network.h
33.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
#ifndef STIM_NETWORK_H
#define STIM_NETWORK_H
#include <stdlib.h>
#include <assert.h>
#include <sstream>
#include <fstream>
#include <algorithm>
#include <string.h>
#include <math.h>
#include <stim/math/vec3.h>
#include <stim/visualization/obj.h>
#include <stim/visualization/cylinder.h>
#include <stim/structures/kdtree.cuh>
#include <stim/cuda/cudatools/timer.h>
#ifdef __CUDACC__
//device gaussian function
__device__ float gaussianFunction(float x, float std){ return expf(-x/(2*std*std));}
//compute metric in parallel
template <typename T>
__global__ void d_metric(T* M, size_t n, T* D, float sigma){
size_t x = blockDim.x * blockIdx.x + threadIdx.x;
if(x >= n) return;
M[x] = 1.0f - gaussianFunction(D[x], sigma);
}
//find the corresponding edge index from array index
__global__ void d_findedge(size_t* I, size_t n, unsigned* R, size_t* E, size_t ne){
size_t x = blockDim.x * blockIdx.x + threadIdx.x;
if(x >= n) return;
unsigned i = 0;
size_t N = 0;
for(unsigned e = 0; e < ne; e++){
N += E[e];
if(I[x] < N){
R[x] = i;
break;
}
i++;
}
}
#endif
//hard-coded factor
int threshold_fac = 10;
float metric_fac = 0.6f; // might be related to the distance field
namespace stim{
/** This is the a class that interfaces with gl_spider in order to store the currently
* segmented network. The following data is stored and can be extracted:
* 1)Network geometry and centerline.
* 2)Network connectivity (a graph of nodes and edges), reconstructed using ANN library.
*/
template<typename T>
class network{
///Each edge is a fiber with two nodes.
///Each node is an in index to the endpoint of the fiber in the nodes array.
class edge : public cylinder<T>
{
public:
unsigned v[2]; //unique id's designating the starting and ending
// default constructor
edge() : cylinder<T>() {
v[1] = (unsigned)(-1); v[0] = (unsigned)(-1);
}
/// Constructor - creates an edge from a list of points by calling the stim::fiber constructor
///@param p is an array of positions in space
edge(centerline p) : cylinder<T>(p){}
/// Copy constructor creates an edge from a cylinder
edge(stim::cylinder<T> f) : cylinder<T>(f) {}
/// Resamples an edge by calling the fiber resampling function
edge resample(T spacing){
edge e(cylinder<T>::resample(spacing)); //call the fiber->edge constructor
e.v[0] = v[0]; //copy the vertex data
e.v[1] = v[1];
return e; //return the new edge
}
/// Output the edge information as a string
std::string str(){
std::stringstream ss;
ss<<"("<<cylinder<T>::size()<<")\tl = "<<this->length()<<"\t"<<v[0]<<"----"<<v[1];
return ss.str();
}
std::vector<edge> split(unsigned int idx){
std::vector< stim::cylinder<T> > C;
C.resize(2);
C = (*this).cylinder<T>::split(idx);
std::vector<edge> E(C.size());
for(unsigned e = 0; e < E.size(); e++){
E[e] = C[e];
}
return E;
}
};
///Node class that stores the physical position of the node as well as the edges it is connected to (edges that connect to it), As well as any additional data necessary.
class vertex : public stim::vec3<T>
{
public:
//std::vector<unsigned int> edges; //indices of edges connected to this node.
std::vector<unsigned int> e[2]; //indices of edges going out (e[0]) and coming in (e[1])
//stim::vec3<T> p; //position of this node in physical space.
//constructor takes a stim::vec
vertex(stim::vec3<T> p) : stim::vec3<T>(p){}
/// Output the vertex information as a string
std::string str(){
std::stringstream ss;
ss<<"\t(x, y, z) = "<<stim::vec3<T>::str();
if(e[0].size() > 0){
ss<<"\t> ";
for(unsigned int o = 0; o < e[0].size(); o++)
ss<<e[0][o]<<" ";
}
if(e[1].size() > 0){
ss<<"\t< ";
for(unsigned int i = 0; i < e[1].size(); i++)
ss<<e[1][i]<<" ";
}
return ss.str();
}
};
protected:
std::vector<edge> E; //list of edges
std::vector<vertex> V; //list of vertices.
public:
///default constructor
network()
{
}
///constructor with a file to load.
network(std::string fileLocation)
{
load_obj(fileLocation);
}
///Returns the number of edges in the network.
unsigned int edges(){
return E.size();
}
///Returns the number of nodes in the network.
unsigned int vertices(){
return V.size();
}
//scale the network by some constant value
// I don't think these work??????
/*std::vector<vertex> operator*(T s){
for (unsigned i=0; i< vertices; i ++ ){
V[i] = V[i] * s;
}
return V;
}
std::vector<vertex> operator*(vec<T> s){
for (unsigned i=0; i< vertices; i ++ ){
for (unsigned dim = 0 ; dim< 3; dim ++){
V[i][dim] = V[i][dim] * s[dim];
}
}
return V;
}*/
// Returns an average of branching index in the network
double BranchingIndex(){
double B=0;
for(unsigned v=0; v < V.size(); v ++){
B += ((V[v].e[0].size()) + (V[v].e[1].size()));
}
B = B / V.size();
return B;
}
// Returns number of branch points in thenetwork
unsigned int BranchP(){
unsigned int B=0;
unsigned int c;
for(unsigned v=0; v < V.size(); v ++){
c = ((V[v].e[0].size()) + (V[v].e[1].size()));
if (c > 2){
B += 1;}
}
return B;
}
// Returns number of end points (tips) in thenetwork
unsigned int EndP(){
unsigned int B=0;
unsigned int c;
for(unsigned v=0; v < V.size(); v ++){
c = ((V[v].e[0].size()) + (V[v].e[1].size()));
if (c == 1){
B += 1;}
}
return B;
}
//// Returns a dictionary with the key as the vertex
//std::map<std::vector<vertex>,unsigned int> DegreeDict(){
// std::map<std::vector<vertex>,unsigned int> dd;
// unsigned int c = 0;
// for(unsigned v=0; v < V.size(); v ++){
// c = ((V[v].e[0].size()) + (V[v].e[1].size()));
// dd[V[v]] = c;
// }
// return dd;
//}
//// Return number of branching stems
//unsigned int Stems(){
// unsigned int s = 0;
// std::map<std::vector<vertex>,unsigned int> dd;
// dd = DegreeDict();
// //for(unsigned v=0; v < V.size(); v ++){
// // V[v].e[0].
// return s;
//}
//Calculate Metrics---------------------------------------------------
// Returns an average of fiber/edge lengths in the network
double Lengths(){
stim::vec<T> L;
double sumLength = 0;
for(unsigned e = 0; e < E.size(); e++){ //for each edge in the network
L.push_back(E[e].length()); //append the edge length
sumLength = sumLength + E[e].length();
}
double avg = sumLength / E.size();
return avg;
}
// Returns an average of tortuosities in the network
double Tortuosities(){
stim::vec<T> t;
stim::vec<T> id1, id2; // starting and ending vertices of the edge
double distance;double tortuosity;double sumTortuosity = 0;
for(unsigned e = 0; e < E.size(); e++){ //for each edge in the network
id1 = E[e][0]; //get the edge starting point
id2 = E[e][E[e].size() - 1]; //get the edge ending point
distance = (id1 - id2).len(); //displacement between the starting and ending points
if(distance > 0){
tortuosity = E[e].length()/ distance ; // tortuoisty = edge length / edge displacement
}
else{
tortuosity = 0;}
t.push_back(tortuosity);
sumTortuosity += tortuosity;
}
double avg = sumTortuosity / E.size();
return avg;
}
// Returns average contraction of the network
double Contractions(){
stim::vec<T> t;
stim::vec<T> id1, id2; // starting and ending vertices of the edge
double distance;double contraction;double sumContraction = 0;
for(unsigned e = 0; e < E.size(); e++){ //for each edge in the network
id1 = E[e][0]; //get the edge starting point
id2 = E[e][E[e].size() - 1]; //get the edge ending point
distance = (id1 - id2).len(); //displacement between the starting and ending points
contraction = distance / E[e].length(); // tortuoisty = edge length / edge displacement
t.push_back(contraction);
sumContraction += contraction;
}
double avg = sumContraction / E.size();
return avg;
}
// returns average fractal dimension of the branches of the network
double FractalDimensions(){
stim::vec<T> t;
stim::vec<T> id1, id2; // starting and ending vertices of the edge
double distance;double fract;double sumFractDim = 0;
for(unsigned e = 0; e < E.size(); e++){ //for each edge in the network
id1 = E[e][0]; //get the edge starting point
id2 = E[e][E[e].size() - 1]; //get the edge ending point
distance = (id1 - id2).len(); //displacement between the starting and ending points
fract = std::log(distance) / std::log(E[e].length()); // tortuoisty = edge length / edge displacement
t.push_back(sumFractDim);
sumFractDim += fract;
}
double avg = sumFractDim / E.size();
return avg;
}
//returns a cylinder represented a given fiber (based on edge index)
stim::cylinder<T> get_cylinder(unsigned e){
return E[e]; //return the specified edge (casting it to a fiber)
}
//load a network from an OBJ file
void load_obj(std::string filename){
stim::obj<T> O; //create an OBJ object
O.load(filename); //load the OBJ file as an object
std::vector<unsigned> id2vert; //this list stores the OBJ vertex ID associated with each network vertex
unsigned i[2]; //temporary, IDs associated with the first and last points in an OBJ line
//for each line in the OBJ object
for(unsigned int l = 1; l <= O.numL(); l++){
std::vector< stim::vec<T> > c; //allocate an array of points for the vessel centerline
O.getLine(l, c); //get the fiber centerline
stim::centerline<T> c3(c.size());
for(size_t j = 0; j < c.size(); j++)
c3[j] = c[j];
c3.update();
// edge new_edge = c3; ///This is dangerous.
edge new_edge(c3);
//create an edge from the given centerline
unsigned int I = new_edge.size(); //calculate the number of points on the centerline
//get the first and last vertex IDs for the line
std::vector< unsigned > id; //create an array to store the centerline point IDs
O.getLinei(l, id); //get the list of point IDs for the line
i[0] = id.front(); //get the OBJ ID for the first element of the line
i[1] = id.back(); //get the OBJ ID for the last element of the line
std::vector<unsigned>::iterator it; //create an iterator for searching the id2vert array
unsigned it_idx; //create an integer for the id2vert entry index
//find out if the nodes for this fiber have already been created
it = find(id2vert.begin(), id2vert.end(), i[0]); //look for the first node
if(it == id2vert.end()){ //if i[0] hasn't already been used
vertex new_vertex = new_edge[0]; //create a new vertex, assign it a position
new_vertex.e[0].push_back(E.size()); //add the current edge as outgoing
new_edge.v[0] = V.size(); //add the new edge to the edge
V.push_back(new_vertex); //add the new vertex to the vertex list
id2vert.push_back(i[0]); //add the ID to the ID->vertex conversion list
}
else{ //if the vertex already exists
it_idx = std::distance(id2vert.begin(), it);
V[it_idx].e[0].push_back(E.size()); //add the current edge as outgoing
new_edge.v[0] = it_idx;
}
it = find(id2vert.begin(), id2vert.end(), i[1]); //look for the second ID
if(it == id2vert.end()){ //if i[1] hasn't already been used
vertex new_vertex = new_edge[I-1]; //create a new vertex, assign it a position
new_vertex.e[1].push_back(E.size()); //add the current edge as incoming
new_edge.v[1] = V.size(); //add the new vertex to the edge
V.push_back(new_vertex); //add the new vertex to the vertex list
id2vert.push_back(i[1]); //add the ID to the ID->vertex conversion list
}
else{ //if the vertex already exists
it_idx = std::distance(id2vert.begin(), it);
V[it_idx].e[1].push_back(E.size()); //add the current edge as incoming
new_edge.v[1] = it_idx;
}
E.push_back(new_edge); //push the edge to the list
}
}
/// Output the network as a string
std::string str(){
std::stringstream ss;
ss<<"Nodes ("<<V.size()<<")--------"<<std::endl;
for(unsigned int v = 0; v < V.size(); v++){
ss<<"\t"<<v<<V[v].str()<<std::endl;
}
ss<<"Edges ("<<E.size()<<")--------"<<std::endl;
for(unsigned e = 0; e < E.size(); e++){
ss<<"\t"<<e<<E[e].str()<<std::endl;
}
return ss.str();
}
/// This function resamples all fibers in a network given a desired minimum spacing
/// @param spacing is the minimum distance between two points on the network
stim::network<T> resample(T spacing){
stim::network<T> n; //create a new network that will be an exact copy, with resampled fibers
n.V = V; //copy all vertices
n.E.resize(edges()); //allocate space for the edge list
//copy all fibers, resampling them in the process
for(unsigned e = 0; e < edges(); e++){ //for each edge in the edge list
n.E[e] = E[e].resample(spacing); //resample the edge and copy it to the new network
}
return n; //return the resampled network
}
// host gaussian function
__host__ float gaussianFunction(float x, float std = 25){ return exp(-x/(2*std*std));} // std default value is 25
/// Calculate the total number of points on all edges.
unsigned total_points(){
unsigned n = 0;
for(unsigned e = 0; e < E.size(); e++)
n += E[e].size();
return n;
}
//Copy the point cloud representing the centerline for the network into an array
void centerline_cloud(T* dst) {
size_t p; //stores the current edge point
size_t P; //stores the number of points in an edge
size_t i = 0; //index into the output array of points
for (size_t e = 0; e < E.size(); e++) { //for each edge in the network
P = E[e].size(); //get the number of points in this edge
for (p = 0; p < P; p++) {
dst[i * 3 + 0] = E[e][p][0];
dst[i * 3 + 1] = E[e][p][1];
dst[i * 3 + 2] = E[e][p][2];
i++;
}
}
}
// convert vec3 to array
void stim2array(float *a, stim::vec3<T> b){
a[0] = b[0];
a[1] = b[1];
a[2] = b[2];
}
// convert vec3 to array in bunch
void edge2array(T* a, edge b){
size_t n = b.size();
for(size_t i = 0; i < n; i++){
a[i * 3 + 0] = b[i][0];
a[i * 3 + 1] = b[i][1];
a[i * 3 + 2] = b[i][2];
}
}
/// Calculate the average magnitude across the entire network.
/// @param m is the magnitude value to use. The default is 0 (usually radius).
T average(unsigned m = 0){
T M, L; //allocate space for the total magnitude and length
M = L = 0; //initialize both the initial magnitude and length to zero
for(unsigned e = 0; e < E.size(); e++){ //for each edge in the network
M += E[e].integrate(); //get the integrated magnitude
L += E[e].length(); //get the edge length
}
return M / L; //return the average magnitude
}
/// This function compares two networks and returns the percentage of the current network that is missing from A.
/// @param A is the network to compare to - the field is generated for A
/// @param sigma is the user-defined tolerance value - smaller values provide a stricter comparison
stim::network<T> compare(stim::network<T> A, float sigma, int device = -1){
stim::network<T> R; //generate a network storing the result of the comparison
R = (*this); //initialize the result with the current network
T *c; // centerline (array of double pointers) - points on kdtree must be double
size_t n_data = A.total_points(); // set the number of points
c = (T*) malloc(sizeof(T) * n_data * 3); // allocate an array to store all points in the data set
unsigned t = 0;
for(unsigned e = 0; e < A.E.size(); e++){ //for each edge in the network
for(unsigned p = 0; p < A.E[e].size(); p++){ //for each point in the edge
for(unsigned d = 0; d < 3; d++){ //for each coordinate
c[t * 3 + d] = A.E[e][p][d]; //copy the point into the array c
}
t++;
}
}
//generate a KD-tree for network A
size_t MaxTreeLevels = 3; // max tree level
#ifdef __CUDACC__
cudaSetDevice(device);
stim::kdtree<T, 3> kdt; // initialize a pointer to a kd tree
kdt.create(c, n_data, MaxTreeLevels); // build a KD tree
for(unsigned e = 0; e < R.E.size(); e++){ //for each edge in A
//R.E[e].add_mag(0); //add a new magnitude for the metric
//size_t errormag_id = R.E[e].nmags() - 1; //get the id for the new magnitude
size_t n = R.E[e].size(); // the number of points in current edge
T* queryPt = new T[3 * n];
T* m1 = new T[n];
T* dists = new T[n];
size_t* nnIdx = new size_t[n];
T* d_dists;
T* d_m1;
cudaMalloc((void**)&d_dists, n * sizeof(T));
cudaMalloc((void**)&d_m1, n * sizeof(T));
edge2array(queryPt, R.E[e]);
kdt.search(queryPt, n, nnIdx, dists);
cudaMemcpy(d_dists, dists, n * sizeof(T), cudaMemcpyHostToDevice); // copy dists from host to device
// configuration parameters
size_t threads = (1024>n)?n:1024;
size_t blocks = n/threads + (n%threads)?1:0;
d_metric<<<blocks, threads>>>(d_m1, n, d_dists, sigma); //calculate the metric value based on the distance
cudaMemcpy(m1, d_m1, n * sizeof(T), cudaMemcpyDeviceToHost);
for(unsigned p = 0; p < n; p++){
R.E[e].set_r(p, m1[p]);
}
//d_set_mag<<<blocks, threads>>>(R.E[e].M, errormag_id, n, m1);
}
#else
stim::kdtree<T, 3> kdt;
kdt.create(c, n_data, MaxTreeLevels);
for(unsigned e = 0; e < R.E.size(); e++){ //for each edge in A
R.E[e].add_mag(0); //add a new magnitude for the metric
size_t errormag_id = R.E[e].nmags() - 1;
size_t n = R.E[e].size(); // the number of points in current edge
T* query = new T[3 * n];
T* m1 = new T[n];
T* dists = new T[n];
size* nnIdx = new size_t[n];
edge2array(queryPt, R.E[e]);
kdt.cpu_search(queryPt, n, nnIdx, dists); //find the distance between A and the current network
for(unsigned p = 0; p < R.E[e].size(); p++){
m1[p] = 1.0f - gaussianFunction((T)dists[p], sigma); //calculate the metric value based on the distance
R.E[e].set_mag(errormag_id, p, m1[p]); //set the error for the second point in the segment
}
}
#endif
return R; //return the resulting network
}
/// This function compares two networks and split the current one according to the nearest neighbor of each point in each edge
/// @param A is the network to split
/// @param B is the corresponding mapping network
/// @param sigma is the user-defined tolerance value - smaller values provide a stricter comparison
/// @param device is the device that user want to use
void split(stim::network<T> A, stim::network<T> B, float sigma, int device){
T *c;
size_t n_data = B.total_points();
c = (T*) malloc(sizeof(T) * n_data * 3);
size_t NB = B.E.size(); // the number of edges in B
unsigned t = 0;
for(unsigned e = 0; e < NB; e++){ // for every edge in B
for(unsigned p = 0; p < B.E[e].size(); p++){ // for every points in B.E[e]
for(unsigned d = 0; d < 3; d++){
c[t * 3 + d] = B.E[e][p][d]; // convert to array
}
t++;
}
}
size_t MaxTreeLevels = 3; // max tree level
#ifdef __CUDACC__
cudaSetDevice(device);
stim::kdtree<T, 3> kdt; // initialize a pointer to a kd tree
//compare each point in the current network to the field produced by A
kdt.create(c, n_data, MaxTreeLevels); // build a KD tree
std::vector<std::vector<unsigned>> relation; // the relationship between GT and T corresponding to NN
relation.resize(A.E.size());
for(unsigned e = 0; e < A.E.size(); e++){ //for each edge in A
//A.E[e].add_mag(0); //add a new magnitude for the metric
//size_t errormag_id = A.E[e].nmags() - 1;
size_t n = A.E[e].size(); // the number of edges in A
T* queryPt = new T[3 * n]; // set of all the points in current edge
T* m1 = new T[n]; // array of metrics for every point in current edge
T* dists = new T[n]; // store the distances for every point in current edge
size_t* nnIdx = new size_t[n]; // store the indices for every point in current edge
// define pointers in device
T* d_dists;
T* d_m1;
size_t* d_nnIdx;
// allocate memory for defined pointers
cudaMalloc((void**)&d_dists, n * sizeof(T));
cudaMalloc((void**)&d_m1, n * sizeof(T));
cudaMalloc((void**)&d_nnIdx, n * sizeof(size_t));
edge2array(queryPt, A.E[e]); // convert edge to array
kdt.search(queryPt, n, nnIdx, dists); // search the tree to find the NN for every point in current edge
cudaMemcpy(d_dists, dists, n * sizeof(T), cudaMemcpyHostToDevice); // copy dists from host to device
cudaMemcpy(d_nnIdx, nnIdx, n * sizeof(size_t), cudaMemcpyHostToDevice); // copy Idx from host to device
// configuration parameters
size_t threads = (1024>n)?n:1024; // test to see whether the number of point in current edge is more than 1024
size_t blocks = n/threads + (n%threads)?1:0;
d_metric<<<blocks, threads>>>(d_m1, n, d_dists, sigma); // calculate the metrics in parallel
cudaMemcpy(m1, d_m1, n * sizeof(T), cudaMemcpyDeviceToHost);
for(unsigned p = 0; p < n; p++){
A.E[e].set_r(p, m1[p]); // set the error(radius) value to every point in current edge
}
relation[e].resize(n); // resize every edge relation size
unsigned* d_relation;
cudaMalloc((void**)&d_relation, n * sizeof(unsigned)); // allocate memory
std::vector<size_t> edge_point_num(NB); // %th element is the number of points that %th edge has
for(unsigned ee = 0; ee < NB; ee++)
edge_point_num[ee] = B.E[ee].size();
size_t* d_edge_point_num;
cudaMalloc((void**)&d_edge_point_num, NB * sizeof(size_t));
cudaMemcpy(d_edge_point_num, &edge_point_num[0], NB * sizeof(size_t), cudaMemcpyHostToDevice);
d_findedge<<<blocks, threads>>>(d_nnIdx, n, d_relation, d_edge_point_num, NB); // find the edge corresponding to the array index in parallel
cudaMemcpy(&relation[e][0], d_relation, n * sizeof(unsigned), cudaMemcpyDeviceToHost); //copy relationship from device to host
}
#else
stim::kdtree<T, 3> kdt;
kdt.create(c, n_data, MaxTreeLevels);
std::vector<std::vector<unsigned>> relation; // the mapping relationship between two networks
relation.resize(A.E.size());
for(unsigned i = 0; i < A.E.size(); i++)
relation[i].resize(A.E[i].size());
std::vector<size_t> edge_point_num(NB); //%th element is the number of points that %th edge has
for(unsigned ee = 0; ee < NB; ee++)
edge_point_num[ee] = B.E[ee].size();
for(unsigned e = 0; e < A.E.size(); e++){ //for each edge in A
A.E[e].add_mag(0); //add a new magnitude for the metric
size_t errormag_id = A.E[e].nmags() - 1;
size_t n = A.E[e].size(); // the number of edges in A
T* queryPt = new T[3 * n];
T* m1 = new T[n];
T* dists = new T[n]; //store the distances
size_t* nnIdx = new size_t[n]; //store the indices
edge2array(queryPt, A.E[e]);
kdt.search(queryPt, n, nnIdx, dists);
for(unsigned p = 0; p < A.E[e].size(); p++){
m1[p] = 1.0f - gaussianFunction((T)dists[p], sigma); //calculate the metric value based on the distance
A.E[e].set_mag(errormag_id, p, m1[p]); //set the error for the second point in the segment
unsigned id = 0; //mapping edge's idx
size_t num = 0; //total number of points before #th edge
for(unsigned i = 0; i < NB; i++){
num += B.E[i].size();
if(nnIdx[p] < num){ //find the edge it belongs to
relation[e][p] = id;
break;
}
id++; //current edge won't be the one, move to next edge
}
}
}
#endif
E = A.E;
V = A.V;
unsigned int id = 0; // split value
for(unsigned e = 0; e < E.size(); e++){ // for every edge
for(unsigned p = 0; p < E[e].size() - 1; p++){ // for every point in each edge
if(relation[e][p] != relation[e][p + 1]){ // find the nearest edge changing point
id = p + 1; // if there is no change in NN
if(id < E[e].size()/threshold_fac || (E[e].size() - id) < E[e].size()/threshold_fac) // set tolerance to 10, tentatively--should find out the mathematical threshold!
id = E[e].size() - 1; // extreme situation is not acceptable
else
break;
}
if(p == E[e].size() - 2) // if there is no splitting index, set the id to the last point index of current edge
id = p + 1;
}
//unsigned errormag_id = E[e].nmags() - 1;
T G = 0; // test to see whether it has its nearest neighbor
for(unsigned i = 0; i < E[e].size(); i++)
G += E[e].r(i); // won't split special edges
if(G / E[e].size() > metric_fac) // should based on the color map
id = E[e].size() - 1; // set split idx to outgoing direction vertex
std::vector<edge> tmpe;
tmpe.resize(2);
tmpe = E[e].split(id);
vertex tmpv = stim::vec3<T>(-1, -1, 0); // store the split point as vertex
if(tmpe.size() == 2){
relation.resize(relation.size() + 1);
for(unsigned d = id; d < E[e].size(); d++)
relation[relation.size() - 1].push_back(relation[e][d]);
tmpe[0].v[0] = E[e].v[0]; // begining vertex of first half edge -> original begining vertex
tmpe[1].v[1] = E[e].v[1]; // ending vertex of second half edge -> original ending vertex
tmpv = E[e][id];
V.push_back(tmpv);
tmpe[0].v[1] = (unsigned)V.size() - 1; // ending vertex of first half edge -> new vertex
tmpe[1].v[0] = (unsigned)V.size() - 1; // begining vertex of second half edge -> new vertex
edge tmp(E[e]);
E[e] = tmpe[0]; // replace original edge by first half edge
E.push_back(tmpe[1]); // push second half edge to the last
V[V.size() - 1].e[1].push_back(e); // push first half edge to the incoming of new vertex
V[V.size() - 1].e[0].push_back((unsigned)E.size() - 1); // push second half edge to the outgoing of new vertex
for(unsigned i = 0; i < V[tmp.v[1]].e[1].size(); i++) // find the incoming edge of original ending vertex
if(V[tmp.v[1]].e[1][i] == e)
V[tmp.v[1]].e[1][i] = (unsigned)V.size() - 1;
}
}
}
/// This function compares two splitted networks and yields a mapping relationship between them according to NN
/// @param B is the network that the current network is going to map to
/// @param C is the mapping relationship: C[e1] = _e1 means e1 edge in current network is mapping the _e1 edge in B
/// @param device is the device that user want to use
void mapping(stim::network<T> B, std::vector<unsigned> &C, int device){
stim::network<T> A; //generate a network storing the result of the comparison
A = (*this);
size_t n = A.E.size(); // the number of edges in A
size_t NB = B.E.size(); // the number of edges in B
C.resize(A.E.size());
T *c; // centerline (array of double pointers) - points on kdtree must be double
size_t n_data = B.total_points(); // set the number of points
c = (T*) malloc(sizeof(T) * n_data * 3);
unsigned t = 0;
for(unsigned e = 0; e < NB; e++){ // for each edge in the network
for(unsigned p = 0; p < B.E[e].size(); p++){ // for each point in the edge
for(unsigned d = 0; d < 3; d++){ // for each coordinate
c[t * 3 + d] = B.E[e][p][d];
}
t++;
}
}
//generate a KD-tree for network A
//float metric = 0.0; // initialize metric to be returned after comparing the network
size_t MaxTreeLevels = 3; // max tree level
#ifdef __CUDACC__
cudaSetDevice(device);
stim::kdtree<T, 3> kdt; // initialize a pointer to a kd tree
kdt.create(c, n_data, MaxTreeLevels); // build a KD tree
for(unsigned e = 0; e < n; e++){ //for each edge in A
//size_t errormag_id = A.E[e].nmags() - 1; //get the id for the new magnitude
//pre-judge to get rid of impossibly mapping edges
T M = 0;
for(unsigned p = 0; p < A.E[e].size(); p++)
M += A.E[e].r(p);
M = M / A.E[e].size();
if(M > metric_fac)
C[e] = (unsigned)-1; //set the nearest edge of impossibly mapping edges to maximum of unsigned
else{
T* queryPt = new T[3];
T* dists = new T[1];
size_t* nnIdx = new size_t[1];
stim2array(queryPt, A.E[e][A.E[e].size()/2]);
kdt.search(queryPt, 1, nnIdx, dists);
unsigned id = 0; //mapping edge's idx
size_t num = 0; //total number of points before #th edge
for(unsigned i = 0; i < NB; i++){
num += B.E[i].size();
if(nnIdx[0] < num){
C[e] = id;
break;
}
id++;
}
}
}
#else
stim::kdtree<T, 3> kdt;
kdt.create(c, n_data, MaxTreeLevels);
T *dists = new T[1]; // near neighbor distances
size_t *nnIdx = new size_t[1]; // near neighbor indices // allocate near neigh indices
stim::vec3<T> p0, p1;
T* queryPt = new T[3];
for(unsigned e = 0; e < R.E.size(); e++){ // for each edge in A
T M; // the sum of metrics of current edge
unsigned errormag_id = R.E[e].nmags() - 1;
for(unsigned p = 0; p < R.E[e].size(); p++)
M += A.E[e].m(p, errormag_id);
M = M / A.E[e].size();
if(M > metric_fac) // if the sum is larger than the metric_fac, we assume that it doesn't has corresponding edge in B
C[e] = (unsigned)-1;
else{ // if it should have corresponding edge in B, then...
p1 = R.E[e][R.E[e].size()/2];
stim2array(queryPt, p1);
kdt.cpu_search(queryPt, 1, nnIdx, dists); // search the tree
unsigned id = 0; //mapping edge's idx
size_t num = 0; //total number of points before #th edge
for(unsigned i = 0; i < NB; i++){
num += B.E[i].size();
if(nnIdx[0] < num){
C[e] = id;
break;
}
id++;
}
}
}
#endif
}
/// Returns the number of magnitude values stored in each edge. This should be uniform across the network.
//unsigned nmags(){
// return E[0].nmags();
//}
// split a string in text by the character sep
stim::vec<T> split(std::string &text, char sep)
{
stim::vec<T> tokens;
std::size_t start = 0, end = 0;
while ((end = text.find(sep, start)) != std::string::npos) {
tokens.push_back(atof(text.substr(start, end - start).c_str()));
start = end + 1;
}
tokens.push_back(atof(text.substr(start).c_str()));
return tokens;
}
// load a network in text file to a network class
void load_txt(std::string filename)
{
std::vector <std::string> file_contents;
std::ifstream file(filename.c_str());
std::string line;
std::vector<unsigned> id2vert; //this list stores the vertex ID associated with each network vertex
//for each line in the text file, store them as strings in file_contents
while (std::getline(file, line))
{
std::stringstream ss(line);
file_contents.push_back(ss.str());
}
unsigned int numEdges = atoi(file_contents[0].c_str()); //number of edges in the network
unsigned int I = atoi(file_contents[1].c_str()) ; //calculate the number of points3d on the first edge
unsigned int count = 1; unsigned int k = 2; // count is global counter through the file contents, k is for the vertices on the edges
// for each edge in the network.
for (unsigned int i = 0; i < numEdges; i ++ )
{
// pre allocate a position vector p with number of points3d on the edge p
std::vector< stim::vec<T> > p(0, I);
// for each point on the nth edge
for (unsigned int j = k; j < I + k; j++)
{
// split the points3d of floats with separator space and form a float3 position vector out of them
p.push_back(split(file_contents[j], ' '));
}
count += p.size() + 1; // increment count to point at the next edge in the network
I = atoi(file_contents[count].c_str()); // read in the points3d at the next edge and convert it to an integer
k = count + 1;
edge new_edge = p; // create an edge with a vector of points3d on the edge
E.push_back(new_edge); // push the edge into the network
}
unsigned int numVertices = atoi(file_contents[count].c_str()); // this line in the text file gives the number of distinct vertices
count = count + 1; // this line of text file gives the first verrtex
// push each vertex into V
for (unsigned int i = 0; i < numVertices; i ++)
{
vertex new_vertex = split(file_contents[count], ' ');
V.push_back(new_vertex);
count += atoi(file_contents[count + 1].c_str()) + 2; // Skip number of edge ids + 2 to point to the next vertex
}
} // end load_txt function
// strTxt returns a string of edges
std::string
strTxt(std::vector< stim::vec<T> > p)
{
std::stringstream ss;
std::stringstream oss;
for(unsigned int i = 0; i < p.size(); i++){
ss.str(std::string());
for(unsigned int d = 0; d < 3; d++){
ss<<p[i][d];
}
ss << "\n";
}
return ss.str();
}
// removes specified character from string
void removeCharsFromString(std::string &str, char* charsToRemove ) {
for ( unsigned int i = 0; i < strlen(charsToRemove); ++i ) {
str.erase( remove(str.begin(), str.end(), charsToRemove[i]), str.end() );
}
}
//exports network to txt file
void
to_txt(std::string filename)
{
std::ofstream ofs(filename.c_str(), std::ofstream::out | std::ofstream::app);
//int num;
ofs << (E.size()).str() << "\n";
for(unsigned int i = 0; i < E.size(); i++)
{
std::string str;
ofs << (E[i].size()).str() << "\n";
str = E[i].strTxt();
ofs << str << "\n";
}
for(int i = 0; i < V.size(); i++)
{
std::string str;
str = V[i].str();
char temp[4] = "[],";
removeCharsFromString(str, temp);
ofs << str << "\n";
}
ofs.close();
}
}; //end stim::network class
}; //end stim namespace
#endif