Blame view

tira/biomodels/centerline_dep.h 8.18 KB
ce6381d7   David Mayerich   updating to TIRA
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
  /*
  Copyright <2017> <David Mayerich>
  
  Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
  
  The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
  
  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
  */
  
  #ifndef STIM_CENTERLINE_H
  #define STIM_CENTERLINE_H
  
  #include <vector>
  #include <stim/math/vec3.h>
  
  namespace stim{
  
  /**	This class stores information about a single fiber represented as a set of geometric points
   *	between two branch or end points. This class is used as a fundamental component of the stim::network
   *	class to describe an interconnected (often biological) network.
   */
  template<typename T>
  class centerline{
  
  protected:
  	unsigned int N;					//number of points in the fiber
  	double **c;						//centerline (array of double pointers)
  
  	/// Initialize an empty fiber
  	void init(){
  		N=0;
  		c=NULL;
  	}
  
  	/// Initialize a fiber with N centerline points (all located at [0, 0, 0] with radius 0)
  	void init(unsigned int n){
  
  		N = n;												//set the number of points
  		c = (double**) malloc(sizeof(double*) * N);			//allocate the array pointer
  
  		for(unsigned int i = 0; i < N; i++)					//allocate space for each point
  			c[i] = (double*) malloc(sizeof(double) * 3);
  	}
  
  	/// Copies an existing fiber to the current fiber
  
  	/// @param cpy stores the new copy of the fiber
  	void copy( const stim::centerline<T>& cpy, bool kd = 0){
  
  		///allocate space for the new fiber
  		init(cpy.N);
  
  		///copy the points
  		for(unsigned int i = 0; i < N; i++){
  			for(unsigned int d = 0; d < 3; d++)		//for each dimension
  				c[i][d] = cpy.c[i][d];				//copy the coordinate
  		}
  	}
  
  	/// find distance between two points
  	double dist(double* p0, double* p1){
  
  		double sum = 0; // initialize variables
  		float v;
  		for(unsigned int d = 0; d < 3; d++)
  		{
  			v = p1[d] - p0[d];
  			sum +=v * v;
  		}
  		return sqrt(sum);
  	}
  
  	/// Returns a stim::vec representing the point at index i
  
  	/// @param i is an index of the desired centerline point
  	stim::vec<T> get_vec(unsigned i){
  		stim::vec3<T> r;
  		r.resize(3);
  		r[0] = c[i][0];
  		r[1] = c[i][1];
  		r[2] = c[i][2];
  
  		return r;
  	}
  
  
  public:
  
  	centerline(){
  		init();
  	}
  
  	/// Copy constructor
  	centerline(const stim::centerline<T> &obj){
  		copy(obj);
  	}
  
  	//initialize a centerline with n points
  	centerline(int n){
  		init(n);
  	}
  
  	/// Constructor takes a list of stim::vec points, the radius at each point is set to zero
  	centerline(std::vector< stim::vec<T> > p, bool kd = 0){
  		init(p.size());		//initialize the fiber
  
  		//for each point, set the centerline position and radius
  		for(unsigned int i = 0; i < N; i++){
  
  			//set the centerline position
  			for(unsigned int d = 0; d < 3; d++)
  				c[i][d] = (double) p[i][d];
  		}
  	}
  
  	/// constructor takes a list of points
  	centerline(std::vector< stim::vec3< T > > pos, bool kd = 0){
  		init(pos.size());		//initialize the fiber
  
  		//for each point, set the centerline position and radius
  		for(unsigned int i = 0; i < N; i++){
  			//set the centerline position
  			for(unsigned int d = 0; d < 3; d++)
  				c[i][d] = (double) pos[i][d];
  		}
  	}
  
  	/// Assignment operation
  	centerline& operator=(const centerline &rhs){
  		if(this == &rhs) return *this;			//test for and handle self-assignment
  		copy(rhs);
  		return *this;
  	}
  
  
  	/// Returns the fiber centerline as an array of stim::vec points
  	std::vector< stim::vec<T> > get_centerline(){
  
  		//create an array of stim vectors
  		std::vector< stim::vec3<T> > pts(N);
  
  		//cast each point to a stim::vec, keeping only the position information
  		for(unsigned int i = 0; i < N; i++)
  			pts[i] = stim::vec3<T>((T) c[i][0], (T) c[i][1], (T) c[i][2]);
  
  		//return the centerline array
  		return pts;
  	}
  
  	/// Split the fiber at the specified index. If the index is an end point, only one fiber is returned
  	std::vector< stim::centerline<T> > split(unsigned int idx){
  
  		std::vector< stim::centerline<T> > fl;		//create an array to store up to two fibers
  
  		//if the index is an end point, only the existing fiber is returned
  		if(idx == 0 || idx == N-1){
  			fl.resize(1);							//set the size of the fiber to 1
  			fl[0] = *this;							//copy the current fiber
  		}
  
  		//if the index is not an end point
  		else{
  
  			unsigned int N1 = idx + 1;					//calculate the size of both fibers
  			unsigned int N2 = N - idx;
  
  			fl.resize(2);								//set the array size to 2
  
  			fl[0].init(N1);								//set the size of each fiber
  			fl[1].init(N2);
  
  			//copy both halves of the fiber
  			unsigned int i, d;
  
  			//first half
  			for(i = 0; i < N1; i++){					//for each centerline point
  				for(d = 0; d < 3; d++)
  					fl[0].c[i][d] = c[i][d];			//copy each coordinate
  			}
  
  			//second half
  			for(i = 0; i < N2; i++){
  				for(d = 0; d < 3; d++)
  					fl[1].c[i][d] = c[idx + i][d];
  
  			}
  		}
  
  		return fl;										//return the array
  
  	}
  
  	/// Outputs the fiber as a string
  	std::string str(){
  		std::stringstream ss;
  
  		//create an iterator for the point list
  		//typename std::list< point<T> >::iterator i;
  		for(unsigned int i = 0; i < N; i++){
  			ss<<"  [  ";
  			for(unsigned int d = 0; d < 3; d++){
  				ss<<c[i][d]<<"  ";
  			}
  		}
  
  		return ss.str();
  	}
  	/// Returns the number of centerline points in the fiber
  	unsigned int size(){
  		return N;
  	}
  
  
  	/// Bracket operator returns the element at index i
  
  	/// @param i is the index of the element to be returned as a stim::vec
  	stim::vec<T> operator[](unsigned i){
  		return get_vec(i);
  	}
  
  	/// Back method returns the last point in the fiber
  	stim::vec<T> back(){
  		return get_vec(N-1);
  	}
  		////resample a fiber in the network
  	stim::centerline<T> resample(T spacing)
  	{
  		std::cout<<"fiber::resample()"<<std::endl;
  
  		std::vector<T> v(3);    //v-direction vector of the segment
  		stim::vec<T> p(3);      //- intermediate point to be added
  		stim::vec<T> p1(3);   // p1 - starting point of an segment on the fiber,
  		stim::vec<T> p2(3);   // p2 - ending point,
  		double sum=0;  //distance summation
  		std::vector<stim::vec<T> > fiberPositions = centerline();
  		std::vector<stim::vec<T> > newPointList; // initialize list of new resampled points on the fiber
  		// for each point on the centerline (skip if it is the last point on centerline)
  		for(unsigned int f=0; f< N-1; f++)
  		{
  			
  			p1 = fiberPositions[f]; p2 = fiberPositions[f + 1]; v = p2 - p1;
  			for(unsigned int d = 0; d < 3; d++){
  				sum +=v[d] * v[d];}              //length of segment-distance between starting and ending point
  
  			T lengthSegment = sqrt(sum);  //find Length of the segment as distance between the starting and ending points of the segment
  
  			if(lengthSegment >= spacing) // if length of the segment is greater than standard deviation resample
  				{
  					// repeat resampling until accumulated stepsize is equsl to length of the segment
  					for(T step=0.0; step<lengthSegment; step+=spacing)
  					{
  						// calculate the resampled point by travelling step size in the direction of normalized gradient vector
  						for(unsigned int i=0; i<3;i++)
  							{
  								p[i] = p1[i] + v[i]*(step/lengthSegment);
  							} //for each dimension
  						// add this resampled points to the new fiber list
  						newPointList.push_back(p);
  					}
  				}
  			else       // length of the segment is now less than standard deviation, push the ending point of the segment and proceed to the next point in the fiber
  				newPointList.push_back(fiberPositions[f+1]);
  			}
  		newPointList.push_back(fiberPositions[N-1]);   //add the last point on the fiber to the new fiber list
  		centerline newFiber(newPointList);
  		return newFiber;
  	}
  
  };
  
  
  
  }	//end namespace stim
  
  
  
  #endif