false;

			if (!glIsList(dlist)) {
				dlist = glGenLists(1);
				glNewList(dlist, GL_COMPILE);
				
				glLineWidth(5);
				for (unsigned i = 0; i < inlet.size(); i++) {
					if (inlet_feasibility[i])
						glColor3f(0.0f, 0.0f, 0.0f);			// feasible -> black
					else
						glColor3f(1.0f, 0.0f, 0.0f);			// nonfeasible -> red

					glBegin(GL_LINE_STRIP);
					for (unsigned j = 0; j < inlet[i].V.size(); j++)
						glVertex3f(inlet[i].V[j][0], inlet[i].V[j][1], inlet[i].V[j][2]);
					glEnd();
				}
				for (unsigned i = 0; i < outlet.size(); i++) {
					if (outlet_feasibility[i])
						glColor3f(0.0f, 0.0f, 0.0f);			// feasible -> black
					else
						glColor3f(1.0f, 0.0f, 0.0f);			// nonfeasible -> red
					glBegin(GL_LINE_STRIP);
					for (unsigned j = 0; j < outlet[i].V.size(); j++)
						glVertex3f(outlet[i].V[j][0], outlet[i].V[j][1], outlet[i].V[j][2]);
					glEnd();
				}
				glFlush();
				glEndList();
			}
			glCallList(dlist);
		}

		// draw the bridge as tubes
		void tube_bridge(T subdivision, T radius = 5.0f) {

			if (!glIsList(dlist + 1)) {
				glNewList(dlist + 1, GL_COMPILE);

				stim::vec3<T> dir;							// direction vector
				stim::circle<T> unit_c;						// unit circle for finding the rotation start direction
				std::vector<typename stim::vec3<T> > cp1;
				std::vector<typename stim::vec3<T> > cp2;
				glColor3f(0.0f, 0.0f, 0.0f);

				for (unsigned i = 0; i < inlet.size(); i++) {
					// render vertex as sphere
					for (unsigned j = 1; j < inlet[i].V.size() - 1; j++) {
						glPushMatrix();
						glTranslatef(inlet[i].V[j][0], inlet[i].V[j][1], inlet[i].V[j][2]);
						glutSolidSphere(radius, subdivision, subdivision);
						glPopMatrix();
					}
					// render edge as cylinder
					for (unsigned j = 0; j < inlet[i].V.size() - 1; j++) {
						dir = inlet[i].V[j] - inlet[i].V[j + 1];
						dir = dir.norm();
						unit_c.rotate(dir);
						stim::circle<T> c1(inlet[i].V[j], inlet[i].r, dir, unit_c.U);
						stim::circle<T> c2(inlet[i].V[j + 1], inlet[i].r, dir, unit_c.U);
						cp1 = c1.glpoints(subdivision);
						cp2 = c2.glpoints(subdivision);

						glBegin(GL_QUAD_STRIP);
						for (unsigned k = 0; k < cp1.size(); k++) {
							glVertex3f(cp1[k][0], cp1[k][1], cp1[k][2]);
							glVertex3f(cp2[k][0], cp2[k][1], cp2[k][2]);
						}
						glEnd();
					}
				}

				for (unsigned i = 0; i < outlet.size(); i++) {
					// render vertex as sphere
					for (unsigned j = 1; j < outlet[i].V.size() - 1; j++) {
						glPushMatrix();
						glTranslatef(outlet[i].V[j][0], outlet[i].V[j][1], outlet[i].V[j][2]);
						glutSolidSphere(radius, subdivision, subdivision);
						glPopMatrix();
					}
					// render edge as cylinder
					for (unsigned j = 0; j < outlet[i].V.size() - 1; j++) {
						dir = outlet[i].V[j] - outlet[i].V[j + 1];
						dir = dir.norm();
						unit_c.rotate(dir);
						stim::circle<T> c1(outlet[i].V[j], outlet[i].r, dir, unit_c.U);
						stim::circle<T> c2(outlet[i].V[j + 1], outlet[i].r, dir, unit_c.U);
						cp1 = c1.glpoints(subdivision);
						cp2 = c2.glpoints(subdivision);

						glBegin(GL_QUAD_STRIP);
						for (unsigned k = 0; k < cp1.size(); k++) {
							glVertex3f(cp1[k][0], cp1[k][1], cp1[k][2]);
							glVertex3f(cp2[k][0], cp2[k][1], cp2[k][2]);
						}
						glEnd();
					}
				}
				glEndList();
			}
			glCallList(dlist + 1);
		}	

		// draw gradient color bounding box outside the object
		void bounding_box() {

			stim::vec3<T> L = bb.A;						// get the bottom left corner
			stim::vec3<T> U = bb.B;						// get the top right corner
			
			glLineWidth(1);
			// front face of the box (in L[2])
			glBegin(GL_LINE_LOOP);
			glColor3f(0.0f, 0.0f, 0.0f);
			glVertex3f(L[0], L[1], L[2]);
			glColor3f(0.0f, 1.0f, 0.0f);
			glVertex3f(L[0], U[1], L[2]);
			glColor3f(1.0f, 1.0f, 0.0f);
			glVertex3f(U[0], U[1], L[2]);
			glColor3f(1.0f, 0.0f, 0.0f);
			glVertex3f(U[0], L[1], L[2]);
			glEnd();

			// back face of the box (in U[2])
			glBegin(GL_LINE_LOOP);
			glColor3f(1.0f, 1.0f, 1.0f);
			glVertex3f(U[0], U[1], U[2]);
			glColor3f(0.0f, 1.0f, 1.0f);
			glVertex3f(L[0], U[1], U[2]);
			glColor3f(0.0f, 0.0f, 1.0f);
			glVertex3f(L[0], L[1], U[2]);
			glColor3f(1.0f, 0.0f, 1.0f);
			glVertex3f(U[0], L[1], U[2]);
			glEnd();

			// fill out the rest of the lines to connect the two faces
			glBegin(GL_LINES);
			glColor3f(0.0f, 1.0f, 0.0f);
			glVertex3f(L[0], U[1], L[2]);
			glColor3f(0.0f, 1.0f, 1.0f);
			glVertex3f(L[0], U[1], U[2]);
			glColor3f(1.0f, 1.0f, 1.0f);
			glVertex3f(U[0], U[1], U[2]);
			glColor3f(1.0f, 1.0f, 0.0f);
			glVertex3f(U[0], U[1], L[2]);
			glColor3f(1.0f, 0.0f, 0.0f);
			glVertex3f(U[0], L[1], L[2]);
			glColor3f(1.0f, 0.0f, 1.0f);
			glVertex3f(U[0], L[1], U[2]);
			glColor3f(0.0f, 0.0f, 1.0f);
			glVertex3f(L[0], L[1], U[2]);
			glColor3f(0.0f, 0.0f, 0.0f);
			glVertex3f(L[0], L[1], L[2]);
			glEnd();
		}

		// mark the vertex
		void mark_vertex(T scale) {
			
			glColor3f(0.0f, 0.0f, 0.0f);
			for (unsigned i = 0; i < num_vertex; i++) {
				glRasterPos3f(V[i][0], V[i][1] + get_radius(i) * scale, V[i][2]);
				std::stringstream ss;
				ss << i;
				glutBitmapString(GLUT_BITMAP_HELVETICA_18, (const unsigned char*)(ss.str().c_str()));
			}
		}

		// find the nearest vertex of current click position
		// return true and a value if found
		inline bool epsilon_vertex(T x, T y, T z, T eps, T scale, unsigned& v) {

			T d = FLT_MAX;										// minimum distance between 2 vertices
			T tmp_d = 0.0f;										// temporary stores distance for loop
			unsigned tmp_i = 0;									// temporary stores connection index for loop
			stim::vec3<T> tmp_v;								// temporary stores current loop point
			d = FLT_MAX;										// set to max of float number

			for (unsigned i = 0; i < V.size(); i++) {
				tmp_v = stim::vec3<T>(x, y, z);
	
				tmp_v = tmp_v - V[i];							// calculate a vector between two vertices
				tmp_d = tmp_v.len();							// calculate length of that vector
				if (tmp_d < d) {
					d = tmp_d;									// if found a nearer vertex 
					tmp_i = i;									// get the index of that vertex
				}
			}
			eps += get_radius(tmp_i) * scale;					// increase epsilon accordingly
			if (d < eps) {										// if current click is close to any vertex
				v = tmp_i;										// copy the extant vertex's index to v
				return true;
			}

			return false;
		}

		// find the nearest inlet/outlet connection line of current click position
		// ab -> line segment, v -> point
		// return true and a value if found
		inline bool epsilon_edge(T x, T y, T z, T eps, unsigned &idx) {

			T d = FLT_MAX;
			T tmp_d;
			unsigned tmp_i = 0;
			unsigned tmp_j = 0;
			stim::vec3<T> v1;
			stim::vec3<T> v2;
			stim::vec3<T> v3;
			stim::vec3<T> v0 = stim::vec3<float>(x, y, z);
			bool online = false;					// flag indicates the point is on the line-segment
			float a, b;

			// inner network
			for (unsigned i = 0; i < E.size(); i++) {
				for (unsigned j = 0; j < E[i].size() - 1; j++) {
					v1 = E[i][j + 1] - E[i][j];		// a -> b = ab
					v2 = v0 - E[i][j];				// a -> v = av
					v3 = v0 - E[i][j + 1];			// b -> v = bv

					tmp_d = v2.dot(v1);				// avยทab

					// check the line relative position
					a = v2.dot(v1.norm());
					b = v3.dot(v1.norm());
					if (a < v1.len() && b < v1.len())		// if the length of projection fragment is longer than the line-segment
						online = true;
					else
						online = false;

					if (tmp_d <= 0.0 || tmp_d >= std::pow(v1.len(), 2) && !online)	// projection lies outside the line-segment
						continue;
					else {
						tmp_d = v1.cross(v2).len() / v1.len();						// perpendicular distance of point to segment: |v1 x v2| / |v1|
						if (tmp_d < d) {
							d = tmp_d;
							tmp_i = i;
							tmp_j = j;
						}
					} 
				}
			}

			eps += get_radius(tmp_i, tmp_j);

			if (d < eps) {
				idx = tmp_i;
				return true;
			}

			return false;
		}
		inline bool epsilon_edge(T x, T y, T z, T eps, unsigned &idx, unsigned &port) {

			T d = FLT_MAX;
			T tmp_d;
			unsigned tmp_i = 0;
			stim::vec3<T> v1;
			stim::vec3<T> v2;
			stim::vec3<T> v3;
			stim::vec3<T> v0 = stim::vec3<float>(x, y, z);
			bool online = false;					// flag indicates the point is on the line-segment
			float a, b;

			// inlet connection
			for (unsigned i = 0; i < inlet.size(); i++) {
				for (unsigned j = 0; j < inlet[i].V.size() - 1; j++) {
					v1 = inlet[i].V[j + 1] - inlet[i].V[j];
					v2 = v0 - inlet[i].V[j];
					v3 = v0 - inlet[i].V[j + 1];

					tmp_d = v2.dot(v1);				// avยทab

					// check the line relative position
					a = v2.dot(v1.norm());
					b = v3.dot(v1.norm());
					if (a < v1.len() && b < v1.len())		// if the length of projection fragment is longer than the line-segment
						online = true;
					else
						online = false;

					if (tmp_d <= 0.0 || tmp_d > std::pow(v1.len(), 2) && !online)	// projection lies outside the line-segment
						continue;
					else {
						tmp_d = v1.cross(v2).len() / v1.len();						// perpendicular distance of point to segment: |v1 x v2| / |v1|
						if (tmp_d < d) {
							d = tmp_d;
							tmp_i = i;
							port = 0;
						}
					}
				
				}
			}

			// outlet connection
			for (unsigned i = 0; i < outlet.size(); i++) {
				for (unsigned j = 0; j < outlet[i].V.size() - 1; j++) {
					v1 = outlet[i].V[j + 1] - outlet[i].V[j];
					v2 = v0 - outlet[i].V[j];
					v3 = v0 - outlet[i].V[j + 1];

					tmp_d = v2.dot(v1);				// avยทab

					// check the line relative position
					a = v2.dot(v1.norm());
					b = v3.dot(v1.norm());
					if (a < v1.len() && b < v1.len())		// if the length of projection fragment is longer than the line-segment
						online = true;
					else
						online = false;

					if (tmp_d <= 0.0 || tmp_d > std::pow(v1.len(), 2) && !online)	// projection lies outside the line-segment
						continue;
					else {
						tmp_d = v1.cross(v2).len() / v1.len();						// perpendicular distance of point to segment: |v1 x v2| / |v1|
						if (tmp_d < d) {
							d = tmp_d;
							tmp_i = i;
							port = 1;
						}
					}
				}
			}

			if (d < eps) {
				idx = tmp_i;
				return true;
			}

			return false;
		}

		/// build main feeder connection
		// set up main feeder and main port of both input and output
		void set_main_feeder(T border = 100.0f) {
			
			// 0 means outgoing while 1 means incoming
			stim::vec3<T> inlet_main_feeder;
			stim::vec3<T> outlet_main_feeder;

			inlet_main_feeder = stim::vec3<T>(bb.A[0] - border, bb.center()[1], bb.center()[2]);
			outlet_main_feeder = stim::vec3<T>(bb.B[0] + border, bb.center()[1], bb.center()[2]);
			
			main_feeder.push_back(inlet_main_feeder);		// 0->inlet, 1->outlet
			main_feeder.push_back(outlet_main_feeder);

			// find both input and output vertex
			stim::triple<unsigned, unsigned, float> tmp;
			unsigned N = pendant_vertex.size();				// get the number of dangle vertex
			unsigned idx = 0;
			for (unsigned i = 0; i < N; i++) {				// for every boundary vertex
				idx = pendant_vertex[i];
				for (unsigned j = 0; j < num_edge; j++) {	// for every edge
					if (Q[j].first == idx) {			// starting vertex
						if (Q[j].third > 0) {			// flow comes in
							tmp.first = idx;
							tmp.second = j;
							tmp.third = Q[j].third;
							input.push_back(tmp);
							break;
						}
						// their might be a degenerate case that it equals to 0?
						else if (Q[j].third < 0) {		// flow comes out
							tmp.first = idx;
							tmp.second = j;
							tmp.third = -Q[j].third;
							output.push_back(tmp);
							break;
						}
					}
					else if (Q[j].second == idx) {		// ending vertex
						if (Q[j].third > 0) {			// flow comes in
							tmp.first = idx;
							tmp.second = j;
							tmp.third = Q[j].third;
							output.push_back(tmp);
							break;
						}
						// their might be a degenerate case that it equals to 0?
						else if (Q[j].third < 0) {		// flow comes out
							tmp.first = idx;
							tmp.second = j;
							tmp.third = -Q[j].third;
							input.push_back(tmp);
							break;
						}
					}
				}
			}
		}

		// build connection between all inlets and outlets
		// connection will trail along one axis around the bounding box
		void build_synthetic_connection(T viscosity, T radius = 5.0f) {
			
			stim::vec3<T> L = bb.A;						// get the bottom left corner
			stim::vec3<T> U = bb.B;						// get the top right corner
			T box_length = U[0] - L[0];
			T x0, dx;

			stim::vec3<T> tmp_v;						// start vertex
			stim::vec3<T> mid_v;						// middle point of the bridge
			stim::vec3<T> bus_v;						// point on the bus
			x0 = main_feeder[0][0] + 15.0f;				// assume bus length is 40.0f
			for (unsigned i = 0; i < input.size(); i++) {
				
				tmp_v = V[input[i].first];
				dx = 30.0f * ((tmp_v[0] - L[0]) / box_length);		// the socket position depends on proximity
				bus_v = stim::vec3<T>(x0 - dx, main_feeder[0][1], tmp_v[2]);
				mid_v = stim::vec3<T>(x0 - dx, tmp_v[1], tmp_v[2]);

				stim::bridge<T> tmp_b;
				tmp_b.V.push_back(bus_v);
				tmp_b.V.push_back(mid_v);
				tmp_b.V.push_back(tmp_v);
				tmp_b.v.push_back(input[i].first);
				tmp_b.Q = input[i].third;
				tmp_b.l = (bus_v - mid_v).len() + (mid_v - tmp_v).len();
				tmp_b.r = radius;

				inlet.push_back(tmp_b);
			}

			x0 = main_feeder[1][0] - 15.0f;
			for (unsigned i = 0; i < output.size(); i++) {

				tmp_v = V[output[i].first];
				dx = 30.0f * ((U[0] - tmp_v[0]) / box_length);		// the socket position depends on proximity
				bus_v = stim::vec3<T>(x0 + dx, main_feeder[1][1], tmp_v[2]);
				mid_v = stim::vec3<T>(x0 + dx, tmp_v[1], tmp_v[2]);

				stim::bridge<T> tmp_b;
				tmp_b.V.push_back(bus_v);
				tmp_b.V.push_back(mid_v);
				tmp_b.V.push_back(tmp_v);
				tmp_b.v.push_back(output[i].first);
				tmp_b.Q = output[i].third;
				tmp_b.l = (bus_v - mid_v).len() + (mid_v - tmp_v).len();
				tmp_b.r = radius;

				outlet.push_back(tmp_b);
			}

			backup();
		}

		// find the number of U-shape or square-shape structure for extending length of connection
		// @param t: width = t * radius
		int find_number_square(T origin_l, T desire_l, T radius = 5.0f, int times = 4) {
			
			bool done = false;						// flag indicates the current number of square shape structure is feasible
			int n = origin_l / (times * 4 * radius);// number of square shape structure
			T need_l = desire_l - origin_l;
			T height;								// height of the square shapce structure

			while (!done) {
				height = need_l / (2 * n);			// calculate the height
				if (height > 2 * radius) {
					done = true;
				}
				else {
					n--;
				}
			}
			
			return n;
		}

		// build square connections
		void build_square_connection(int i, T width, T height, T origin_l, T desire_l, int n, int feeder, T threshold, bool z, bool left = true, bool up = true, int times = 4, T ratio = 0, T radius = 5.0f) {
		
			int coef_up = (up) ? 1 : -1;				// y coefficient
			int coef_left = (left) ? 1 : -1;			// x coefficient
			int coef_z = (z) ? 1 : -1;					// z coefficient
			int inverse = 1;							// inverse flag
			stim::vec3<T> cor_v;						// corner vertex
			std::pair<stim::vec3<T>, stim::vec3<T>> tmp_bb;
			stim::vec3<T> tmp_v;
			if (feeder == 1) 
				tmp_v = inlet[i].V[inlet[i].V.size() - 1];
			else if (feeder == 0) 
				tmp_v = outlet[i].V[outlet[i].V.size() - 1];
			tmp_bb.first = tmp_v;

			// pre-set fragments
			if (ratio) {
				T tmp_d, tmp_l;														// back ups
				tmp_d = desire_l;	
				tmp_l = origin_l;

				cor_v = tmp_v + stim::vec3<T>(-coef_left * origin_l, 0, 0);			// get the original corner vertex
				desire_l = desire_l - origin_l * (1.0f - ratio / 1.0f);
				origin_l = (T)origin_l * ratio / 1.0f;
				n = find_number_square(origin_l, desire_l);
				
				width = (T)origin_l / (2 * n);										// updates
				height = (desire_l - origin_l) / (2 * n);
				
				if (width < times * radius) {										// check feasibility
					ratio = 0.0f;													// load
					desire_l = tmp_d;
					origin_l = tmp_l;

					std::cout << "Warning: current ratio is not feasible, use full original line." << std::endl;
					n = find_number_square(origin_l, desire_l);

					width = (T)origin_l / (2 * n);									// updates
					height = (desire_l - origin_l) / (2 * n);
				}
			}

			// check whether it needs 3D square-wave-like connections
			if (height > threshold) {					// enbale 3D connections
				
				height = (desire_l - (1 + 2 * n) * origin_l) / std::pow(2 * n, 2);	// compute new height in 3D structure
				while (height > threshold) {			// increase order to decrease height
					n++;
					width = (T)(origin_l) / (2 * n);
					height = (desire_l - (1 + 2 * n) * origin_l) / std::pow(2 * n, 2);
					// check whether it appears overlap, if it appears we choose last time height even if it is larger than threshold
					if (width < times * radius) {
						n--;
						width = (T)(origin_l) / (2 * n);
						height = (desire_l - (1 + 2 * n) * origin_l) / std::pow(2 * n, 2);
						break;
					}
				}

				// check overlap in terms of height, has potential risk when both height and width are less than times * radius.
				while (height < times * radius) {
					n--;
					width = (T)(origin_l) / (2 * n);
					height = (desire_l - (1 + 2 * n) * origin_l) / std::pow(2 * n, 2);
				}

				// degenerated case
				if (n == 0) {
					n = 1;
					width = (T)(origin_l) / (2 * n);
					height = (desire_l - (1 + 2 * n) * origin_l) / std::pow(2 * n, 2);
				}
			
				// cube-like structure construction
				for (int j = 0; j < n; j++) {
					// "up"
					for (int k = 0; k < n; k++) {
						// in
						tmp_v = tmp_v + stim::vec3<T>(0, 0, coef_z * height);
						if (feeder == 1)
							inlet[i].V.push_back(tmp_v);
						else if (feeder == 0)
							outlet[i].V.push_back(tmp_v);
						// "up"
						tmp_v = tmp_v + stim::vec3<T>(0, inverse * coef_up * width, 0);
						if (feeder == 1)
							inlet[i].V.push_back(tmp_v);
						else if (feeder == 0)
							outlet[i].V.push_back(tmp_v);
						// out
						tmp_v = tmp_v + stim::vec3<T>(0, 0, -coef_z * height);
						if (feeder == 1)
							inlet[i].V.push_back(tmp_v);
						else if (feeder == 0)
							outlet[i].V.push_back(tmp_v);
						// "up"
						tmp_v = tmp_v + stim::vec3<T>(0, inverse * coef_up * width, 0);
						if (feeder == 1)
							inlet[i].V.push_back(tmp_v);
						else if (feeder == 0)
							outlet[i].V.push_back(tmp_v);
					}

					// "left"
					tmp_v = tmp_v + stim::vec3<T>(-coef_left * width, 0, 0);
					if (feeder == 1)
						inlet[i].V.push_back(tmp_v);
					else if (feeder == 0)
						outlet[i].V.push_back(tmp_v);

					if (inverse == 1)					// revert inverse
						inverse = -1;
					else
						inverse = 1;

					// "down"
					for (int k = 0; k < n; k++) {
						// in
						tmp_v = tmp_v + stim::vec3<T>(0, 0, coef_z * height);
						if (feeder == 1)
							inlet[i].V.push_back(tmp_v);
						else if (feeder == 0)
							outlet[i].V.push_back(tmp_v);
						// get the bounding box edge
						if (j == n - 1 && k == 0)		// first time go "in"
							tmp_bb.second = tmp_v;
						// "down"
						tmp_v = tmp_v + stim::vec3<T>(0, inverse * coef_up * width, 0);
						if (feeder == 1)
							inlet[i].V.push_back(tmp_v);
						else if (feeder == 0)
							outlet[i].V.push_back(tmp_v);
						// out
						tmp_v = tmp_v + stim::vec3<T>(0, 0, -coef_z * height);
						if (feeder == 1)
							inlet[i].V.push_back(tmp_v);
						else if (feeder == 0)
							outlet[i].V.push_back(tmp_v);
						// "down"
						tmp_v = tmp_v + stim::vec3<T>(0, inverse * coef_up * width, 0);
						if (feeder == 1)
							inlet[i].V.push_back(tmp_v);
						else if (feeder == 0)
							outlet[i].V.push_back(tmp_v);
					}

					// "left"
					tmp_v = tmp_v + stim::vec3<T>(-coef_left * width, 0, 0);
					if (feeder == 1)
						inlet[i].V.push_back(tmp_v);
					else if (feeder == 0)
						outlet[i].V.push_back(tmp_v);

					if (inverse == 1)					// revert inverse
						inverse = -1;
					else
						inverse = 1;
				}
				// if use fragment to do square wave connection, need to push_back the corner vertex
				if (ratio > 0.0f && ratio < 1.0f) {
					if (feeder == 1)
						inlet[i].V.push_back(cor_v);
					else if (feeder == 0)
						outlet[i].V.push_back(cor_v);
				}
			}
			// use 2D square-wave-like connections
			else {
				if (height < times * radius) {			// if height is too small, decrease n and re-calculate height and width
					height = times * radius;
					T need_l = desire_l - origin_l;
					n = need_l / (2 * height);
					if (n == 0)							// degenerated case
						n = 1;
					height = need_l / (2 * n);
					width = origin_l / (2 * n);
				}
				for (int j = 0; j < n; j++) {

					// up
					tmp_v = tmp_v + stim::vec3<T>(0, coef_up * height, 0);
					if (feeder == 1)
						inlet[i].V.push_back(tmp_v);
					else if (feeder == 0)
						outlet[i].V.push_back(tmp_v);

					// left
					tmp_v = tmp_v + stim::vec3<T>(-coef_left * width, 0, 0);
					if (feeder == 1)
						inlet[i].V.push_back(tmp_v);
					else if (feeder == 0)
						outlet[i].V.push_back(tmp_v);
					if (j == n - 1)
						tmp_bb.second = tmp_v;

					// down
					tmp_v = tmp_v + stim::vec3<T>(0, -coef_up * height, 0);
					if (feeder == 1)
						inlet[i].V.push_back(tmp_v);
					else if (feeder == 0)
						outlet[i].V.push_back(tmp_v);

					// left
					tmp_v = tmp_v + stim::vec3<T>(-coef_left * width, 0, 0);
					if (feeder == 1)
						inlet[i].V.push_back(tmp_v);
					else if (feeder == 0)
						outlet[i].V.push_back(tmp_v);
				}
				// if use fragment to do square wave connection, need to push_back the corner vertex
				if (ratio > 0.0f && ratio < 1.0f) {
					if (feeder == 1)
						inlet[i].V.push_back(cor_v);
					else if (feeder == 0)
						outlet[i].V.push_back(cor_v);
				}
			}
			if (feeder == 1)
				inbb[i] = tmp_bb;
			else if (feeder == 0)
				outbb[i] = tmp_bb;
		}

		// automatically modify bridge to make it feasible
		void modify_synthetic_connection(T viscosity, T rou, bool H, T threshold, T &in, T &out, T ratio = 0.0f, T radius = 5.0f) {

			glDeleteLists(dlist, 1);					// delete display list for modify
			glDeleteLists(dlist + 1, 1);
			
			// because of radius change at the port vertex, there will be a pressure drop at that port
			// it follows the bernoulli equation
			// p1 + 1/2*rou*v1^2 + rou*g*h1 = p2 + 1/2*rou*v2^2 + rou*g*h2
			// Q1 = Q2 -> v1*r1^2 = v2*r2^2
			std::vector<T> new_pressure = pressure;
			unsigned idx;
			for (unsigned i = 0; i < pendant_vertex.size(); i++) {
				idx = pendant_vertex[i];
				T tmp_v = get_velocity(idx);			// velocity at that pendant vertex
				T ar = get_radius(idx) / radius;
				new_pressure[idx] = pressure[idx] + 1.0f / 2.0f * rou * std::pow(tmp_v, 2) * (1.0f - std::pow(ar, 4));
			}

			// increase r -> increase Q -> decrease l
			// find maximum pressure inlet port
			T source_pressure = FLT_MIN;	// source pressure
			unsigned inlet_index;
			T tmp_p;
			for (unsigned i = 0; i < inlet.size(); i++) {
				tmp_p = new_pressure[inlet[i].v[0]] + ((8 * viscosity * inlet[i].l * inlet[i].Q) / ((float)stim::PI * std::pow(radius, 4)));
				if (tmp_p > source_pressure) {
					source_pressure = tmp_p;
					inlet_index = i;
				}
			}
			Ps = source_pressure;

			// find minimum pressure outlet port
			T end_pressure = FLT_MAX;
			unsigned outlet_index;
			for (unsigned i = 0; i < outlet.size(); i++) {
				tmp_p = new_pressure[outlet[i].v[0]] - ((8 * viscosity * outlet[i].l * outlet[i].Q) / ((float)stim::PI * std::pow(radius, 4)));
				if (tmp_p < end_pressure) {
					end_pressure = tmp_p;
					outlet_index = i;
				}
			}
			Pe = end_pressure;

			// automatically modify inlet bridge using Hilbert curves
			if (H) {
				bool upper = false;						// flag indicates the whether the port is upper than main feeder
				bool invert = false;					// there are two version of hilbert curve depends on starting position with respect to the cup
				T new_l;
				stim::vec3<T> bus_v;					// the port point on the bus
				stim::vec3<T> mid_v;					// the original corner point
				stim::vec3<T> tmp_v;					// the pendant point
				int order = 0;							// order of hilbert curve (iteration)
				for (unsigned i = 0; i < inlet.size(); i++) {
					if (i != inlet_index) {
						new_l = (source_pressure - new_pressure[inlet[i].v[0]]) * ((float)stim::PI * std::pow(radius, 4)) / (8 * viscosity * inlet[i].Q);

						if (inlet[i].V[2][1] > main_feeder[0][1]) {		// check out upper side of lower side
							upper = true;
							invert = false;
						}
						else {
							upper = false;
							invert = true;
						}

						T origin_l = (inlet[i].V[1] - inlet[i].V[2]).len();
						T desire_l = new_l - (inlet[i].V[0] - inlet[i].V[1]).len();
						find_hilbert_order(origin_l, desire_l, order);

						bus_v = inlet[i].V[0];
						mid_v = inlet[i].V[1];
						tmp_v = inlet[i].V[2];
						inlet[i].V.clear();
						inlet[i].V.push_back(tmp_v);
						inlet[i].l = new_l;

						if (desire_l - origin_l < 2 * radius) {	// do not need to use hilbert curve, just increase the length by draging out
							T d = new_l - inlet[i].l;
							stim::vec3<T> corner = stim::vec3<T>(tmp_v[0], tmp_v[1] + d / 2.0f * (tmp_v[1] > main_feeder[0][1] ? 1 : -1), tmp_v[2]);
							inlet[i].V.push_back(corner);
							corner = stim::vec3<T>(mid_v[0], mid_v[1] + d / 2.0f * (tmp_v[1] > main_feeder[0][1] ? 1 : -1), mid_v[2]);
							inlet[i].V.push_back(corner);
							inlet[i].V.push_back(bus_v);
						}
						else {
							T fragment = (desire_l - origin_l) / ((std::pow(4, order) - 1) / (std::pow(2, order) - 1) - 1);	// the length of the opening of cup 		
							T dl = fragment / (std::pow(2, order) - 1);											// unit cup length

							if (dl > 2 * radius) {				// if the radius is feasible
								if (upper)
									hilbert_curve(i, &tmp_v[0], order, dl, 1, invert, DOWN);
								else
									hilbert_curve(i, &tmp_v[0], order, dl, 1, invert, UP);

								if (tmp_v[0] != mid_v[0])
									inlet[i].V.push_back(mid_v);
								inlet[i].V.push_back(bus_v);
							}
							else {								// if the radius is not feasible
								int count = 1;
								while (dl <= 2 * radius) {
									dl = origin_l / (std::pow(2, order - count) - 1);
									count++;
								}
								count--;

								if (upper)
									hilbert_curve(i, &tmp_v[0], order - count, dl, 1, invert, DOWN);
								else
									hilbert_curve(i, &tmp_v[0], order - count, dl, 1, invert, UP);

								desire_l -= origin_l * ((std::pow(4, order - count) - 1) / (std::pow(2, order - count) - 1));
								origin_l = (bus_v - mid_v).len();
								desire_l += origin_l;

								find_hilbert_order(origin_l, desire_l, order);

								fragment = (desire_l - origin_l) / ((std::pow(4, order) - 1) / (std::pow(2, order) - 1) - 1);
								dl = fragment / (std::pow(2, order) - 1);
								if (dl < 2 * radius)
									std::cout << "infeasible connection between inlets!" << std::endl;

								if (upper)
									hilbert_curve(i, &tmp_v[0], order, dl, 1, !invert, LEFT);
								else
									hilbert_curve(i, &tmp_v[0], order, dl, 1, !invert, RIGHT);

								if (tmp_v[1] != bus_v[1])
									inlet[i].V.push_back(bus_v);
							}
						}
						std::reverse(inlet[i].V.begin(), inlet[i].V.end());			// from bus to pendant vertex
					}
				}

				// automatically modify outlet bridge to make it feasible
				for (unsigned i = 0; i < outlet.size(); i++) {
					if (i != outlet_index) {
						new_l = (new_pressure[outlet[i].v[0]] - end_pressure) * ((float)stim::PI * std::pow(radius, 4)) / (8 * viscosity * outlet[i].Q);

						if (outlet[i].V[2][1] > main_feeder[1][1]) {
							upper = true;
							invert = true;
						}
						else {
							upper = false;
							invert = false;
						}

						T origin_l = (outlet[i].V[1] - outlet[i].V[2]).len();
						T desire_l = new_l - (outlet[i].V[0] - outlet[i].V[1]).len();
						find_hilbert_order(origin_l, desire_l, order);

						bus_v = outlet[i].V[0];
						mid_v = outlet[i].V[1];
						tmp_v = outlet[i].V[2];
						outlet[i].V.clear();
						outlet[i].V.push_back(tmp_v);
						outlet[i].l = new_l;

						if (desire_l - origin_l < 2 * radius) {	// do not need to use hilbert curve, just increase the length by draging out
							T d = new_l - outlet[i].l;
							stim::vec3<T> corner = stim::vec3<T>(tmp_v[0], tmp_v[1] + d / 2.0f * (tmp_v[1] > main_feeder[0][1] ? 1 : -1), tmp_v[2]);
							outlet[i].V.push_back(corner);
							corner = stim::vec3<T>(mid_v[0], mid_v[1] + d / 2.0f * (tmp_v[1] > main_feeder[0][1] ? 1 : -1), mid_v[2]);
							outlet[i].V.push_back(corner);
							outlet[i].V.push_back(bus_v);
						}
						else {
							T fragment = (desire_l - origin_l) / ((std::pow(4, order) - 1) / (std::pow(2, order) - 1) - 1);	// the length of the opening of cup 		
							T dl = fragment / (std::pow(2, order) - 1);											// unit cup length

							if (dl > 2 * radius) {				// if the radius is feasible
								if (upper)
									hilbert_curve(i, &tmp_v[0], order, dl, 0, invert, DOWN);
								else
									hilbert_curve(i, &tmp_v[0], order, dl, 0, invert, UP);

								if (tmp_v[0] != mid_v[0])
									outlet[i].V.push_back(mid_v);
								outlet[i].V.push_back(bus_v);
							}
							else {								// if the radius is not feasible
								int count = 1;
								while (dl <= 2 * radius) {
									dl = origin_l / (std::pow(2, order - count) - 1);
									count++;
								}
								count--;

								if (upper)
									hilbert_curve(i, &tmp_v[0], order - count, dl, 0, invert, DOWN);
								else
									hilbert_curve(i, &tmp_v[0], order - count, dl, 0, invert, UP);

								desire_l -= origin_l * ((std::pow(4, order - count) - 1) / (std::pow(2, order - count) - 1));
								origin_l = (bus_v - mid_v).len();
								desire_l += origin_l;

								find_hilbert_order(origin_l, desire_l, order);

								fragment = (desire_l - origin_l) / ((std::pow(4, order) - 1) / (std::pow(2, order) - 1) - 1);
								dl = fragment / (std::pow(2, order) - 1);
								if (dl < 2 * radius)
									std::cout << "infeasible connection between outlets!" << std::endl;

								if (upper)
									hilbert_curve(i, &tmp_v[0], order, dl, 0, !invert, LEFT);
								else
									hilbert_curve(i, &tmp_v[0], order, dl, 0, !invert, RIGHT);

								if (tmp_v[1] != bus_v[1])
									outlet[i].V.push_back(bus_v);
							}
						}
						std::reverse(outlet[i].V.begin(), outlet[i].V.end());
					}
				}
			}
			// automatically modify inlet bridge using square shape constructions
			else {
				bool upper;								// flag indicates the connection is upper than the bus
				bool z;									// flag indicates the connection direction along z-axis
				T new_l;								// new length
				stim::vec3<T> bus_v;					// the port point on the bus
				stim::vec3<T> mid_v;					// the original corner point
				stim::vec3<T> tmp_v;					// the pendant point
				int n;
				T width, height;						// width and height of the square
				inbb.resize(inlet.size());				// resize bounding box of inlets/outlets connections
				outbb.resize(outlet.size());

				for (unsigned i = 0; i < inlet.size(); i++) {
					if (i != inlet_index) {
						new_l = (source_pressure - new_pressure[inlet[i].v[0]]) * ((float)stim::PI * std::pow(radius, 4)) / (8 * viscosity * inlet[i].Q);	// calculate the new length of the connection 

						bus_v = inlet[i].V[0];
						mid_v = inlet[i].V[1];
						tmp_v = inlet[i].V[2];										// not always pendant vertex

						if (inlet[i].V[2][1] > main_feeder[0][1]) 					// check out upper side of lower side
							upper = true;
						else
							upper = false;

						if (inlet[i].V[2][2] > main_feeder[0][2])
							z = true;
						else
							z = false;

						T origin_l = (inlet[i].V[1] - inlet[i].V[2]).len();
						T desire_l = new_l - (inlet[i].V[0] - inlet[i].V[1]).len();
						if (inlet[i].V.size() != 3) {
							desire_l = new_l - (inlet[i].V[0] - inlet[i].V[1]).len() - (inlet[i].V[2] - inlet[i].V[3]).len();
							stim::vec3<T> tmp = inlet[i].V[3];
							inlet[i].V.clear();
							inlet[i].V.push_back(tmp);
							inlet[i].V.push_back(tmp_v);
						}
						else {
							inlet[i].V.clear();
							inlet[i].V.push_back(tmp_v);
						}
						inlet[i].l = new_l;

						n = find_number_square(origin_l, desire_l);

						width = (T)origin_l / (2 * n);
						height = (desire_l - origin_l) / (2 * n);

						build_square_connection(i, width, height, origin_l, desire_l, n, 1, threshold, z, true, upper, 5, ratio);
						inlet[i].V.push_back(bus_v);

						std::reverse(inlet[i].V.begin(), inlet[i].V.end());			// from bus to pendant vertex
					}
					else {
						inbb[i].first = inlet[i].V[2];
						inbb[i].second = inlet[i].V[1];
					}
				}

				for (unsigned i = 0; i < outlet.size(); i++) {
					if (i != outlet_index) {
						new_l = (new_pressure[outlet[i].v[0]] - end_pressure) * ((float)stim::PI * std::pow(radius, 4)) / (8 * viscosity * outlet[i].Q);	// calculate the new length of the connection 

						bus_v = outlet[i].V[0];
						mid_v = outlet[i].V[1];
						tmp_v = outlet[i].V[2];

						if (outlet[i].V[2][1] > main_feeder[1][1]) 					// check out upper side of lower side
							upper = true;
						else
							upper = false;

						if (outlet[i].V[2][2] > main_feeder[1][2])
							z = true;
						else
							z = false;

						T origin_l = (outlet[i].V[1] - outlet[i].V[2]).len();
						T desire_l = new_l - (outlet[i].V[0] - outlet[i].V[1]).len();
						if (outlet[i].V.size() != 3) {
							desire_l = new_l - (outlet[i].V[0] - outlet[i].V[1]).len() - (outlet[i].V[2] - outlet[i].V[3]).len();
							stim::vec3<T> tmp = outlet[i].V[3];
							outlet[i].V.clear();
							outlet[i].V.push_back(tmp);
							outlet[i].V.push_back(tmp_v);
						}
						else {
							outlet[i].V.clear();
							outlet[i].V.push_back(tmp_v);
						}
						outlet[i].l = new_l;

						n = find_number_square(origin_l, desire_l);

						width = (T)origin_l / (2 * n);
						height = (desire_l - origin_l) / (2 * n);

						build_square_connection(i, width, height, origin_l, desire_l, n, 0, threshold, z, false, upper, 5, ratio);
						outlet[i].V.push_back(bus_v);

						std::reverse(outlet[i].V.begin(), outlet[i].V.end());			// from bus to pendant vertex
					}
					else {
						outbb[i].first = outlet[i].V[2];
						outbb[i].second = outlet[i].V[1];
					}
				}
			}

			// save in-/out- volume flow rate
			in = out = 0.0f;
			for (unsigned i = 0; i < inlet.size(); i++)
				in += inlet[i].Q;
			for (unsigned i = 0; i < outlet.size(); i++)
				out += outlet[i].Q;

			check_special_connection();				// check special connections
		}

		/// check current connections to find overlapping
		// phase 1 check -> direct connection intersection
		void check_direct_connection() {
			
			unsigned num;
			// check inlet
			num = inlet.size();								// get the number of inlets
			inlet_feasibility.resize(num, true);			// initialization
			for (unsigned i = 0; i < num; i++) {
				for (unsigned j = 0; j < num; j++) {
					if (i != j) {
						if (inlet[i].V[0][1] == inlet[j].V[0][1]) {
							if ((inlet[i].V[1][0] >= inlet[j].V[1][0]) && (fabs(inlet[i].V[1][1]) >= fabs(inlet[j].V[1][1])) && (((inlet[i].V[1][1] - main_feeder[0][1]) * (inlet[j].V[1][1] - main_feeder[0][1])) > 0 ? 1 : 0)) {
								inlet_feasibility[i] = false;
								break;
							}
							else
								inlet_feasibility[i] = true;
						}
					}
				}
			}
			// check outlet
			num = outlet.size();
			outlet_feasibility.resize(num, true);
			for (unsigned i = 0; i < num; i++) {
				for (unsigned j = 0; j < num; j++) {
					if (i != j) {
						if (outlet[i].V[0][2] == outlet[j].V[0][2]) {
							if ((outlet[i].V[1][0] <= outlet[j].V[1][0]) && (fabs(outlet[i].V[1][1]) >= fabs(outlet[j].V[1][1])) && (((outlet[i].V[1][1] - main_feeder[1][1]) * (outlet[j].V[1][1] - main_feeder[1][1])) > 0 ? 1 : 0)) {
								outlet_feasibility[i] = false;
								break;
							}
						}
						else
							outlet_feasibility[i] = true;
					}
				}
			}
		}

		// phase 2 check -> special connection intersection
		void check_special_connection(T radius = 5.0f) {
		
			// temp AABB centers and halfwidths
			stim::vec3<T> c1, c2;
			stim::vec3<T> r1, r2;
			// inlets' special connections checking
			for (unsigned i = 0; i < inbb.size(); i++) {
				for (unsigned j = 0; j < inbb.size(); j++) {
					if (j != i) {
						c1 = stim::vec3<T>((inbb[i].first + inbb[i].second) / 2);
						c2 = stim::vec3<T>((inbb[j].first + inbb[j].second) / 2);
						for (unsigned k = 0; k < 3; k++) {
							r1[k] = fabs(inbb[i].first[k] - inbb[i].second[k]) / 2;
							r2[k] = fabs(inbb[j].first[k] - inbb[j].second[k]) / 2;
						}
						// test AABBAABB
						if (fabs(c1[0] - c2[0]) > (r1[0] + r2[0] + 2 * radius) || fabs(c1[1] - c2[1]) > (r1[1] + r2[1] + 2 * radius) || fabs(c1[2] - c2[2]) > (r1[2] + r2[2] + 2 * radius))
							inlet_feasibility[i] = true;
						else
							inlet_feasibility[i] = false;
					}
				}
			}

			// outlets' special connections checking
			for (unsigned i = 0; i < outbb.size(); i++) {
				for (unsigned j = 0; j < outbb.size(); j++) {
					if (j != i) {
						c1 = stim::vec3<T>((outbb[i].first + outbb[i].second) / 2);
						c2 = stim::vec3<T>((outbb[j].first + outbb[j].second) / 2);
						for (unsigned k = 0; k < 3; k++) {
							r1[k] = fabs(outbb[i].first[k] - outbb[i].second[k]) / 2;
							r2[k] = fabs(outbb[j].first[k] - outbb[j].second[k]) / 2;
						}
						// test AABBAABB
						if (fabs(c1[0] - c2[0]) > (r1[0] + r2[0] + 2 * radius) || fabs(c1[1] - c2[1]) > (r1[1] + r2[1] + 2 * radius) || fabs(c1[2] - c2[2]) > (r1[2] + r2[2] + 2 * radius))
							outlet_feasibility[i] = true;
						else
							outlet_feasibility[i] = false;
					}
				}
			}
		}
		
		// clear synthetic connections
		void clear_synthetic_connection() {
			
			// restore direct synthetic connecions
			T l = 0.0f;
			for (unsigned i = 0; i < inlet.size(); i++) {
				inlet[i].V.clear();
				for (unsigned j = 0; j < in_backup[i].size(); j++) {
					inlet[i].V.push_back(in_backup[i][j]);
					if (j != in_backup[i].size() - 1)
						l += (in_backup[i][j + 1] - in_backup[i][j]).len();
				}
				inlet[i].l = l;
				l = 0.0f;
			}
			for (unsigned i = 0; i < outlet.size(); i++) {
				outlet[i].V.clear();
				for (unsigned j = 0; j < out_backup[i].size(); j++) {
					outlet[i].V.push_back(out_backup[i][j]);
					if (j != out_backup[i].size() - 1)
						l += (out_backup[i][j + 1] - out_backup[i][j]).len();
				}
				outlet[i].l = l;
				l = 0.0f;
			}

			// clear up inlets/outlets connection bounding box
			inbb.clear();
			outbb.clear();
		}

		// back up direct synthetic connection whenever modified
		void backup() {
			
			in_backup.clear();
			out_backup.clear();

			// back up direct synthetic connecions
			std::vector<typename stim::vec3<T> > V;
			for (unsigned i = 0; i < inlet.size(); i++) {
				for (unsigned j = 0; j < inlet[i].V.size(); j++) {
					V.push_back(inlet[i].V[j]);
				}
				in_backup.push_back(V);
				V.clear();
			}
			for (unsigned i = 0; i < outlet.size(); i++) {
				for (unsigned j = 0; j < outlet[i].V.size(); j++) {
					V.push_back(outlet[i].V[j]);
				}
				out_backup.push_back(V);
				V.clear();
			}
		}

		/// adjustment in order to match microfluidics experiments
		void adjust(T in, T out, T &Rt, T nQ, T viscosity, T radius = 5.0f) {
			
			// compute total resistance
			Rt = (Ps - Pe) / in;
			Pe = 0.0f;

			Ps = Rt * nQ;

			// adjust synthetic connections velocity flow rate. (linear scale)
			T k = nQ / in;				// linear factor
			for (unsigned i = 0; i < inlet.size(); i++) {
				inlet[i].Q *= k;
				input[i].third *= k;
			}
			for (unsigned i = 0; i < outlet.size(); i++) {
				outlet[i].Q *= k;
				output[i].third *= k;
			}
				
			/// simulate inner network flow
			// clear up initialized pressure
			P.resize(num_vertex);
			for (unsigned i = 0; i < pendant_vertex.size(); i++) {
				unsigned index = UINT_MAX;
				for (unsigned j = 0; j < inlet.size(); j++) {
					if (inlet[j].v[0] == pendant_vertex[i]) {
						index = j;
						break;
					}
				}
				if (index != UINT_MAX) {
					P[inlet[index].v[0]] = Ps - ((T)8 * viscosity * inlet[index].l * inlet[index].Q / (stim::PI * std::pow(radius, 4)));
				}
			}

			for (unsigned i = 0; i < pendant_vertex.size(); i++) {
				unsigned index = UINT_MAX;
				for (unsigned j = 0; j < outlet.size(); j++) {
					if (outlet[j].v[0] == pendant_vertex[i]) {
						index = j;
						break;
					}
				}
				if (index != UINT_MAX) {
					P[outlet[index].v[0]] = Pe + ((T)8 * viscosity * outlet[index].l * outlet[index].Q / (stim::PI * std::pow(radius, 4)));
				}
			}

			// clear up previous simulation except synthetic connection parts
			for (unsigned i = 0; i < num_vertex; i++) {
				QQ[i] = 0;
				pressure[i] = 0;
				for (unsigned j = 0; j < num_vertex; j++) {
					C[i][j] = 0;
				}
			}

			// re-simulation
			solve_flow(viscosity);
		}

		/// make full-synthetic binary image stack
		// prepare for image stack
		void preparation(T &Xl, T &Xr, T &Yt, T &Yb, T &Z, bool prototype = false, T length = 40.0f, T height = 10.0f, T radius = 5.0f) {
			
			T max_radius = 0.0f;
			T top = FLT_MIN;
			T bottom = FLT_MAX;

			// clear up last time result
			A.clear();
			B.clear();
			CU.clear();

			// firstly push back the original network
			stim::sphere<T> new_sphere;
			stim::cone<T> new_cone;
			stim::cuboid<T> new_cuboid;

			// take every source bus as cuboid
			new_cuboid.c = main_feeder[0];
			new_cuboid.l = length;
			new_cuboid.w = bb.B[2] - bb.A[2] + 10.0f;
			new_cuboid.h = height;
			CU.push_back(new_cuboid);
			new_cuboid.c = main_feeder[1];
			CU.push_back(new_cuboid);

			// take every point as sphere, every line as cone
			if (!prototype) {
				for (unsigned i = 0; i < num_edge; i++) {
					for (unsigned j = 0; j < E[i].size(); j++) {
						new_sphere.c = E[i][j];
						new_sphere.r = E[i].r(j);
						A.push_back(new_sphere);
						if (j != E[i].size() - 1) {
							new_cone.c1 = E[i][j];
							new_cone.c2 = E[i][j + 1];
							new_cone.r1 = E[i].r(j);
							new_cone.r2 = E[i].r(j + 1);
							B.push_back(new_cone);
						}
					}
				}
			}
			
			// secondly push back outside connection
			for (unsigned i = 0; i < inlet.size(); i++) {
				for (unsigned j = 1; j < inlet[i].V.size() - 1; j++) {
					new_sphere.c = inlet[i].V[j];
					new_sphere.r = inlet[i].r;
					A.push_back(new_sphere);
				}
			}
			for (unsigned i = 0; i < outlet.size(); i++) {
				for (unsigned j = 1; j < outlet[i].V.size() - 1; j++) {
					new_sphere.c = outlet[i].V[j];
					new_sphere.r = outlet[i].r;
					A.push_back(new_sphere);
				}
			}

			for (unsigned i = 0; i < inlet.size(); i++) {
				for (unsigned j = 0; j < inlet[i].V.size() - 1; j++) {
					new_cone.c1 = inlet[i].V[j];
					new_cone.c2 = inlet[i].V[j + 1];
					new_cone.r1 = inlet[i].r;
					new_cone.r2 = inlet[i].r;
					B.push_back(new_cone);
				}
			}
			for (unsigned i = 0; i < outlet.size(); i++) {
				for (unsigned j = 0; j < outlet[i].V.size() - 1; j++) {
					new_cone.c1 = outlet[i].V[j];
					new_cone.c2 = outlet[i].V[j + 1];
					new_cone.r1 = outlet[i].r;
					new_cone.r2 = outlet[i].r;
					B.push_back(new_cone);
				}
			}

			// find out the image stack size
			Xl = main_feeder[0][0] - length / 2;			// left bound x coordinate
			Xr = main_feeder[1][0] + length / 2;			// right bound x coordinate

			for (unsigned i = 0; i < A.size(); i++) {
				if (A[i].c[1] > top)
					top = A[i].c[1];
				if (A[i].c[1] < bottom)
					bottom = A[i].c[1];
				if (A[i].r > max_radius)
					max_radius = A[i].r;
			}

			Yt = top + 2 * radius;							// top bound y coordinate
			Yb = bottom + 2 * radius;						// bottom bound y coordinate
			Z = (bb.B[2] - bb.A[2] + 2 * max_radius);		// bounding box width(along z-axis)
		}

		/// making image stack main function
		void make_image_stack(stim::image_stack<unsigned char, T> I, T dx, T dy, T dz, std::string stackdir, bool prototype = false, T radius = 5.0f) {
			
			/// preparation for making image stack
			T X, Xl, Xr, Y, Yt, Yb, Z;
			preparation(Xl, Xr, Yt, Yb, Z, prototype);
			X = Xr - Xl;								// bounding box length(along x-axis)
			Y = Yt - Yb;								// bounding box height(along y-axis)
			stim::vec3<T> center = bb.center();			// get the center of bounding box
			T size_x, size_y, size_z;

			if (!prototype) {
				/// make
				stim::image_stack<unsigned char, T> I;
				size_x = X / dx + 1;						// set the size of image
				size_y = Y / dy + 1;
				size_z = Z / dz + 1;
				///  initialize image stack object
				I.init(1, size_x, size_y, size_z);
				I.set_dim(dx, dy, dz);
			}
			else {
				size_x = I.nx();
				size_y = I.ny();
				size_z = I.nz();
			}
			
			// because of lack of memory, we have to computer one slice of stack per time
			// allocate vertex, edge and bus
			stim::sphere<T> *d_V;
			stim::cone<T> *d_E;
			stim::cuboid<T> *d_B;

			HANDLE_ERROR(cudaMalloc((void**)&d_V, A.size() * sizeof(stim::sphere<T>)));
			HANDLE_ERROR(cudaMalloc((void**)&d_E, B.size() * sizeof(stim::cone<T>)));
			HANDLE_ERROR(cudaMalloc((void**)&d_B, CU.size() * sizeof(stim::cuboid<T>)));
			HANDLE_ERROR(cudaMemcpy(d_V, &A[0], A.size() * sizeof(stim::sphere<T>), cudaMemcpyHostToDevice));
			HANDLE_ERROR(cudaMemcpy(d_E, &B[0], B.size() * sizeof(stim::cone<T>), cudaMemcpyHostToDevice));
			HANDLE_ERROR(cudaMemcpy(d_B, &CU[0], CU.size() * sizeof(stim::cuboid<T>), cudaMemcpyHostToDevice));

			// allocate image stack information memory
			size_t* d_R;
			T *d_S;

			size_t* R = (size_t*)malloc(4 * sizeof(size_t));	// size in 4 dimension
			R[0] = 1;
			R[1] = (size_t)size_x;
			R[2] = (size_t)size_y;
			R[3] = (size_t)size_z;
			T *S = (T*)malloc(4 * sizeof(T));					// spacing in 4 dimension
			S[0] = 1.0f;
			S[1] = dx;
			S[2] = dy;
			S[3] = dz;
			size_t num = size_x * size_y;

			HANDLE_ERROR(cudaMalloc((void**)&d_R, 4 * sizeof(size_t)));
			HANDLE_ERROR(cudaMalloc((void**)&d_S, 4 * sizeof(T)));
			HANDLE_ERROR(cudaMemcpy(d_R, R, 4 * sizeof(size_t), cudaMemcpyHostToDevice));
			HANDLE_ERROR(cudaMemcpy(d_S, S, 4 * sizeof(T), cudaMemcpyHostToDevice));

			// for every slice of image
			unsigned p = 0;																// percentage of progress
			for (unsigned i = 0; i < size_z; i++) {

				int x = 0 - (int)Xl;					// translate whole network(including inlet/outlet) to origin
				int y = 0 - (int)Yb;
				int z = i + (int)center[2];				// box symmetric along z-axis
				// allocate image slice memory
				unsigned char* d_ptr;
				unsigned char* ptr = (unsigned char*)malloc(num * sizeof(unsigned char));
				memset(ptr, 0, num * sizeof(unsigned char));

				HANDLE_ERROR(cudaMalloc((void**)&d_ptr, num * sizeof(unsigned char)));
				if (prototype)							// load prototype image stack if provided
					HANDLE_ERROR(cudaMemcpy(d_ptr, &I.data()[i * num], num * sizeof(unsigned char), cudaMemcpyHostToDevice));

				cudaDeviceProp prop;
				cudaGetDeviceProperties(&prop, 0);										// get cuda device properties structure
				size_t max_thread = sqrt(prop.maxThreadsPerBlock);						// get the maximum number of thread per block

				dim3 block(size_x / max_thread + 1, size_y / max_thread + 1);
				dim3 thread(max_thread, max_thread);
				inside_sphere << <block, thread >> > (d_V, A.size(), d_R, d_S, d_ptr, x, y, z);
				cudaDeviceSynchronize();
				inside_cone << <block, thread >> > (d_E, B.size(), d_R, d_S, d_ptr, x, y, z);
				cudaDeviceSynchronize();
				inside_cuboid << <block, thread >> > (d_B, CU.size(), d_R, d_S, d_ptr, x, y, z);

				HANDLE_ERROR(cudaMemcpy(ptr, d_ptr, num * sizeof(unsigned char), cudaMemcpyDeviceToHost));

				I.set(ptr, i);

				free(ptr);
				HANDLE_ERROR(cudaFree(d_ptr));

				// print progress bar
				p = (float)(i + 1) / (float)size_z * 100;
				rtsProgressBar(p);
			}

			// clear up
			free(R);
			free(S);
			HANDLE_ERROR(cudaFree(d_R));
			HANDLE_ERROR(cudaFree(d_S));
			HANDLE_ERROR(cudaFree(d_V));
			HANDLE_ERROR(cudaFree(d_E));
			HANDLE_ERROR(cudaFree(d_B));

			if (stackdir == "")
				I.save_images("image????.bmp");
			else
				I.save_images(stackdir + "/image????.bmp");
		}

		/// save network flow profile
		void save_network() {
			
			// save the pressure information to CSV file
			std::string p_filename = "profile/pressure.csv";
			std::ofstream p_file;
			p_file.open(p_filename.c_str());
			p_file << "Vertex, Pressure(g/" << units << "/s^2)" << std::endl;
			for (unsigned i = 0; i < num_vertex; i++)
				p_file << i << "," << pressure[i] << std::endl;
			p_file.close();

			// save the flow information to CSV file
			std::string f_filename = "profile/flow_rate.csv";
			std::ofstream f_file;
			f_file.open(f_filename.c_str());
			f_file << "Edge, Volume flow rate(" << units << "^3/s)" << std::endl;
			for (unsigned i = 0; i < num_edge; i++)
				f_file << Q[i].first << "->" << Q[i].second << "," << Q[i].third << std::endl;
			f_file.close();
		}

		/// Calculate the inverse of A and store the result in C
		void inversion(T** A, int order, T* C) {

#ifdef __CUDACC__

			// convert from double pointer to single pointer, make it flat
			T* Aflat = (T*)malloc(order * order * sizeof(T));
			for (unsigned i = 0; i < order; i++)
				for (unsigned j = 0; j < order; j++)
					Aflat[i * order + j] = A[i][j];

			// create device pointer
			T* d_Aflat;		// flat original matrix
			T* d_Cflat;	// flat inverse matrix
			T** d_A;		// put the flat original matrix into another array of pointer
			T** d_C;
			int *d_P;
			int *d_INFO;

			// allocate memory on device
			HANDLE_ERROR(cudaMalloc((void**)&d_Aflat, order * order * sizeof(T)));
			HANDLE_ERROR(cudaMalloc((void**)&d_Cflat, order * order * sizeof(T)));
			HANDLE_ERROR(cudaMalloc((void**)&d_A, sizeof(T*)));
			HANDLE_ERROR(cudaMalloc((void**)&d_C, sizeof(T*)));
			HANDLE_ERROR(cudaMalloc((void**)&d_P, order * 1 * sizeof(int)));
			HANDLE_ERROR(cudaMalloc((void**)&d_INFO, 1 * sizeof(int)));

			// copy matrix from host to device
			HANDLE_ERROR(cudaMemcpy(d_Aflat, Aflat, order * order * sizeof(T), cudaMemcpyHostToDevice));

			// copy matrix from device to device
			HANDLE_ERROR(cudaMemcpy(d_A, &d_Aflat, sizeof(T*), cudaMemcpyHostToDevice));
			HANDLE_ERROR(cudaMemcpy(d_C, &d_Cflat, sizeof(T*), cudaMemcpyHostToDevice));

			// calculate the inverse of matrix based on cuBLAS
			cublasHandle_t handle;
			CUBLAS_HANDLE_ERROR(cublasCreate_v2(&handle));	// create cuBLAS handle object

			CUBLAS_HANDLE_ERROR(cublasSgetrfBatched(handle, order, d_A, order, d_P, d_INFO, 1));

			int INFO = 0;
			HANDLE_ERROR(cudaMemcpy(&INFO, d_INFO, sizeof(int), cudaMemcpyDeviceToHost));
			if (INFO == order)
			{
				std::cout << "Factorization Failed : Matrix is singular." << std::endl;
				cudaDeviceReset();
				exit(1);
			}

			CUBLAS_HANDLE_ERROR(cublasSgetriBatched(handle, order, (const T **)d_A, order, d_P, d_C, order, d_INFO, 1));

			CUBLAS_HANDLE_ERROR(cublasDestroy_v2(handle));

			// copy inverse matrix from device to device
			HANDLE_ERROR(cudaMemcpy(&d_Cflat, d_C, sizeof(T*), cudaMemcpyDeviceToHost));

			// copy inverse matrix from device to host
			HANDLE_ERROR(cudaMemcpy(C, d_Cflat, order * order * sizeof(T), cudaMemcpyDeviceToHost));

			// clear up
			free(Aflat);
			HANDLE_ERROR(cudaFree(d_Aflat));
			HANDLE_ERROR(cudaFree(d_Cflat));
			HANDLE_ERROR(cudaFree(d_A));
			HANDLE_ERROR(cudaFree(d_C));
			HANDLE_ERROR(cudaFree(d_P));
			HANDLE_ERROR(cudaFree(d_INFO));

#else
			// get the determinant of a
			double det = 1.0 / determinant(A, order);

			// memory allocation
			T* tmp = (T*)malloc((order - 1)*(order - 1) * sizeof(T));
			T** minor = (T**)malloc((order - 1) * sizeof(T*));
			for (int i = 0; i < order - 1; i++)
				minor[i] = tmp + (i * (order - 1));

			for (int j = 0; j < order; j++) {
				for (int i = 0; i < order; i++) {
					// get the co-factor (matrix) of A(j,i)
					get_minor(A, minor, j, i, order);
					C[i][j] = det * determinant(minor, order - 1);
					if ((i + j) % 2 == 1)
						C[i][j] = -C[i][j];
				}
			}

			// release memory
			free(tmp);
			free(minor);
#endif
		}
	};
}

#endif