cylinder.h
3.11 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
#ifndef STIM_CYLINDER_H
#define STIM_CYLINDER_H
#include <iostream>
#include <stim/math/circle.h>
#include <stim/math/vector.h>
namespace stim
{
template<typename T>
class cylinder
{
private:
stim::circle<T> s;
std::vector< stim::vec<T> > pos;
std::vector< stim::vec<T> > mags;
std::vector< T > L;
void
init()
{
}
void
init(std::vector<stim::vec<T> > inP, std::vector<stim::vec<T> > inM)
{
pos = inP;
mags = inM;
L.resize(pos.size()-1);
for(int i = 0; i < L.size; i++)
{
L[i] += (pos[i] - pos[i+1]).len();
}
}
stim::vec<T>
d(int idx)
{
return (pos[idx] - pos[idx+1]).norm();
}
T
getl(int j)
{
for(int i = 0; i < j-1; ++i)
{
L += (pos[i] -pos[i+1]).len();
}
}
int
findIdx(T l)
{
int i = pos.size()/2;
while(1)
{
if(L[i] < l)
{
i = i/2;
}
else if(L[i] < l && L[i+1] > l)
{
break;
}
else
{
i = i+i/2;
}
}
return i;
}
public:
cylinder()
{
}
///constructor to create a cylinder from a set of points, radii, and the number of sides for the cylinder.
///The higher the number of sides, the more rectangeles compose the surface of the cylinder.
///@param inP: Vector of stim vecs composing the points of the centerline.
///@param inM: Vector of stim vecs composing the radii of the centerline.
cylinder(std::vector<stim::vec<T> > inP, std::vector<stim::vec<T> > inM)
{
init(inP, inM);
}
///Returns a position vector at the given p-value (p value ranges from 0 to 1).
stim::vec<T>
p(T pvalue)
{
T l = pvalue*L[L.size()-1];
int idx = findIdx(l);
return pos[idx] + (pos[idx+1]-pos[idx])*((l-L[idx])/(L[idx+1]- L[idx]));
}
stim::vec<T>
p(T l, int idx)
{
return pos[idx] + (pos[idx+1]-pos[idx])*((l-L[idx])/(L[idx+1]- L[idx]));
}
///Returns a radius at the given p-value (p value ranges from 0 to 1).
T
r(T pvalue)
{
T l = pvalue*L[L.size()-1];
int idx = findIdx(l);
return mags[idx] + (mags[idx+1]-mags[idx])*((l-L[idx])/(L[idx+1]- L[idx]));
{
T
r(T l, int idx)
{
return mags[idx] + (mags[idx+1]-mags[idx])*((l-L[idx])/(L[idx+1]- L[idx]));
{
///returns the position of the point with a given pvalue and theta on the surface
///in x, y, z coordinates. Theta is in degrees from 0 to 360
stim::vec<T>
surf(T pvalue, T theta)
{
T l = pvalue*L[L.size()-1];
int idx = findIdx(l);
stim::vec<T> ps = p(l, idx);
T m = r(l, idx);
stim::vec<T> dr = d(idx);
s = stim::circle<T>(ps, m, dr);
return(s.p(theta));
}
std::vector<std::vector<vec<T> > >
getPoints(int sides)
{
if(pos.size() < 2)
{
return;
} else {
std::vector<std::vector <vec<T> > > points;
points.resize(pos.size());
stim::vec<T> d = (pos[0] - pos[1]).norm();
s = stim::circle<T>(pos[0], mags[0][0], d);
points[0] = s.getPoints(sides);
for(int i = 1; i < pos.size(); i++)
{
d = (pos[i] - pos[i-1]).norm();
s.center(pos[i]);
s.normal(d);
s.scale(mags[i][0]/mags[i-1][0], mags[i][0]/mags[i-1][0]);
points[i] = s.getPoints(sides);
}
return points;
}
}
};
}
#endif