fiber.h 13.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
#ifndef STIM_FIBER_H
#define STIM_FIBER_H

#include <vector>
#include <ANN/ANN.h>

namespace stim{

/**	This class stores information about a single fiber represented as a set of geometric points
 *	between two branch or end points. This class is used as a fundamental component of the stim::network
 *	class to describe an interconnected (often biological) network.
 */
template<typename T>
class fiber{

protected:
	unsigned int N;					//number of points in the fiber
	double **c;						//centerline (array of double pointers)

	T* r;						// array of fiber radii
	ANNkd_tree* kdt;			//kd-tree stores all points in the fiber for fast searching

	/// Initialize an empty fiber
	void init()
	{
		kdt = NULL;
		c=NULL;
		r=NULL;
		N=0;
	}

	/// Initialize a fiber with N centerline points (all located at [0, 0, 0] with radius 0)
	void init(unsigned int n)
	{

		N = n;												//set the number of points
		kdt = NULL;
		c = (double**) malloc(sizeof(double*) * N);			//allocate the array pointer

		for(unsigned int i = 0; i < N; i++)					//allocate space for each point
			c[i] = (double*) malloc(sizeof(double) * 3);

		r = (T*) malloc(sizeof(T) * N);			//allocate space for the radii
	}

	/// Copies an existing fiber to the current fiber

	/// @param cpy stores the new copy of the fiber
	void copy( const stim::fiber<T>& cpy ){

		///allocate space for the new fiber
		init(cpy.N);

		///copy the points
		for(unsigned int i = 0; i < N; i++){
			for(unsigned int d = 0; d < 3; d++)		//for each dimension
				c[i][d] = cpy.c[i][d];				//copy the coordinate

			r[i] = cpy.r[i];						//copy the radius
		}

		gen_kdtree();							//generate the kd tree for the new fiber
	}

	/// generate a KD tree for points on fiber
	void gen_kdtree()
	{
		int n_data = N; //create an array of data points
		ANNpointArray pts = (ANNpointArray)c;			//cast the centerline list to an ANNpointArray
		kdt = new ANNkd_tree(pts, n_data, 3);			//build a KD tree
	}

	/// find distance between two points
	double dist(double* p0, double* p1){

		double sum = 0; // initialize variables
		float v;
		for(unsigned int d = 0; d < 3; d++)
		{
			v = p1[d] - p0[d];
			sum +=v * v;

		}
		return sqrt(sum);
	}

	/// This function retreives the index for the fiber point closest to q

	/// @param q is a reference point used to find the closest point on the fiber center line
	unsigned int ann( stim::vec<double> q ){

		ANNidxArray idx = new ANNidx[1];			//variable used to hold the nearest point
		ANNdistArray sq_dist = new ANNdist[1];		//variable used to hold the squared distance to the nearest point

		kdt->annkSearch(q.data(), 1, idx, sq_dist);	//search the KD tree for the nearest neighbor

		return *idx;
	}

	/// Returns a stim::vec representing the point at index i

	/// @param i is an index of the desired centerline point
	stim::vec<T> get_vec(unsigned i){
		stim::vec<T> r;
		r.resize(3);
		r[0] = c[i][0];
		r[1] = c[i][1];
		r[2] = c[i][2];

		return r;
	}


public:

	fiber(){
		init();
	}

	/// Copy constructor
	fiber(const stim::fiber<T> &obj){

		copy(obj);

	}

	//temp constructor for graph visualization
	fiber(int n)
	{
		init(n);
	}

	/// Constructor takes a list of stim::vec points, the radius at each point is set to zero
	fiber(std::vector< stim::vec<T> > p){
		init(p.size());		//initialize the fiber

		//for each point, set the centerline position and radius
		for(unsigned int i = 0; i < N; i++){

			//set the centerline position
			for(unsigned int d = 0; d < 3; d++)
				c[i][d] = (double) p[i][d];

			//set the radius
			r[i] = 0;
		}

		//generate a kd tree
		gen_kdtree();
	}

	/// constructor takes a list of points and radii
	fiber(std::vector< stim::vec< T > > pos, std::vector< T > radii){
		init(pos.size());		//initialize the fiber

		//for each point, set the centerline position and radius
		for(unsigned int i = 0; i < N; i++){

			//set the centerline position
			for(unsigned int d = 0; d < 3; d++)
				c[i][d] = (double) pos[i][d];

			//set the radius
			r[i] = radii[i];
		}

		//generate a kd tree
		gen_kdtree();
	}

	/// constructor takes an array of points and radii
	//		this function is used when the radii are represented as a stim::vec,
	//		since this may be easier when importing OBJs
	fiber(std::vector< stim::vec<T> > pos, std::vector< stim::vec<T> > radii){

		init(pos.size());

		//for each point, set the position and radius
		for(unsigned int i = 0; i < N; i++){
			//at(i) = (double*)malloc(sizeof(double) * 3);
			for(unsigned int d = 0; d < 3; d++)
				c[i][d] = (double)  pos[i][d];

			r[i] = radii[i][(unsigned int)0];
		}

		gen_kdtree();
	}

	/// Assignment operation
	fiber& operator=(const fiber &rhs){

		if(this == &rhs) return *this;			//test for and handle self-assignment

		copy(rhs);
	}

	/// Calculate the length of the fiber and return it.
	double length(){

		double* p0;
		double *p1;
		double l = 0;				//initialize the length to zero

		//for each point
		//typename std::list< point<T> >::iterator i;	//create a point iterator
		for(unsigned int i = 0; i < N; i++){		//for each point in the fiber

			if(i == 0)						//if this is the first point, just store it
				p1 = c[0];
			else{									//if this is any other point
				p0 = p1;							//shift p1->p0
				p1 = c[i];							//set p1 to the new point
				l += dist(p0, p1);				//add the length of p1 - p0 to the running sum
			}
		}

		return l;									//return the length
	}

	/// Calculates the length and average radius of the fiber

	/// @param length is filled with the fiber length
	T radius(T& length){

		double* p0;				//temporary variables to store point positions
		double* p1;
		T r0, r1;					//temporary variables to store radii at points
		double l;
		T r_mean;						//temporary variable to store the length and average radius of a fiber segment
		double length_sum = 0;			//initialize the length to zero
		T radius_sum = 0;			//initialize the radius sum to zero

		//for each point
		//typename std::list< point<T> >::iterator i;	//create a point iterator
		for(unsigned int i = 0; i < N; i++){		//for each point in the fiber

			if(i == 0){						//if this is the first point, just store it
				p1 = c[0];
				r1 = r[0];
			}
			else{									//if this is any other point
				p0 = p1;							//shift p1->p0 and r1->r0
				r0 = r1;
				p1 = c[i];							//set p1 to the new point
				r1 = r[i];

				l = dist(p0, p1);				//calculate the length of the p0-p1 segment
				r_mean = (r0 + r1) / 2;					//calculate the average radius of the segment

				radius_sum += r_mean * (T) l;				//add the radius scaled by the length to a running sum
				length_sum += l;					//add the length of p1 - p0 to the running sum
			}
		}

		length = length_sum;						//store the total length

		//if the total length is zero, store a radius of zero
		if(length == 0)
			return 0;
		else
			return (T)(radius_sum / length);					//return the average radius of the fiber
	}
	T average_radius()
	{
		T r_sum = 0.;
		for(unsigned int i = 0; i < N; i++)
		{
			r_sum = r_sum + r[i];
		}
		return r_sum/((T) N);
	}

	/// Calculates the average radius of the fiber
	T radius(){
		T length;
		return radius(length);
	}

	/// Returns the radius at index idx.
	T radius(int idx){
		return r[idx];
	}

	/// Return the point on the fiber closest to q
	/// @param q is the query point used to locate the nearest point on the fiber centerline
	stim::vec<T> nearest(stim::vec<T> q){

		stim::vec<double> temp( (double) q[0], (double) q[1], (double) q[2]);

		unsigned int idx = ann(temp);		//determine the index of the nearest neighbor

		return stim::vec<T>((T) c[idx][0], (T) c[idx][1], (T) c[idx][2]);	//return the nearest centerline point
	}

	/// Return the point index on the fiber closest to q
	/// @param q is the query point used to locate the nearest point on the fiber centerline
	unsigned int nearest_idx(stim::vec<T> q){

		stim::vec<double> temp((double) q[0], (double) q[1], (double) q[2]);

		unsigned int idx = ann(temp);		//determine the index of the nearest neighbor

		return idx;	//return the nearest centerline point index
	}

	/// Returns the fiber centerline as an array of stim::vec points
	std::vector< stim::vec<T> > centerline(){

		//create an array of stim vectors
		std::vector< stim::vec<T> > pts(N);

		//cast each point to a stim::vec, keeping only the position information
		for(unsigned int i = 0; i < N; i++)
			pts[i] = stim::vec<T>((T) c[i][0], (T) c[i][1], (T) c[i][2]);

		//return the centerline array
		return pts;
	}

	/// Returns the fiber centerline magnitudes as an array of stim::vec points
	std::vector< stim::vec<T> > centerlinemag(){

		//create an array of stim vectors
		std::vector< stim::vec<T> > pts(N);

		//cast each point to a stim::vec, keeping only the position information
		for(unsigned int i = 0; i < N; i++)
			pts[i] = stim::vec<T>(r[i], r[i]);;

		//return the centerline array
		return pts;
	}

	/// Split the fiber at the specified index. If the index is an end point, only one fiber is returned
	std::vector< stim::fiber<T> > split(unsigned int idx){

		std::vector< stim::fiber<T> > fl;		//create an array to store up to two fibers

		//if the index is an end point, only the existing fiber is returned
		if(idx == 0 || idx == N-1){
			fl.resize(1);							//set the size of the fiber to 1
			fl[0] = *this;							//copy the current fiber
		}

		//if the index is not an end point
		else{

			unsigned int N1 = idx + 1;					//calculate the size of both fibers
			unsigned int N2 = N - idx;

			fl.resize(2);								//set the array size to 2

			fl[0].init(N1);								//set the size of each fiber
			fl[1].init(N2);

			//copy both halves of the fiber
			unsigned int i, d;

			//first half
			for(i = 0; i < N1; i++){					//for each centerline point
				for(d = 0; d < 3; d++)
					fl[0].c[i][d] = c[i][d];			//copy each coordinate
				fl[0].r[i] = r[i];						//copy the corresponding radius
			}

			//second half
			for(i = 0; i < N2; i++){
				for(d = 0; d < 3; d++)
					fl[1].c[i][d] = c[idx + i][d];
				fl[1].r[i] = r[idx + i];
			}
		}

		return fl;										//return the array

	}

	/// Calculates the set of fibers resulting from a connection between the current fiber and a fiber f

	/// @param f is the fiber that will be connected to the current fiber
	std::vector< stim::fiber<T> > connect( stim::fiber<T> &f, double dist){

		double min_dist;
		unsigned int idx0, idx1;

		//go through each point in the query fiber, looking for the indices for the closest points
		for(unsigned int i = 0; i < f.n_pts(); i++){
			//Run through all points and find the index with the closest point, then partition the fiber and return two fibers.

		}



	}

	/// Outputs the fiber as a string
	std::string str(){
		std::stringstream ss;

		//create an iterator for the point list
		//typename std::list< point<T> >::iterator i;
		for(unsigned int i = 0; i < N; i++){
			ss<<"  [  ";
			for(unsigned int d = 0; d < 3; d++){
				ss<<c[i][d]<<"  ";
			}
			ss<<"]  r = "<<r[i]<<std::endl;
		}

		return ss.str();
	}
	/// Returns the number of centerline points in the fiber
	unsigned int size(){
		return N;
	}


	/// Bracket operator returns the element at index i

	/// @param i is the index of the element to be returned as a stim::vec
	stim::vec<T> operator[](unsigned i){
		return get_vec(i);
	}

	/// Back method returns the last point in the fiber
	stim::vec<T> back(){
		return get_vec(N-1);
	}
		////resample a fiber in the network
	stim::fiber<T> resample(T spacing)
	{
		std::cout<<"fiber::resample()"<<std::endl;

		std::vector<T> v(3);    //v-direction vector of the segment
		stim::vec<T> p(3);      //- intermediate point to be added
		stim::vec<T> p1(3);   // p1 - starting point of an segment on the fiber,
		stim::vec<T> p2(3);   // p2 - ending point,
		double sum=0;  //distance summation
		std::vector<stim::vec<T> > fiberPositions = centerline();
		std::vector<stim::vec<T> > newPointList; // initialize list of new resampled points on the fiber
		// for each point on the centerline (skip if it is the last point on centerline)
		//unsigned int N = fiberPositions.size(); // number of points on the fiber
		for(unsigned int f=0; f< N-1; f++)
		{
			
			p1 = fiberPositions[f]; p2 = fiberPositions[f + 1]; v = p2 - p1;
			for(unsigned int d = 0; d < 3; d++){
				sum +=v[d] * v[d];}              //length of segment-distance between starting and ending point

			T lengthSegment = sqrt(sum);  //find Length of the segment as distance between the starting and ending points of the segment

			if(lengthSegment >= spacing) // if length of the segment is greater than standard deviation resample
				{
					// repeat resampling until accumulated stepsize is equsl to length of the segment
					for(T step=0.0; step<lengthSegment; step+=spacing)
					{
						// calculate the resampled point by travelling step size in the direction of normalized gradient vector
						for(unsigned int i=0; i<3;i++)
							{
								p[i] = p1[i] + v[i]*(step/lengthSegment);
							} //for each dimension
						// add this resampled points to the new fiber list
						newPointList.push_back(p);
					}
				}
			else       // length of the segment is now less than standard deviation, push the ending point of the segment and proceed to the next point in the fiber
				newPointList.push_back(fiberPositions[f+1]);
			}
		newPointList.push_back(fiberPositions[N-1]);   //add the last point on the fiber to the new fiber list
		fiber newFiber(newPointList);
		return newFiber;
	}

};



}	//end namespace stim



#endif