Blame view

stim/cuda/templates/gradient.cuh 3.02 KB
13fe3c84   Laila Saadatifard   update the stimli...
1
2
3
4
5
  #ifndef STIM_CUDA_GRADIENT_H
  #define STIM_CUDA_GRADIENT_H
  
  #include <iostream>
  #include <cuda.h>
96f9b10f   Laila Saadatifard   change the header...
6
  #include <stim/cuda/cudatools.h>
13fe3c84   Laila Saadatifard   update the stimli...
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
  
  namespace stim{
  	namespace cuda{
  
  		template<typename T>
  		__global__ void gradient_2d(T* out, T* in, unsigned int x, unsigned int y){
  
  			//calculate the 1D image index for this thread
  			int i = blockIdx.x * blockDim.x + threadIdx.x;
  
  			//convert this to 2D pixel coordinates
  			int yi = i / x;
  			int xi = i - (yi * x);
  
  			//return if the pixel is outside of the image
  			if(xi >= x || yi >= y) return;
  
  			//calculate indices for the forward difference
  			int i_xp = yi * x + (xi + 1);
  			int i_yp = (yi + 1) * x + xi;
  
  			//use forward differences if a coordinate is zero
  			if(xi == 0)
  				out[i * 2 + 0] = in[i_xp] - in[i];
  			if(yi == 0)
  				out[i * 2 + 1] = in[i_yp] - in[i];
  
  			//calculate indices for the backward difference
  			int i_xn = yi * x + (xi - 1);
  			int i_yn = (yi - 1) * x + xi;
  
  			//use backward differences if the coordinate is at the maximum edge
  			if(xi == x-1)
  				out[i * 2 + 0] = in[i] - in[i_xn];
  			if(yi == y-1)
  				out[i * 2 + 1] = in[i] - in[i_yn];
  
  			//otherwise use central differences
  			if(xi > 0 && xi < x-1)
  				out[i * 2 + 0] = (in[i_xp] - in[i_xn]) / 2;
  
  			if(yi > 0 && yi < y-1)
  				out[i * 2 + 1] = (in[i_yp] - in[i_yn]) / 2;
  
  		}
  
  		template<typename T>
  		//void gpu_gradient_2d(T* gpuOut, T* gpuIn, unsigned int x, unsigned int y){
  		void gpu_gradient_2d(T* gpuGrad, T* gpuI, unsigned int x, unsigned int y){
  
  			//get the number of pixels in the image
  			unsigned int pixels = x * y;
  			
  			//allocate space on the GPU for the input image
  			//T* gpuI;
  			//HANDLE_ERROR(cudaMalloc(&gpuI, bytes));
  
  			//cudaMemcpy(gpuI, gpuI0, bytes, cudaMemcpyDeviceToDevice);
  
  
  			//allocate space on the GPU for the output gradient image
  			//T* gpuGrad;
  			//cudaMalloc(&gpuGrad, bytes * 2);		//the output image will have two channels (x, y)
  
  			//get the maximum number of threads per block for the CUDA device
  			int threads = stim::maxThreadsPerBlock();
  
  			//calculate the number of blocks
  			int blocks = pixels / threads + (pixels%threads == 0 ? 0:1);
  
  			//call the GPU kernel to determine the gradient
  			gradient_2d<T> <<< blocks, threads >>>(gpuGrad, gpuI, x, y);
  
  		}
  
  		template<typename T>
  		void cpu_gradient_2d(T* out, T* in, unsigned int x, unsigned int y){
  
  			//get the number of pixels in the image
  			unsigned int pixels = x * y;
  			unsigned int bytes = pixels * sizeof(T);
  
  			//allocate space on the GPU for the input image
  			T* gpuIn;
  			HANDLE_ERROR(cudaMalloc(&gpuIn, bytes));
  
  			//copy the image data to the GPU
  			HANDLE_ERROR(cudaMemcpy(gpuIn, in, bytes, cudaMemcpyHostToDevice));
  
  			//allocate space on the GPU for the output gradient image
  			T* gpuOut;
  			cudaMalloc(&gpuOut, bytes * 2);		//the output image will have two channels (x, y)
  
  			//call the GPU version of this function
  			gpu_gradient_2d(gpuOut, gpuIn, x, y);	
  
  			//copy the results to the CPU
  			cudaMemcpy(out, gpuOut, bytes * 2, cudaMemcpyDeviceToHost);
  
  			//free allocated memory
  			cudaFree(gpuOut);
  		}
  
  	}
  }
  
  
  #endif