gl_network.h
24.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
#ifndef STIM_GL_NETWORK
#define STIM_GL_NETWORK
#include <GL/glut.h>
#include <stim/biomodels/network.h>
#include <stim/visualization/aaboundingbox.h>
namespace stim{
template <typename T>
class gl_network : public stim::network<T>{
protected:
using stim::network<T>::E;
using stim::network<T>::V;
GLuint dlist;
public:
/// Default constructor
gl_network() : stim::network<T>(){
dlist = 0;
}
/// Constructor creates a gl_network from a stim::network
gl_network(stim::network<T> N) : stim::network<T>(N){
dlist = 0;
}
/// Fills the parameters with the minimum and maximum spatial positions in the network,
/// specifying a bounding box for the network geometry
aaboundingbox<T> boundingbox(){
aaboundingbox<T> bb; //create a bounding box
//loop through every edge
for(unsigned e = 0; e < E.size(); e++){
//loop through every point
for(unsigned p = 0; p < E[e].size(); p++)
bb.expand(E[e][p]); //expand the bounding box to include the point
}
return bb; //return the bounding box
}
///render cylinder based on points from the top/bottom hat
///@param C1 set of points from one of the hat
void renderCylinder(std::vector< stim::vec3<T> > C1, std::vector< stim::vec3<T> > C2, stim::vec3<T> P1, stim::vec3<T> P2) {
glBegin(GL_QUAD_STRIP);
for (unsigned i = 0; i < C1.size(); i++) { // for every point on the circle
stim::vec3<T> n1 = C1[i] - P1; // set normal vector for every vertex on the quads
stim::vec3<T> n2 = C2[i] - P2;
n1 = n1.norm();
n2 = n2.norm();
glNormal3f(n1[0], n1[1], n1[2]);
glVertex3f(C1[i][0], C1[i][1], C1[i][2]);
glNormal3f(n2[0], n2[1], n2[2]);
glVertex3f(C2[i][0], C2[i][1], C2[i][2]);
}
glEnd();
}
///render the vertex as sphere based on glut build-in function
///@param x, y, z are the three coordinates of the center point
///@param radius is the radius of the sphere
///@param subdivisions is the slice/stride along/around z-axis
void renderBall(T x, T y, T z, T radius, int subdivisions) {
glPushMatrix();
glTranslatef(x, y, z);
glutSolidSphere(radius, subdivisions, subdivisions);
glPopMatrix();
}
///render the vertex as sphere based on transformation
///@param x, y, z are the three coordinates of the center point
///@param radius is the radius of the sphere
///@param slice is the number of subdivisions around the z-axis
///@param stack is the number of subdivisions along the z-axis
void renderBall(T x, T y, T z, T radius, T slice, T stack) {
T step_z = stim::PI / slice; // step angle along z-axis
T step_xy = 2 * stim::PI / stack; // step angle in xy-plane
T xx[4], yy[4], zz[4]; // store coordinates
T angle_z = 0.0; // start angle
T angle_xy = 0.0;
glBegin(GL_QUADS);
for (unsigned i = 0; i < slice; i++) { // around the z-axis
angle_z = i * step_z; // step step_z each time
for (unsigned j = 0; j < stack; j++) { // along the z-axis
angle_xy = j * step_xy; // step step_xy each time, draw floor by floor
xx[0] = radius * std::sin(angle_z) * std::cos(angle_xy); // four vertices
yy[0] = radius * std::sin(angle_z) * std::sin(angle_xy);
zz[0] = radius * std::cos(angle_z);
xx[1] = radius * std::sin(angle_z + step_z) * std::cos(angle_xy);
yy[1] = radius * std::sin(angle_z + step_z) * std::sin(angle_xy);
zz[1] = radius * std::cos(angle_z + step_z);
xx[2] = radius * std::sin(angle_z + step_z) * std::cos(angle_xy + step_xy);
yy[2] = radius * std::sin(angle_z + step_z) * std::sin(angle_xy + step_xy);
zz[2] = radius * std::cos(angle_z + step_z);
xx[3] = radius * std::sin(angle_z) * std::cos(angle_xy + step_xy);
yy[3] = radius * std::sin(angle_z) * std::sin(angle_xy + step_xy);
zz[3] = radius * std::cos(angle_z);
for (unsigned k = 0; k < 4; k++) {
glVertex3f(x + xx[k], y + yy[k], z + zz[k]); // draw the floor plane
}
}
}
glEnd();
}
/// Render the network centerline as a series of line strips.
/// glCenterline0 is for only one input
void glCenterline0(){
if (!glIsList(dlist)) { //if dlist isn't a display list, create it
dlist = glGenLists(1); //generate a display list
glNewList(dlist, GL_COMPILE); //start a new display list
for (unsigned e = 0; e < E.size(); e++) { //for each edge in the network
glBegin(GL_LINE_STRIP);
for (unsigned p = 0; p < E[e].size(); p++) { //for each point on that edge
glVertex3f(E[e][p][0], E[e][p][1], E[e][p][2]); //set the vertex position based on the current point
glTexCoord1f(0); //set white color
}
glEnd();
}
glEndList(); //end the display list
}
glCallList(dlist); // render the display list
}
///render the network centerline as a series of line strips(when loading at least two networks, otherwise using glCenterline0())
///colors are based on metric values
void glCenterline(){
if(!glIsList(dlist)){ //if dlist isn't a display list, create it
dlist = glGenLists(1); //generate a display list
glNewList(dlist, GL_COMPILE); //start a new display list
for(unsigned e = 0; e < E.size(); e++){ //for each edge in the network
//unsigned errormag_id = E[e].nmags() - 1;
glBegin(GL_LINE_STRIP);
for(unsigned p = 0; p < E[e].size(); p++){ //for each point on that edge
glVertex3f(E[e][p][0], E[e][p][1], E[e][p][2]); //set the vertex position based on the current point
glTexCoord1f(E[e].r(p)); //set the texture coordinate based on the specified magnitude index
}
glEnd();
}
glEndList(); //end the display list
}
glCallList(dlist); //render the display list
}
///render the network cylinder as a series of tubes(when only one network loaded)
void glCylinder0() {
float r1, r2;
if (!glIsList(dlist)) { // if dlist isn't a display list, create it
dlist = glGenLists(1); // generate a display list
glNewList(dlist, GL_COMPILE); // start a new display list
for (unsigned e = 0; e < E.size(); e++) { // for each edge in the network
for (unsigned p = 1; p < E[e].size(); p++) { // for each point on that edge
stim::circle<T> C1 = E[e].circ(p - 1);
stim::circle<T> C2 = E[e].circ(p);
r1 = E[e].r(p - 1);
r2 = E[e].r(p);
C1.set_R(r1); // re-scale the circle to the same
C2.set_R(r2);
std::vector< stim::vec3<T> > Cp1 = C1.glpoints(20);// get 20 points on the circle plane
std::vector< stim::vec3<T> > Cp2 = C2.glpoints(20);
glBegin(GL_QUAD_STRIP);
for (unsigned i = 0; i < Cp1.size(); i++) {
glVertex3f(Cp1[i][0], Cp1[i][1], Cp1[i][2]);
glVertex3f(Cp2[i][0], Cp2[i][1], Cp2[i][2]);
}
glEnd();
} // set the texture coordinate based on the specified magnitude index
}
for (unsigned n = 0; n < V.size(); n++) {
for (unsigned i = 0; i < E.size(); i++) {
if (E[i].v[0] == n) {
r1 = E[i].r(0);
break;
}
else if (E[i].v[1] == n) {
r1 = E[i].r(E[i].size() - 1);
break;
}
}
renderBall(V[n][0], V[n][1], V[n][2], r1, 20);
}
glEndList(); // end the display list
}
glCallList(dlist); // render the display list
}
///render the network cylinder as a series of tubes
///colors are based on metric values
void glCylinder(float sigma, float radius) {
if (radius != sigma) // if render radius was changed by user, create a new display list
glDeleteLists(dlist, 1);
if (!glIsList(dlist)) { // if dlist isn't a display list, create it
dlist = glGenLists(1); // generate a display list
glNewList(dlist, GL_COMPILE); // start a new display list
for (unsigned e = 0; e < E.size(); e++) { // for each edge in the network
for (unsigned p = 1; p < E[e].size(); p++) { // for each point on that edge
stim::circle<T> C1 = E[e].circ(p - 1);
stim::circle<T> C2 = E[e].circ(p);
C1.set_R(2*radius); // re-scale the circle to the same
C2.set_R(2*radius);
std::vector< stim::vec3<T> > Cp1 = C1.glpoints(20);// get 20 points on the circle plane
std::vector< stim::vec3<T> > Cp2 = C2.glpoints(20);
glBegin(GL_QUAD_STRIP);
for (unsigned i = 0; i < Cp1.size(); i++) {
stim::vec3<T> n1 = Cp1[i] - E[e][p - 1]; // set normal vector for every vertex on the quads
stim::vec3<T> n2 = Cp2[i] - E[e][p];
n1 = n1.norm();
n2 = n2.norm();
glNormal3f(n1[0], n1[1], n1[2]);
glTexCoord1f(E[e].r(p - 1));
glVertex3f(Cp1[i][0], Cp1[i][1], Cp1[i][2]);
glNormal3f(n2[0], n2[1], n2[2]);
glTexCoord1f(E[e].r(p));
glVertex3f(Cp2[i][0], Cp2[i][1], Cp2[i][2]);
}
glEnd();
} // set the texture coordinate based on the specified magnitude index
}
for (unsigned n = 0; n < V.size(); n++) {
size_t num = V[n].e[0].size(); // store the number of outgoing edge of that vertex
if (num != 0) { // if it has outgoing edge
unsigned idx = V[n].e[0][0]; // find the index of first outgoing edge of that vertex
glTexCoord1f(E[idx].r(0)); // bind the texture as metric of first point on that edge
}
else {
unsigned idx = V[n].e[1][0]; // find the index of first incoming edge of that vertex
glTexCoord1f(E[idx].r(E[idx].size() - 1)); // bind the texture as metric of last point on that edge
}
renderBall(V[n][0], V[n][1], V[n][2], 2*radius, 20);
}
glEndList(); // end the display list
}
glCallList(dlist); // render the display list
}
///render a T as a adjoint network of GT in transparancy(darkgreen, overlaid)
void glAdjointCylinder(float sigma, float radius) {
if (radius != sigma) // if render radius was changed by user, create a new display list
glDeleteLists(dlist + 4, 1);
if (!glIsList(dlist + 4)) {
glNewList(dlist + 4, GL_COMPILE);
for (unsigned e = 0; e < E.size(); e++) { // for each edge in the network
for (unsigned p = 1; p < E[e].size(); p++) { // for each point on that edge
stim::circle<T> C1 = E[e].circ(p - 1);
stim::circle<T> C2 = E[e].circ(p);
C1.set_R(2 * radius); // scale the circle to the same
C2.set_R(2 * radius);
std::vector< stim::vec3<T> >Cp1 = C1.glpoints(20);
std::vector< stim::vec3<T> >Cp2 = C2.glpoints(20);
glBegin(GL_QUAD_STRIP);
for (unsigned i = 0; i < Cp1.size(); i++) { // for every point on the circle(+1 means closing the circle)
glVertex3f(Cp1[i][0], Cp1[i][1], Cp1[i][2]);
glVertex3f(Cp2[i][0], Cp2[i][1], Cp2[i][2]);
}
glEnd();
} // set the texture coordinate based on the specified magnitude index
}
for (unsigned n = 0; n < V.size(); n++) {
size_t num = V[n].e[0].size(); // store the number of outgoing edge of that vertex
if (num != 0) { // if it has outgoing edge
unsigned idx = V[n].e[0][0]; // find the index of first outgoing edge of that vertex
}
else {
unsigned idx = V[n].e[1][0]; // find the index of first incoming edge of that vertex
}
renderBall(V[n][0], V[n][1], V[n][2], 2 * radius, 20);
}
glEndList();
}
glCallList(dlist + 4);
}
///render the network cylinder as series of tubes
///@param I is a indicator: 0 -> GT, 1 -> T
///@param map is the mapping relationship between two networks
///@param colormap is the random generated color set for render
void glRandColorCylinder(int I, std::vector<unsigned> map, std::vector<T> colormap, float sigma, float radius) {
if (radius != sigma) // if render radius was changed by user, create a new display list
glDeleteLists(dlist + 2, 1);
if (!glIsList(dlist + 2)) { // if dlist isn't a display list, create it
glNewList(dlist + 2, GL_COMPILE); // start a new display list
for (unsigned e = 0; e < E.size(); e++) { // for each edge in the network
if (map[e] != unsigned(-1)) {
if (I == 0) { // if it is to render GT
glColor3f(colormap[e * 3 + 0], colormap[e * 3 + 1], colormap[e * 3 + 2]);
}
else { // if it is to render T
glColor3f(colormap[map[e] * 3 + 0], colormap[map[e] * 3 + 1], colormap[map[e] * 3 + 2]);
}
for (unsigned p = 1; p < E[e].size(); p++) {// for each point on that edge
stim::circle<T> C1 = E[e].circ(p - 1);
stim::circle<T> C2 = E[e].circ(p);
C1.set_R(2*radius); // re-scale the circle to the same
C2.set_R(2*radius);
std::vector< stim::vec3<T> >Cp1 = C1.glpoints(20);
std::vector< stim::vec3<T> >Cp2 = C2.glpoints(20);
renderCylinder(Cp1, Cp2, E[e][p - 1], E[e][p]);
}
}
else {
glColor3f(1.0, 1.0, 1.0); // white color for the un-mapping edges
for (unsigned p = 1; p < E[e].size(); p++) {// for each point on that edge
stim::circle<T> C1 = E[e].circ(p - 1);
stim::circle<T> C2 = E[e].circ(p);
C1.set_R(2*radius); // scale the circle to the same
C2.set_R(2*radius);
std::vector< stim::vec3<T> >Cp1 = C1.glpoints(20);
std::vector< stim::vec3<T> >Cp2 = C2.glpoints(20);
renderCylinder(Cp1, Cp2, E[e][p - 1], E[e][p]);
}
}
}
for (unsigned n = 0; n < V.size(); n++) {
size_t num_edge = V[n].e[0].size() + V[n].e[1].size();
if (num_edge > 1) { // if it is the joint vertex
glColor3f(0.3, 0.3, 0.3); // gray
renderBall(V[n][0], V[n][1], V[n][2], 3*radius, 20);
}
else { // if it is the terminal vertex
glColor3f(0.6, 0.6, 0.6); // more white gray
renderBall(V[n][0], V[n][1], V[n][2], 3*radius, 20);
}
}
glEndList();
}
glCallList(dlist + 2);
}
///render the network centerline as a series of line strips in random different color
///@param I is a indicator: 0 -> GT, 1 -> T
///@param map is the mapping relationship between two networks
///@param colormap is the random generated color set for render
void glRandColorCenterline(int I, std::vector<unsigned> map, std::vector<T> colormap) {
if (!glIsList(dlist + 2)) {
glNewList(dlist + 2, GL_COMPILE);
for (unsigned e = 0; e < E.size(); e++) {
if (map[e] != unsigned(-1)) { // if it has corresponding edge in another network
if (I == 0) // if it is to render GT
glColor3f(colormap[e * 3 + 0], colormap[e * 3 + 1], colormap[e * 3 + 2]);
else // if it is to render T
glColor3f(colormap[map[e] * 3 + 0], colormap[map[e] * 3 + 1], colormap[map[e] * 3 + 2]);
glBegin(GL_LINE_STRIP);
for (unsigned p = 0; p < E[e].size(); p++) {
glVertex3f(E[e][p][0], E[e][p][1], E[e][p][2]);
}
glEnd();
}
else {
glColor3f(1.0, 1.0, 1.0); // white color for the un-mapping edges
glBegin(GL_LINE_STRIP);
for (unsigned p = 0; p < E[e].size(); p++) {
glVertex3f(E[e][p][0], E[e][p][1], E[e][p][2]);
}
glEnd();
}
}
glEndList();
}
glCallList(dlist + 2);
}
void glAdjointCenterline() {
if (!glIsList(dlist + 4)) {
glNewList(dlist + 4, GL_COMPILE);
for (unsigned e = 0; e < E.size(); e++) { //for each edge in the network
glBegin(GL_LINE_STRIP);
for (unsigned p = 0; p < E[e].size(); p++) { //for each point on that edge
glVertex3f(E[e][p][0], E[e][p][1], E[e][p][2]); //set the vertex position based on the current point
glTexCoord1f(E[e].r(p)); //set the texture coordinate based on the specified magnitude index
}
glEnd();
}
glEndList();
}
glCallList(dlist + 4);
}
// highlight the difference part
void glDifferenceCylinder(int I, std::vector<unsigned> map, std::vector<T> colormap, float sigma, float radius) {
if (radius != sigma) // if render radius was changed by user, create a new display list
glDeleteLists(dlist + 6, 1);
if (!glIsList(dlist + 6)) { // if dlist isn't a display list, create it
glNewList(dlist + 6, GL_COMPILE); // start a new display list
for (unsigned e = 0; e < E.size(); e++) { // for each edge in the network
if (map[e] != unsigned(-1)) {
glEnable(GL_BLEND); //enable color blend
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); //set blend function
glDisable(GL_DEPTH_TEST); //should disable depth
if (I == 0) { // if it is to render GT
glColor4f(colormap[e * 3 + 0], colormap[e * 3 + 1], colormap[e * 3 + 2], 0.1);
}
else { // if it is to render T
glColor4f(colormap[map[e] * 3 + 0], colormap[map[e] * 3 + 1], colormap[map[e] * 3 + 2], 0.1);
}
for (unsigned p = 1; p < E[e].size(); p++) {// for each point on that edge
stim::circle<T> C1 = E[e].circ(p - 1);
stim::circle<T> C2 = E[e].circ(p);
C1.set_R(2 * radius); // re-scale the circle to the same
C2.set_R(2 * radius);
std::vector< stim::vec3<T> >Cp1 = C1.glpoints(20);
std::vector< stim::vec3<T> >Cp2 = C2.glpoints(20);
renderCylinder(Cp1, Cp2, E[e][p - 1], E[e][p]);
}
glDisable(GL_BLEND);
glEnable(GL_DEPTH_TEST);
}
else {
glColor3f(1.0, 1.0, 1.0); // white color for the un-mapping edges
for (unsigned p = 1; p < E[e].size(); p++) {// for each point on that edge
stim::circle<T> C1 = E[e].circ(p - 1);
stim::circle<T> C2 = E[e].circ(p);
C1.set_R(2 * radius); // scale the circle to the same
C2.set_R(2 * radius);
std::vector< stim::vec3<T> >Cp1 = C1.glpoints(20);
std::vector< stim::vec3<T> >Cp2 = C2.glpoints(20);
renderCylinder(Cp1, Cp2, E[e][p - 1], E[e][p]);
}
}
}
for (unsigned n = 0; n < V.size(); n++) {
size_t num_edge = V[n].e[0].size() + V[n].e[1].size();
if (num_edge > 1) { // if it is the joint vertex
glColor4f(0.3, 0.3, 0.3, 0.1); // gray
renderBall(V[n][0], V[n][1], V[n][2], 3 * radius, 20);
}
else { // if it is the terminal vertex
glColor4f(0.6, 0.6, 0.6, 0.1); // more white gray
renderBall(V[n][0], V[n][1], V[n][2], 3 * radius, 20);
}
}
glEndList();
}
glCallList(dlist + 6);
}
//void glRandColorCenterlineGT(GLuint &dlist1, std::vector<unsigned> map, std::vector<T> colormap){
// if(!glIsList(dlist1)){
// dlist1 = glGenLists(1);
// glNewList(dlist1, GL_COMPILE);
// for(unsigned e = 0; e < E.size(); e++){
// if(map[e] != unsigned(-1)){
// glColor3f(colormap[e * 3 + 0], colormap[e * 3 + 1], colormap[e * 3 + 2]);
// glBegin(GL_LINE_STRIP);
// for(unsigned p = 0; p < E[e].size(); p++){
// glVertex3f(E[e][p][0], E[e][p][1], E[e][p][2]);
// }
// glEnd();
// for (unsigned p = 0; p < E[e].size() - 1; p++) {
// renderCylinder(E[e][p][0], E[e][p][1], E[e][p][2], E[e][p + 1][0], E[e][p + 1][1], E[e][p + 1][2], 10, 20);
// }
// }
// else{
// glColor3f(1.0, 1.0, 1.0);
// glBegin(GL_LINE_STRIP);
// for(unsigned p = 0; p < E[e].size(); p++){
// glVertex3f(E[e][p][0], E[e][p][1], E[e][p][2]);
// }
// glEnd();
// }
// }
// for (unsigned v = 0; v < V.size(); v++) {
// size_t num_edge = V[v].e[0].size() + V[v].e[1].size();
// if (num_edge > 1) {
// glColor3f(0.3, 0.3, 0.3); // gray color for vertex
// renderBall(V[v][0], V[v][1], V[v][2], 20, 20);
// }
// }
// glEndList();
// }
// glCallList(dlist1);
//}
//void glRandColorCenterlineT(GLuint &dlist2, std::vector<unsigned> map, std::vector<T> colormap){
// if(!glIsList(dlist2)){
// dlist2 = glGenLists(1);
// glNewList(dlist2, GL_COMPILE);
// for(unsigned e = 0; e < E.size(); e++){
// if(map[e] != unsigned(-1)){
// glColor3f(colormap[map[e] * 3 + 0], colormap[map[e] * 3 + 1], colormap[map[e] * 3 + 2]);
// glBegin(GL_LINE_STRIP);
// for(unsigned p = 0; p < E[e].size(); p++){
// glVertex3f(E[e][p][0], E[e][p][1], E[e][p][2]);
// }
// glEnd();
// for (unsigned p = 0; p < E[e].size() - 1; p++) {
// renderCylinder(E[e][p][0], E[e][p][1], E[e][p][2], E[e][p + 1][0], E[e][p + 1][1], E[e][p + 1][2], 10, 20);
// }
// }
// else{
// glColor3f(1.0, 1.0, 1.0);
// glBegin(GL_LINE_STRIP);
// for(unsigned p = 0; p < E[e].size(); p++){
// glVertex3f(E[e][p][0], E[e][p][1], E[e][p][2]);
// }
// glEnd();
// }
// }
// for (unsigned v = 0; v < V.size(); v++) {
// size_t num_edge = V[v].e[0].size() + V[v].e[1].size();
// if (num_edge > 1) {
// glColor3f(0.3, 0.3, 0.3); // gray color for vertex
// renderBall(V[v][0], V[v][1], V[v][2], 20, 20);
// }
// }
// glEndList();
// }
// glCallList(dlist2);
//}
//void renderCylinder(T x1, T y1, T z1, T x2, T y2, T z2, T radius, int subdivisions) {
// T dx = x2 - x1;
// T dy = y2 - y1;
// T dz = z2 - z1;
// /// handle the degenerate case with an approximation
// if (dz == 0)
// dz = .00000001;
// T d = sqrt(dx*dx + dy*dy + dz*dz);
// T ax = 57.2957795*acos(dz / d); // 180°/pi
// if (dz < 0.0)
// ax = -ax;
// T rx = -dy*dz;
// T ry = dx*dz;
// glPushMatrix();
// glTranslatef(x1, y1, z1);
// glRotatef(ax, rx, ry, 0.0);
// glutSolidCylinder(radius, d, subdivisions, 1);
// glPopMatrix();
//}
/// render the network centerline from swc file as a series of strips in different colors based on the neuronal type
/// glCenterline0_swc is for only one input
/*void glCenterline0_swc() {
if (!glIsList(dlist)) { // if dlist isn't a display list, create it
dlist = glGenLists(1); // generate a display list
glNewList(dlist, GL_COMPILE); // start a new display list
for (unsigned e = 0; e < E.size(); e++) {
int type = NT[e]; // get the neuronal type
switch (type) {
case 0:
glColor3f(1.0f, 1.0f, 1.0f); // white for undefined
glBegin(GL_LINE_STRIP);
for (unsigned p = 0; p < E[e].size(); p++) {
glVertex3f(E[e][p][0], E[e][p][1], E[e][p][2]);
}
glEnd();
break;
case 1:
glColor3f(1.0f, 0.0f, 0.0f); // red for soma
glBegin(GL_LINE_STRIP);
for (unsigned p = 0; p < E[e].size(); p++) {
glVertex3f(E[e][p][0], E[e][p][1], E[e][p][2]);
}
glEnd();
break;
case 2:
glColor3f(1.0f, 0.5f, 0.0f); // orange for axon
glBegin(GL_LINE_STRIP);
for (unsigned p = 0; p < E[e].size(); p++) {
glVertex3f(E[e][p][0], E[e][p][1], E[e][p][2]);
}
glEnd();
break;
case 3:
glColor3f(1.0f, 1.0f, 0.0f); // yellow for undefined
glBegin(GL_LINE_STRIP);
for (unsigned p = 0; p < E[e].size(); p++) {
glVertex3f(E[e][p][0], E[e][p][1], E[e][p][2]);
}
glEnd();
break;
case 4:
glColor3f(0.0f, 1.0f, 0.0f); // green for undefined
glBegin(GL_LINE_STRIP);
for (unsigned p = 0; p < E[e].size(); p++) {
glVertex3f(E[e][p][0], E[e][p][1], E[e][p][2]);
}
glEnd();
break;
case 5:
glColor3f(0.0f, 1.0f, 1.0f); // verdant for undefined
glBegin(GL_LINE_STRIP);
for (unsigned p = 0; p < E[e].size(); p++) {
glVertex3f(E[e][p][0], E[e][p][1], E[e][p][2]);
}
glEnd();
break;
case 6:
glColor3f(0.0f, 0.0f, 1.0f); // blue for undefined
glBegin(GL_LINE_STRIP);
for (unsigned p = 0; p < E[e].size(); p++) {
glVertex3f(E[e][p][0], E[e][p][1], E[e][p][2]);
}
glEnd();
break;
case 7:
glColor3f(0.5f, 0.0f, 1.0f); // purple for undefined
glBegin(GL_LINE_STRIP);
for (unsigned p = 0; p < E[e].size(); p++) {
glVertex3f(E[e][p][0], E[e][p][1], E[e][p][2]);
}
glEnd();
break;
}
}
glEndList(); //end the display list
}
glCallList(dlist); // render the display list
}*/
///render the network cylinder as a series of tubes
///colors are based on metric values
//void glCylinder(float sigma) {
// if (!glIsList(dlist)) { //if dlist isn't a display list, create it
// dlist = glGenLists(1); //generate a display list
// glNewList(dlist, GL_COMPILE); //start a new display list
// for (unsigned e = 0; e < E.size(); e++) { //for each edge in the network
// for (unsigned p = 1; p < E[e].size() - 1; p++) { // for each point on that edge
// stim::circle<T> C1 = E[e].circ(p - 1);
// stim::circle<T> C2 = E[e].circ(p);
// C1.set_R(2.5*sigma); // scale the circle to the same
// C2.set_R(2.5*sigma);
// std::vector< stim::vec3<T> >Cp1 = C1.glpoints(20);
// std::vector< stim::vec3<T> >Cp2 = C2.glpoints(20);
// glBegin(GL_QUAD_STRIP);
// for (unsigned i = 0; i < Cp1.size(); i++) { // for every point on the circle(+1 means closing the circle)
// glVertex3f(Cp1[i][0], Cp1[i][1], Cp1[i][2]);
// glVertex3f(Cp2[i][0], Cp2[i][1], Cp2[i][2]);
// glTexCoord1f(E[e].r(p));
// }
// glEnd();
// } //set the texture coordinate based on the specified magnitude index
// }
// for (unsigned n = 0; n < V.size(); n++) {
// size_t num = V[n].e[0].size(); //store the number of outgoing edge of that vertex
// if (num != 0) { //if it has outgoing edge
// unsigned idx = V[n].e[0][0]; //find the index of first outgoing edge of that vertex
// glTexCoord1f(E[idx].r(0)); //bind the texture as metric of first point on that edge
// }
// else {
// unsigned idx = V[n].e[1][0]; //find the index of first incoming edge of that vertex
// glTexCoord1f(E[idx].r(E[idx].size() - 1)); //bind the texture as metric of last point on that edge
// }
// renderBall(V[n][0], V[n][1], V[n][2], 2.5*sigma, 20);
// }
// glEndList(); //end the display list
// }
// glCallList(dlist); //render the display list
//}
}; //end stim::gl_network class
}; //end stim namespace
#endif